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Introduction

Our task

Given a function f : X → R

and a set D ⊆ X of feasible solutions,

find arg max
x∈D

f(x).

We are interested in general purpose algorithms that can be applied
without problem knowledge

Parameterized Complexity Analysis of EAs

Introduction

Why General Purpose Algorithms?

Algorithms are the heart of every nontrivial computer
application.

For many problems we know good or optimal algorithms.

Sorting
Shortest paths
Minimum spanning trees

What about new or complex problems?

Often there are no good problem specific algorithms.

Parameterized Complexity Analysis of EAs

Introduction

Points that may rule out problem specific algorithms

Problems that are rarely understood.

Quality of solutions is determined by simulations.

Problems that fall into the black box scenario.

Not enough resources such as time, money, knowledge.

General purpose algorithms are often a good choice.
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Introduction

General purpose algorithms for optimizing a function f : X → R

1. Choose a representation for the elements in X.

2. Fix a function to evaluate the quality (might be different from f).

3. Define operators that produce new elements.

Parameterized Complexity Analysis of EAs

Evolutionary Algorithms

Evolutionary algorithms are general purpose algorithms.

Follow Darwin’s principle (survival of the fittest).

Work with a set of solutions called population.

Parent population produces offspring population by variation operators
(mutation, crossover).

Select individuals from the parents and children to create a new parent
population.

Iterate the process until a “good solution” has been found.

Parameterized Complexity Analysis of EAs

Simple Evolutionary Algorithm

(1+1) EA

x← an element of {0, 1}n uniformly at random.
repeat forever

Produce y by flipping each bit of x with probability 1/n.
if f(y) ≥ f(x) then x← y

Parameterized Complexity Analysis of EAs

Theory of Evolutionary Algorithms

Evolutionary algorithms are successful for many complex optimization
problems.

Rely on random decisions ⇒ randomized algorithms.

Goal: understand how and why they work.

Study the computational complexity of these algorithms on prominent
examples.

Parameterized Complexity Analysis of EAs
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Runtime analysis

Black box scenario

Measure the runtime T by the number of fitness evaluations.

Studies consider time in dependence of the input to reach

An optimal solution
A good approximation

Rigorous estimates

Expected number of fitness evaluations E(T )

Tail bounds, e.g., useful bounds on Pr(T ≤ g(n)) where n measures
the size of the problem instance

Parameterized Complexity Analysis of EAs

Motivation

We want to tackle the analysis of randomized search heuristics applied to
NP-hard problems

Reducing the base of the exponent

Conflict-directed walk (Schöning, 1999) O(1.334n) for 3-SAT

Polynomial-time approximation

Partition (Witt, 2005)
Vertex Cover (Friedrich et al., 2007, Oliveto et al., 2007)
Set Cover (Friedrich et al., 2007)
Intersection of p ≥ 3 matroids (Reichel & Skutella, 2010)

Average-case analysis

Partition (Witt, 2005)

Real world problems: inputs are often structured or restricted in some
way.

Parameterized Complexity Analysis of EAs

Motivation

Type-checking in ML

No explicit typing in ML: compiler must infer types/check for
consistency: complete for EXPTIME

Let k be the nesting depth of a type declaration, there is an exact
algorithm that solves the problem in O(2kn)

In most real-world problems: k ≤ 10

Parameterized Complexity Analysis of EAs

Motivation

Reconfigurable computing

Given:

an n× n memory array A with some defective elements
k1 extra rows of spare memory, k2 extra columns of spare memory

A defective element can be repaired by replacing the row/column
that contains it with a spare row/column

Determine if there is a replacement arrangement that repairs all
defective elements in A

Reduces to: constrained minimum vertex cover in bipartite graphs:
NP-complete

Chen & Kanj (2003): O(1.26kn) algorithm where k = k1 + k2

In the real world, due to hardware constraints, k ≤ 40

Parameterized Complexity Analysis of EAs
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Motivation

Many heuristics are successful in practice because they can take
advantage of problem structure...
...want analyses to capture that

Parameterized Complexity Analysis of EAs

Parameterized complexity

Find a hardness parameter k that isolates the source of exponential
complexity.

n n
k

Let L be a language over a finite alphabet Σ.

A parameterization of L is a mapping κ : Σ∗ → N

Corresponding parameterized problem is given by (L, κ).

For a string x ∈ Σ∗, let k = κ(x) and n = |x|.
An algorithm deciding x ∈ L in the time bounded by f(k) · poly(n) is
called a fixed-parameter tractable (FPT) algorithm for the
parameterization κ.

Parameterized Complexity Analysis of EAs

Parameterized complexity for EAs

Monte-Carlo FPT algorithm: in FPT-time, accept with probability at
least 1/2 if x ∈ L, with probability 0 if x 6∈ L.

Definition

An evolutionary algorithm is called fixed-parameter tractable (FPT) if it
finds an optimal solution in expected time O(f(k) · poly(n)).

vertex cover (Kratsch and Neumann, 2013)

maximum leaf spanning tree (Kratsch et al., 2010)

MAX-2-SAT (Sutton, Day, Neumann, GECCO 2012)

Makespan scheduling (Sutton and Neumann, PPSN 2012)

Euclidean TSP (Nallaperuma et al., CEC 2013)

Bilevel optimization (Corus, Lehre, and Neumann, GECCO 2013)

Average-case complexity of hypervolume indicator (Bringmann and
Friedrich, GECCO 2013)

Parameterized Complexity Analysis of EAs

The Minimum Vertex Cover Problem 
Friedrich,	
  He,	
  Hebbinghaus,	
  Neumann,	
  	
  and	
  WiC	
  (ECJ	
  2010) 

Kratsch, Neumann (Algorithmica 2013) 
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The Problem 
The Vertex Cover Problem: 
Given an undirected graph G=(V,E). 

Find a minimum subset of vertices such that each edge 
is covered at least once. 
NP-hard, several 2-approximation algorithms. 

Simple	
  single-­‐objec0ve	
  evolu0onary	
  algorithms	
  fail!!!	
  

The Problem 

Decision problem: Is there a set of vertices of size 
at most k covering all edges? 
Our parameter: Value of an optimal solution (OPT) 

min
Pn

i=1 xi

s.t. xi + xj � 1 ⇤ {i, j} ⇥ E
xi ⇥ {0, 1}

min
Pn

i=1 xi

s.t. xi + xj � 1 ⇤ {i, j} ⇥ E
xi ⇥ [0, 1]

Integer	
  Linear	
  Program	
  (ILP)	
  

Linear	
  Program	
  (LP)	
  

Evolutionary Algorithm 
Representation: Bitstrings of length n 

Minimize fitness function: 

Neumann, Frank 32

Evolutionary Algorithm
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Keep trade-offs of the two criteria 

Multi-Objective Approach: 
Treat the different objectives in the same way 

Neumann, Frank 36
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


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

Empty set included  
in the population 
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What can we say about these solutions? 

Kernelization in expected polynomial time 

Optimal solution 

Expected time g(OPT)* poly(n) 
Fixed parameter evolutionary algorithm 

• Subset of a minimum vertex cover 
• G(x) has maximum degree at most OPT 
• G(x) has at most OPT + OPT2   
  non-isolated vertices  
 

(log n)-approximation (Friedrich, Hebbinghaus, He, N., Witt (2010)) 
Approach can be generalized to the SetCover Problem 
(best possible approximation in polynomial time) 
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Kernelization in expected polynomial time 

Optimal solution 

Fixed parameter evolutionary algorithm 

• Subset of a minimum vertex cover 
• G(x) has at most 2OPT non-isolated  
 vertices 
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Linear Programming 
Combination with Linear Programming 
•  LP-relaxation is half integral, i.e.  

Can we also say something about approximations? 

Neumann, Frank 39

Linear Programming

Combination with Linear Programming

LP-relaxation is half integral, i.e.          

   
               
      


  


             
          

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Linear Programming

Combination with Linear Programming
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The Problem 
The Maximum Leaf Spanning Tree Problem: 
Given an undirected connected graph G=(V,E). 

Find a spanning tree with a maximum number of leaves. 
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Find a spanning tree with a maximum number of leaves. 

NP-hard, different classical FPT-studies 
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  Algorithms	
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We consider two simple evolutionary algorithms which di�er by the choice of
the mutation operator. Both algorithms start with an arbitrary spanning tree T
of G. We denote by m the number of edges in G, and ⌥(T ) the number of leaves
of the spanning tree T . A new solution is only accepted if it is a spanning tree
whose number of leaves is at least as high as the number of leaves in the current
solution. The first algorithm can be described as follows.

Algorithm 1 (Generic (1+1) EA)

1. Choose a spanning tree of T uniformly at random.

2. Produce T � by swapping each edge of T independently with probability 1/m.

3. If T � is a tree and ⌥(T �) ⇥ ⌥(T ), set T := T �.
4. Go to 2.

Swapping an edge in step 2. of Algorithm 1 means that if an edge is present in
T then it is not contained in T � with probability 1/m. On the other hand, if an
edge is not present in T then it is contained in T � with probability 1/m. An edge
does not change from T to T � with probability 1�1/m in each mutation step in-
dependently of the other edges. Note, that the mutation operator of Algorithm 1
does not necessarily create an o�spring that is a tree. If the o�spring is not a
tree then this individual is discarded as it represents an infeasible solution.

Often it is assumed that choosing a mutation operator that is more tailored to
the problem gives a significant speed up. The second algorithm uses a problem-
specific mutation operator that ensures valid solutions, i. e. spanning trees.

Algorithm 2 (Tree-Based (1+1) EA)

1. Choose an arbitrary spanning tree T of G.

2. Choose S according to a Poisson distribution with parameter � = 1 and per-
form sequentially S random edge-exchange operations to obtain a spanning
tree T �. A random exchange operation applied to a spanning tree T̃ chooses
an edge e ⇤ E \ T̃ uniformly at random. The edge e is inserted and one
randomly chosen edge of the cycle in T̃ ⌅ {e} is deleted.

3. If ⌥(T �) ⇥ ⌥(T ), set T := T �.
4. Go to 2.

Our goal is to point out the di�erences between the two algorithms. To do this,
we compare the expected number of iterations that our algorithms need to com-
pute an optimal solution. The expected number of iterations needed to obtain an
optimal solution is called the expected optimization time, and is the commonly
used performance measure in the rigorous runtime analysis of evolutionary algo-
rithms. We will show that choosing the more problem-specific mutation operator
of Algorithm 2 makes the di�erence between a fixed-parameter evolutionary algo-
rithm and an evolutionary algorithm that does not compute an optimal solution
within expected FPT-time.

We consider two simple evolutionary algorithms which di�er by the choice of
the mutation operator. Both algorithms start with an arbitrary spanning tree T
of G. We denote by m the number of edges in G, and ⌥(T ) the number of leaves
of the spanning tree T . A new solution is only accepted if it is a spanning tree
whose number of leaves is at least as high as the number of leaves in the current
solution. The first algorithm can be described as follows.

Algorithm 1 (Generic (1+1) EA)

1. Choose a spanning tree of T uniformly at random.

2. Produce T � by swapping each edge of T independently with probability 1/m.

3. If T � is a tree and ⌥(T �) ⇥ ⌥(T ), set T := T �.
4. Go to 2.

Swapping an edge in step 2. of Algorithm 1 means that if an edge is present in
T then it is not contained in T � with probability 1/m. On the other hand, if an
edge is not present in T then it is contained in T � with probability 1/m. An edge
does not change from T to T � with probability 1�1/m in each mutation step in-
dependently of the other edges. Note, that the mutation operator of Algorithm 1
does not necessarily create an o�spring that is a tree. If the o�spring is not a
tree then this individual is discarded as it represents an infeasible solution.

Often it is assumed that choosing a mutation operator that is more tailored to
the problem gives a significant speed up. The second algorithm uses a problem-
specific mutation operator that ensures valid solutions, i. e. spanning trees.

Algorithm 2 (Tree-Based (1+1) EA)

1. Choose an arbitrary spanning tree T of G.

2. Choose S according to a Poisson distribution with parameter � = 1 and per-
form sequentially S random edge-exchange operations to obtain a spanning
tree T �. A random exchange operation applied to a spanning tree T̃ chooses
an edge e ⇤ E \ T̃ uniformly at random. The edge e is inserted and one
randomly chosen edge of the cycle in T̃ ⌅ {e} is deleted.

3. If ⌥(T �) ⇥ ⌥(T ), set T := T �.
4. Go to 2.

Our goal is to point out the di�erences between the two algorithms. To do this,
we compare the expected number of iterations that our algorithms need to com-
pute an optimal solution. The expected number of iterations needed to obtain an
optimal solution is called the expected optimization time, and is the commonly
used performance measure in the rigorous runtime analysis of evolutionary algo-
rithms. We will show that choosing the more problem-specific mutation operator
of Algorithm 2 makes the di�erence between a fixed-parameter evolutionary algo-
rithm and an evolutionary algorithm that does not compute an optimal solution
within expected FPT-time.

Does	
  the	
  muta0on	
  operator	
  make	
  the	
  difference	
  between	
  
FPT	
  and	
  non-­‐FPT	
  run0me?	
  

Local	
  Op0mum	
  

Frank	
  Neumann	
  

r vertices
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y
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Fig. 1. Local optimum shown with dashed edges, global optimum with dotted edges,
shared edges are drawn solid.

3 Local Optima and Lower Bounds

The aim of this section is to point out structures of the problem that make it hard
for our algorithms to achieve an improvement. We discuss the presence of local
optima and present a graph that consists of a local optimum which has a large
distance (in terms of the number of edge exchanges) from the global optimum.
Using this observation, we show lower bounds on the expected optimization time
for the two algorithms under consideration.

Our graph called Gloc (see Figure 1) contains two components consisting of r
vertices each. In component i, 1 ⇥ i ⇥ 2, two vertices ui and vi are connected to
all the other vertices in that component. The vertex ui is connected to vertex x
which lies outside the component. Similarly vertex vi is connected to vertex y. In
addition, x and y share an edge. The graph is completed by attaching a path of
n�2r�2 vertices to the vertex x. A tree has to contain all the edges of the path
attached to x. For a given component, the maximal number of possible leaves
is at most r � 1. This can be obtained by attaching all nodes of the component
either to ui or vi.

The graph contains a local optimum Tlopt which consists of all edges attached
to the vertices vi, 1 ⇥ i ⇥ 2, the edge {x, y} and all path edges. The global
optimum Topt consists of all edges attached to the vertices ui, 1 ⇥ i ⇥ 2, the
edge {x, y} and all path edges. Compared to Tlopt, Topt has an extra leaf, namely
the vertex y. However, Tlopt and Topt di�er by 4(r�1) edges which make it hard
for the algorithms under consideration to obtain Topt if Tlopt has been produced
before.

Our goal is to study the expected optimization time of the algorithms intro-
duced in the previous section in dependence of the number of leaves which, in
turn, depends on r. To do this, we first consider the number of di�erent spanning
trees of Gloc in dependence of r.

Lemma 1. The number of spanning trees of Gloc is at most 24r.

Lower	
  Bounds	
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Proof. A spanning tree has to contain all edges of the path attached to x. The
path attached to x consists of n�2r�2 edges. A spanning tree contains exactly
n⇥ = n� 1� (n� 2r � 2) = 2r + 1 non-path edges.

We count the total number of non-path edges in Gloc. Consider a component
consisting of r edges. The number of edges within such a component is 2r � 3
as ui and vi are connected to all other vertices and share an edge. In addition
there are two edges connecting each component to the outer part. Hence, the
total number of edges connected to vertices of a single component is 2r � 1. In
addition, there is the edge connecting x and y.

Summing up, the graph consists of m⇥ = 2(2r � 1) + 1 = 4r � 1 non-path
edges. The number of di�erent spanning trees is therefore at most

⇧
m⇥

n⇥

⌃
=

⇧
4r � 1

2r + 1

⌃
⇤ 24r.

⌃⇧

Using the previous lemma, we show the following lower bound on the ex-
pected optimization time of Generic (1+1) EA on Gloc.

Theorem 1. The expected optimization time of Generic (1+1) EA on Gloc is

lower bounded by
�
m
c

⇥2(r�2)
where c is an appropriate constant.

Proof. The number of spanning trees of Gloc is at most 24r. Therefore, the initial
spanning tree is Tlopt with probability at least 2�4r. This spanning tree is a local
optimum with 2(r�1)+2 leaves. In order to obtain a di�erent spanning tree with
at least as many leaves, r � 1 leaves have to be achieved in each component, or
at least r� 1 leaves have to be obtained in one component and y has to become
a leaf. Hence, in order to achieve an accepted solution that is di�erent from Tlopt

all (r � 2) nodes of at least one component i have to be assigned to ui instead
of vi. This implies that at least 2(r� 2) edges for a fixed component have to be
swapped to escape from the local optimum. There are two components where
this can happen which implies that the probability for such a step is at most

2
�

1
m

⇥2(r�2)
. The expected waiting time for such a step is at least 1

2 · m2(r�2).
Altogether the expected optimization time is lower bounded by

2�4r · 1
2
·m2(r�2) ⌅

⇤m
c

⌅2(r�2)

,

where c is an appropriate constant. ⌃⇧

Using the previous ideas, we can also lower bound the expected optimization
time of Tree-Based (1+1) EA on Gloc.

Theorem 2. The expected optimization time of Tree-Based (1+1) EA on Gloc

is lower bounded by ( r�2
c )r�2 where c is an appropriate constant.

Proof. A spanning tree has to contain all edges of the path attached to x. The
path attached to x consists of n�2r�2 edges. A spanning tree contains exactly
n⇥ = n� 1� (n� 2r � 2) = 2r + 1 non-path edges.
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consisting of r edges. The number of edges within such a component is 2r � 3
as ui and vi are connected to all other vertices and share an edge. In addition
there are two edges connecting each component to the outer part. Hence, the
total number of edges connected to vertices of a single component is 2r � 1. In
addition, there is the edge connecting x and y.

Summing up, the graph consists of m⇥ = 2(2r � 1) + 1 = 4r � 1 non-path
edges. The number of di�erent spanning trees is therefore at most
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optimum with 2(r�1)+2 leaves. In order to obtain a di�erent spanning tree with
at least as many leaves, r � 1 leaves have to be achieved in each component, or
at least r� 1 leaves have to be obtained in one component and y has to become
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all (r � 2) nodes of at least one component i have to be assigned to ui instead
of vi. This implies that at least 2(r� 2) edges for a fixed component have to be
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this can happen which implies that the probability for such a step is at most

2
�

1
m

⇥2(r�2)
. The expected waiting time for such a step is at least 1

2 · m2(r�2).
Altogether the expected optimization time is lower bounded by
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where c is an appropriate constant. ⌃⇧

Using the previous ideas, we can also lower bound the expected optimization
time of Tree-Based (1+1) EA on Gloc.

Theorem 2. The expected optimization time of Tree-Based (1+1) EA on Gloc

is lower bounded by ( r�2
c )r�2 where c is an appropriate constant.

Idea	
  for	
  lower	
  bounds:	
  

Both	
  algorithms	
  may	
  get	
  stuck	
  in	
  local	
  op0mum.	
  
	
  
For	
  the	
  Generic	
  (1+1)	
  EA	
  it	
  is	
  less	
  likely	
  to	
  escape	
  local	
  
op0mum	
  as	
  it	
  oLen	
  flips	
  edges	
  on	
  the	
  path.	
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Proof. We follow the ideas of the previous theorem. With probability at least
2�4r, Tlopt is chosen as the initial spanning tree. In order to produce from Tlopt

the optimal solution Topt, (r � 2) exchange operations have to be carried out in
a single mutation step. According to the Poisson distribution with � = 1, the
probability that this happens in the next step is

1

e(r � 2)!
⌅ 1⇤

2⇥(r � 2)
er�3(r � 2)�(r�2) ⌅ er�3(r � 2)�(r�2).

Altogether the expected optimization time is lower bounded by

2�4r · e�r+3(r � 2)(r�2) ⇧
�
r � 2

c

⇥r�2

,

where c is an appropriate constant. ⌥⌃

To show that both algorithms need not only in expectation that many steps,
but also with a high probability the graph can be modified such that it consists
of more than two components attached to x and y. Then a typical run can be
investigated to show that at least two components end up in the local optimum.

4 FPT of Edge Exchanges

In this section we prove that Algorithm 2 is an FPT algorithm for the maximum
leaf spanning tree problem with respect to the maximal number of leaves k.
Given that the maximal-leaf spanning tree has k leaves, in the following lemma
we derive upper bounds in dependence of k on the number of edges and on the
number of nodes of degree at least three that the graph may contain. These
bounds will allow us to prove the main result of this section presented in Theo-
rem 3.

The lemma is proven using an approach similar (but greatly simplified) to the
one used in [3]; our focus here is on giving a self-contained presentation su⇥cient
for obtaining the claimed expected runtime. Note also, that kernelization results,
such as [3], almost always require a modification of the problem instance while
we are interested in bounding the original instance.

Lemma 2. Any connected graph G on n nodes and with a maximum number
of k leaves in any spanning tree has at most n+5k2�7k edges and at most 10k�14
nodes of degree at least three.

Proof. Let G be a graph on n nodes and let T be a spanning tree of G with (the
maximum number of) k leaves. We let P0 denote the set of all leaves and all
nodes of degree at least three in T . (We denote the degree of node x within the
tree T by degT (x).) Furthermore, let P ⇤ P0 denote the set of all nodes that are
within distance of at most two of any node of P0 (distance and degree w.r.t. T ).
We let Q denote the set of remaining nodes.

Proof	
  idea:	
  
•  Let	
  T	
  be	
  a	
  maximum	
  leaf	
  spanning	
  tree	
  with	
  k	
  leaves.	
  
•  Let	
  P0	
  be	
  the	
  set	
  of	
  all	
  leaves	
  and	
  all	
  nodes	
  of	
  degree	
  at	
  

least	
  three	
  in	
  T.	
  
•  Let	
  P	
  be	
  the	
  set	
  of	
  nodes	
  that	
  are	
  of	
  distance	
  at	
  most	
  2	
  	
  

(w.	
  r.	
  t.	
  to	
  T)	
  to	
  any	
  node	
  in	
  P0	
  and	
  let	
  Q	
  be	
  the	
  set	
  of	
  
remaining	
  nodes.	
  	
  

•  Show:	
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This completes the proof. ↵⌦

Now we are ready to prove the main result. Since a spanning tree always has
n�1 edges, from Lemma 2 there are at most 5k2 edges to choose from at each step
and at most all of them need to be replaced to reach the optimal spanning tree.
The proof of the following theorem first shows that the probability of increasing
the number of leaves by one in the current (non-optimal) spanning tree only
decreases with the fixed parameter k. The proof is concluded by showing that
the probability of exchanging all the 5k2 edges in one mutation step also depends
only on k leading to the claimed runtime.

Theorem 3. If the maximal number of leaf nodes in any spanning tree of G is
k, then Algorithm 2 finds an optimal solution in expected time O(215k

2 log k).

Proof. Let n⇥3 be the number of nodes with degree at least three. We call an edge
distinguished if it is incident on a node of degree at least 3, and non-distinguished
otherwise. By applying Lemma 2, the number of distinguished edges on any cycle
is at most 2n⇥3 ⇤ 20k� 28, since there are at most n⇥3 nodes of degree at least
3 on the cycle, and each node is incident with at most two edges of the cycle.

We first bound the probability of reducing the distance to an optimal span-
ning tree by 1. Let E� ⇥ E be the optimal spanning tree that is closest to the
current spanning tree, and let e be any edge in E� that is not yet in the current
spanning tree. By Lemma 2, the number of edges in the graph ism ⇤ n+5k2�7k.
So the probability that edge e is introduced in an edge exchange operation is
at least 1/(m � (n � 1)) ⌅ 1/5k2. Introducing edge e creates a cycle. Consider
first the case when the cycle consists only of distinguished edges. The length of
such a cycle is no more than 20k � 28, and the probability of removing one of
the edges that is not in the optimal spanning tree is at least 1/20k. In the case
where the cycle contains non-distinguished edges, we claim that it su⇥ces to
remove any non-distinguished edge e⇤ from the cycle. The claim obviously holds
when the chosen edge e⇤ is not in the optimal spanning tree, so assume that
edge e⇤ is in the optimal spanning tree. A bridge edge in a connected graph is
any edge e such that the subgraph on the edges E \ {e} is disconnected. Edge
e⇤ connects two components T1 and T2 in E�, and cannot be a bridge edge be-
cause then the edge could not have been part of a cycle. Since edge e connects
T1 and T2, the cycle must contain at least one other edge e⇤⇤ that connects T1

and T2, and this edge is not part of the optimal spanning tree E�. However, the
spanning tree (E� \ {e⇤}) ⇧ {e⇤⇤} must also be optimal, because adding edge e⇤⇤

decreases the number of leaf nodes by at most 2, and removing edge e⇤ increases
the number of leaf nodes by exactly 2. Hence, adding edge e and removing edge
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remove any non-distinguished edge e⇤ from the cycle. The claim obviously holds
when the chosen edge e⇤ is not in the optimal spanning tree, so assume that
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at least ⇧/(20k � 28 + ⇧) ⌅ 1/20k. The probability of reducing the distance to a
global optimum by 1 is therefore at least 1/(20k · 5k2).

The number of edges r that must be inserted in the spanning tree is no more
than m� (n�1) ⇤ 5k2. The edges can be inserted in any order. The probability
that in Step 2 of the algorithm, we choose to do S = r operations is 1/er!. So,
the probability that in one step, we decide to do r edge exchange operations in
any of the r! orders, and each of the edge exchanges decreases the Hamming
distance to an optimal spanning tree is at least
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which implies that the expected number of steps to find an optimal spanning
tree is at most O(215k

2 log k). ⌃⇧

Conclusions

The parameterized complexity analysis of evolutionary algorithms is a promising
research direction that is likely to become an important part in the theoretical
analysis of evolutionary computation during the next years. An advantage in
comparison to classical worst-case considerations is that this kind of analysis
gives characterizations of what di⇤cult instances for a specific algorithm look
like in relation to some parameter of the problem. Evolutionary algorithms have
produced very good results for di�erent kind of NP-hard spanning tree problems.
In this paper, we have studied evolutionary algorithms for the NP-hard maxi-
mum leaf spanning tree problem in the context of parameterized complexity. In
our case the parameter is the size of the global optimum. Our investigations show
that there may be local optima where the size of an inferior neighborhood grows
with the number of leaves in optimal solutions. Investigations of two common
mutation operators point out that a more problem-specific operator makes the
di�erence between a fixed parameter evolutionary algorithm for the maximum
leaf problem and an algorithm that does not have this property.
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⇤

Euclidean Planar TSP

Given a set V of n points in the plane, find a Hamiltonian cycle of
minimum length (NP-hard, Papadimitriou, 1977)

Dĕıneko et al. (2006): dynamic programming (simple polygon, k inner
points)

Out(V )

Inn(V )
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TSP parameterization

How does this structure affect evolutionary algorithms?

For n points in the plane with |Inn(V ) | = k interior to the convex hull,
what is the runtime of an EA in terms of n and k?

Each tour is represented by a permutation π : V → V .

vπ(1) ⇒ vπ(2) ⇒ · · · ⇒ vπ(n) ⇒ vπ(1)

Fitness function

f(π) =

(
n−1∑

i=1

d(vπ(i), vπ(i+1))

)
+ d(vπ(n), vπ(1))

where d(u, v) is the distance between points u and v.

Parameterized Complexity Analysis of EAs

TSP parameterization

Main structural idea: An optimal tour does not intersect itself.

Lemma

Suppose π? is a permutation that minimizes f . Then the elements of
Out(V ) appear in π? in the same order they appear on the hull.

Definition

We define γ as a linear order on Out(V )

γ = (p1, p2, . . . , pn−k)

such that for all i ∈ {1, . . . , n− k}, pi
and pi+1 are adjacent on the boundary
of the convex hull of V .

p1

p2

p3

p4

p5

p6

p7

p8

For any V , γ can be computed in O(n log n) time

Parameterized Complexity Analysis of EAs

TSP parameterization

Definition

A permutation π on a subset S of V is γ-respecting if and only if, for
any pi, pj ∈ γ ∩ S,

π−1(pi) < π−1(pj) =⇒ i < j.

where γ ∩ S means the restriction of γ to S.

Some examples. . .

(p1, v4, v6, p2, v1, v3, p3, p4, v2, p5, v7, p6, p7, v5)

(v7, v5, p1, v4, p2, v2, v6, p3, p4, p5, v1, v3, p6, p7)

Parameterized Complexity Analysis of EAs

(1+1) EA in the black-box setting

We start in the black-box setting (EA has no access to instance
structure)

No crossover, mutation is by edge-exchange operations, e.g., 2-opt:

x(i− 1)

x(j)

x(j − 1)

x(j + 1)

x(i)

x(i+ 1)

x(1)

x(n)

x(i− 1)

x(j)

x(j − 1)

x(j + 1)

x(i)

x(i+ 1)

x(1)

x(n)
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(1+1) EA in the black-box setting

Improvement in fitness if sum of edge lengths of new edges is strictly less
than sum of edge lengths of old edges.

θu θs

θt

θv

u

s

v

t

p

Main challenge with edge-exchange operations: if angles can be
arbitrarily close, fitness improvements can be arbitrarily small.

Idea: assume the angles are bounded (or embedded on an m×m grid).

Parameterized Complexity Analysis of EAs

(1+1) EA in the black-box setting

Theorem

Given a set of (angle bounded) points, a (1+1) EA solves the Euclidean
TSP with k inner points in expected time O(n4k(2k − 1)!).

Proof idea.
If a tour has edges that cross, an improving move is possible.

With appropriate angle bounds, EA spends poly(n) time on such tours
(independent of k).

If the tour has no edges that cross, then it is γ-respecting.

γ-respecting tours are closer to optimal tours: the EA only must operate
on the inner points to find a solution.

Time to fix inner points: O(n4k(2k − 1)!).

Parameterized Complexity Analysis of EAs

(µ+1) EA

FPT evolutionary algorithms (we leave the black-box setting)

FPT (µ+1) EA: based on exact (µ+1) EA for TSP by Theile (2009)

Population of permutations on subsets of V with special structure

Ground set

An integer i ∈ {1, . . . , n− k}
A set S ⊆ Inn(V )

A vertex r ∈ S ∪ {pi}
we identify (i, S, r) with the set S ∪ {p1, . . . , pi} distinguished by r

An individual π = π(i,S,r) is a permutation on the ground set
S ∪ {p1, p2 . . . , pi} and a “tail” vertex r where

π(1) = p1 and π(|S|+ i) = r,

π is γ-respecting that is, p1, p2, . . ., pi appear in order.

Parameterized Complexity Analysis of EAs

(µ+1) EA

The subtour defined by a permutation π(i,S,r):
p1 ⇒ vπ(2) ⇒ · · · ⇒ vπ(|S|+i−1) ⇒ r ⇒ p1

starts at p1,

runs over all nodes in (S ∪ {p2, . . . , pi}) \ r (respecting γ)

finally visits r before returning to p1.

Full population consists of an individual for every i ∈ {1, . . . , n− k}, for
every S ⊆ Inn(V ), and every possible tail vertex r, given S and i.

The fitness of an individual is the cost of the corresponding subtour

Parameterized Complexity Analysis of EAs
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(µ+1) EA

(µ+1) EA

Maintain a population P such that each ground-set/tail vertex
combination (i, S, r) is represented exactly once.

While optimal tour is not in P

Select an individual π(i,S,r) ∈ P uniformly at random
Mutate π(i,S,r) to produce π(i′,S′,r′) (mutation extends the ground
set, and only creates γ-respecting permutations).
If the fitness of the mutant π(i′,S′,r′) is better than the current
individual representing (i′, S′, r′), then replace that individual with
the mutant.

(1, {}, p1)

...

(i, S, r)

(i′, S′, r′)

...

π(i,S,r)

π′(i′,S′,r′)

selection

mutation

replacement

Parameterized Complexity Analysis of EAs

(µ+1) EA

Mutation

To mutate a single individual π = π(i,S,r),

choose v uniformly at random from (Inn(V ) \ S) ∪ {pi+1}
concatenate v to the linear order described by π. For
j ∈ {1, . . . , |S|+ i+ 1},

π′(j) =

{
v if j = |S|+ i+ 1;

π(j) otherwise.

Thus π′ is defined on a different (slightly larger) ground set than π using
v as the new tail vertex.

π′ =

{
π′(i,S∪{v},v) if v ∈ Inn(V );

π′(i+1,S,v) if v = pi+1.

When i = n− k and S = Inn(V ) no effect.

Parameterized Complexity Analysis of EAs

Runtime of the (µ+1) EA

Lemma

The population size µ is bounded by O(2kkn).

Proof. For every ground set / tail vertex combination, there is exactly
one individual (invariant).

There are
(
k
|S|
)

ways to choose a distinct set S ⊆ Inn(V )

There are (n− k) ways to choose a distinct set of γ-respecting outer
points

There are |S|+ 1 ways of choosing the tail vertex r ∈ S ∪ {pi}.

(n− k)
k∑

s=0

(
k

s

)
(s+ 1) = O(2kkn).

Parameterized Complexity Analysis of EAs

(µ+1) EA

Optimal substructure property

If there is an optimal permutation π(i,S,r) in P , there exists some correct
mutation that can construct a slightly larger subtour that is also optimal.

F (i, S, r) := length of optimal tour for (i, S, r) – can be defined
recursively using the Bellman Principle

F (i, S, r) =





min
q∈S∪{pi−1}

F (i− 1, S, q) + d(q, r) if r ∈ Out(V );

min
q∈(S\{r})∪{pi}

F (i, S \ {r}, q) + d(q, r) if r ∈ Inn(V ).

q

r
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(µ+1) EA

Theorem

Let V be a set of n points in the Euclidean plane with |Inn(V ) | = k.
After O(2kk2n2) generations, the (µ+1) EA has solved the TSP on V to
optimality in expectation and with probability 1− e−Ω(n).

Proof. Suppose ∃ π = π(i,S,r) ∈ P with f(π(i,S,r)) = F (i, S, r).

with probability 1/µ, π is selected for mutation

with probability at least 1/(k + 1), π is extended optimally

Probability of extending an optimal path of length m is at least
Ω(1/(µ(k + 1)) (Bernoulli trial).

We can use induction on m since the permutation corresponding to
(1, {}, p1) is already optimal.

Since optimal paths for a given (i, S, r) are never lost, the expected time
until the optimal path of length n exists is
O(nµ(k + 1)) = O(2kk2n2).
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(1+1) EA

We already know that every optimal permutation must be γ-respecting

Suppose we only search the space of orderings on k inner points

Given a permutation π on Inn(V ), need to find where to insert the outer
points into π so that the resulting permutation

1. respects γ and π

2. corresponds to the shortest tour of all permutations that respect γ
and π

γ = (p1, p2, . . . , pn−k) π = (q1, q2, . . . , qk)

(p1, q1, p2, p3, q2, p4, q3, . . .)

Exhaustive search O(nk), but we can be more clever. . .

Parameterized Complexity Analysis of EAs

(1+1) EA

Direct dynamic programming

Maintain F [i, j,m], a (n− k)× (k + 1)× 2 array where
i ∈ {1, . . . , n− k}, j ∈ {0, 1, . . . , k} and m ∈ {Inn,Out}.

F [i, j,m] stores fitness of optimal permutation through points p1, . . . , pi
and q1, . . . , qj ending on an outer point (m = Out) or an inner point
(m = Inn).

Fitness of π

Dyn(π) = min{F [n−k, k,Out]+d(pn−k, p1), F [n−k, k, Inn]+d(qk, p1)}

Starting with F [1, 0, Out] = 0, use dynamic programming to fill out F .

F [i, j, Inn] = min{F [i, j−1, Out]+d[pi, qj ], F [i, j−1, Inn]+d[qj−1, qj ]}

Cost of computing Dyn(π) is O(kn).

Parameterized Complexity Analysis of EAs

(1+1) EA

Search the space of permutations on Inn(V )

(1+1) EA

Choose uniformly at random a permutation x = (q1, . . . , qk) on the
inner points

While optimum not found

Construct x′ from x by applying s+ 1 random inversions where s is
chosen according to Pois(1)
If Dyn(x′) ≤ Dyn(x) then x← x′.

Inversion mutation (pick a subsequence of the permutation and invert it)

(2, 1, 6, 7, 4, 5, 3)⇒ (2, 4, 7, 6, 1, 5, 3)

This corresponds to the common 2-opt operation for the TSP.

Parameterized Complexity Analysis of EAs

619



Runtime analysis of the (1+1) EA

Theorem

The (1+1) EA solves the TSP with k inner points in O
(
(k − 1)!k2k−2

)

expected calls to the fitness function.

Proof. The probability that a mutation operation for a specific sequence
of ` basic operations is at least

1

e(`− 1)!
· 1

k2`
.

Expected waiting time for such a mutation operation is

(
1

e(`− 1)!
· 1

k2`

)−1

= O(`!k2`).

Need at most (k − 1) inversions to transform arbitrary permutation on k
points to another.

Fitness function costs O(kn) =⇒ the (1+1) EA is FPT.
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Makespan Scheduling

Given a set of n jobs to be scheduled on two machines

Job j time pj on either machine.

A schedule is a decision vector x ∈ {0, 1}n
The load of a machine is the sum of processing times assigned to it

The makespan is the maximum load over both machines:

f : {0, 1}n → N := x 7→ max





n∑

j=1

xjpj ,
n∑

j=1

(1− xj)pj



 .

Objective is to find the schedule with the minimum makespan.

P =
∑n
j=1 pj .

P/2 ≤ f(x) ≤ P .

WLOG, p1 ≥ · · · ≥ pn.
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Makespan Scheduling – parameterization

Definition

The discrepancy ∆(x) = 2f(x)− P is the difference in load across
machines.

machine 1 machine 2

discrepancy

Given an instance of makespan scheduling and an integer k, is
pk ≥ ∆∗ ≥ pk+1?

∆∗ ≥ 0 discrepancy of optimal schedule

pn+1 = 0

Parameterized Complexity Analysis of EAs

Makespan Scheduling

Let `(n) denote the run length.

k-biased RLS

x← an element of {0, 1}n uniformly at random.
for i← 1 to `(n)

y ← x
Choose 0 ≤ r ≤ 1 uniformly at random.
if r < 1/n, then Choose j ∈ {1, . . . , k} u.a.r.
else Choose j ∈ {k + 1, . . . , n} u.a.r.
yj ← 1− yj
if f(y) ≤ f(x) then x← y

Same as traditional RLS, but prefers not to flip “large” jobs
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Makespan Scheduling

Lemma.

Let k be such that pk+1 ≤ ∆∗. Let x′ be a decision vector such that the
contribution of jobs 1, . . . , k is minimal. Then starting from x′, k-biased
RLS with a run length of `(n) = d2n(lnn+ 1)e solves the problem with
probability bounded below by Ω(n−2).

Proof sketch.

Jobs 1 through k are already correct.

Need to move any small jobs (index > k) off of the fuller machine.

Always possible since ∆(x) is always larger than a small job, ELSE it
is optimal.

Coupon collector and Markov inequality: d2n(lnn+ 1)e probability
Ω(1) as long as k large jobs aren’t moved.

Prob. large jobs aren’t touched in d2n(lnn+ 1)e steps:
(1− 1/n)d2n(lnn+1)e = Ω(n−2).
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Makespan Scheduling

Theorem.

A multi-start k-biased RLS procedure using a run length of
d2n(lnn+ 1)e solves the problem after O(2kn3 log n) steps with
probability at least 1− 1/e.

Proof sketch.

Probability that run starts with the first k jobs correctly placed is at
least 2−k. Let q(n) be the probability that such a run is successful.

Failure probability of t consecutive runs is at most

(
1− 1

2kq(n)−1

)t

Setting t = 2kq(n)−1 makes the failure probability at most 1/e

By the previous lemma q(n) = Ω(n−2) so t = O(2kn2)

Run length is O(n log n)
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