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Objectives of the Tutorial

°

% This is a tutorial on black-box complexity. This is currently one of the very
hot and active topics in the theory of randomized search heuristics.

<o

» We shall try our best to...

= tell you on an elementary level what black-box complexity is and how it
shapes our understanding of randomized search heuristics

= give an in-depth coverage of some of what happened in the last three
years

= show you why this also is a fun topic

°

+ Don't hesitate to ask questions when they come up!

0

% Finally: We are happy to receive feed-back on this tutorial (email, coffee
breaks, receptions, ...)
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Agenda

% Part 1: Introduction to black-box complexity (BBC)
+“ Motivation: complexity theory for randomized search heuristics (RSH)
++ Definition of BBC
% Four benefits

< Part 2: Tools and techniques (in the language of guessing games)
% From black-box to guessing games
%+ A general lower bound

» How to play Mastermind

» A new game

2,

o

o

o

% Part 3: From BBC to new algorithms

% Summary, open problems, [appendix]
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Part 1: Intro to Black-Box Complexity

< Why a complexity theory for RSH?
% Understand problem difficulty!

% How?
« Black-box complexity!

% What can we do with that?

++ General lower bounds

% understand the working principles of EAs
+ thorn in the flesh

X3

% [Different notions of black-box complexity]
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Timeline
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2006 | Droste, Jansen, Wegener. Upper and lower bounds for ran-

domized search heuristics in black-box optimization. Theory

Comput. Syst. 39
Anil, Wiegand. Black-box search by elimination of fitness 2009
functions. FOGA
2010 |Lehre, Witt. Black-box search by unbiased variation. GECCO

Doerr, Johannsen, Kotzing, Lehre, Wagner, Winzen. Faster| 2011
black-box algorithms gh higher arity

Doerr, Winzen. T ds a ity theory of
FOGA search heuristics: ing-based black-box
CSR

Rowe, Vose. Unbiased black box search algorithms.
GECCO Doerr, Kétzing, Lengler, Winzen. Black-box complexities
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Why a Complexity Theory for RSH?

«+ Understand problem difficulty!

“ Randomized search heuristics (RSH) like evolutionary algorithms,
genetic algorithms, ant colony optimization, simulated annealing, ...
are very successful for a variety of problems.

<+ Little general advice which problems are suitable for such general
methods

+ Solution: Complexity theory for RSH

« Take a similar successful route as classic CS!
% Algorithmics: Design good algorithms and analyze their performance
<+ Complexity theory: Show that certain things are just not possible
% The interplay between the two areas provoked many cool results
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Algorithms vs. Complexity Theory
for RSHs — An Example

« Bottom line: Spanning tree is easy for RSHs, the Needle problem not.
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Complexity Theory for RSH

% Algorithms: Randomized search heuristics (RSH)
“ may generate solutions and query their fitness
+*+ no explicit access to the problem description
> black-box optimization algorithm

Evolutionary Computation [Ken de Jong]

Nature-inspired Computation

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind
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Reminder: Classic Complexity Theory

« General approach: Complexity (difficulty) of a problem := Performance of
the best algorithm on the hardest problem instance

< Example: “Sorting n numbers needs ©(n log(n)) pair-wise comparisons.”
% Problem: “Sorting an array of n numbers”

< Instance (input to algorithm): An (unsorted) array of n numbers

+« Algorithms: All that run on a Turing machine

» Performance (cost) measure: Number of pair-wise comparisons

< T(A,I) = number of comparisons performed when algorithm A runs
on instance I

% Theorem: “Complexity of sorting = min, max; 7{A,I) = ©(n log(n)).”

+» How does this work for RSH?
<+ Algorithms = RSHs, Performance = number of fithess evaluations, ...

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind 10

Complexity Theory for RSH

< Algorithms: Randomized search heuristics (RSH)
“ may generate solutions and query their fitness
¢+ no explicit access to the problem description
< > black-box optimization algorithm

< Performance measure T(A,I) = expected number of fitness evaluations
until algorithm A running on instance I queries an optimum of I

« Black-box complexity: Expected number of fithess evaluations the best
black-box algorithm needs to query the optimum of the hardest instance.

< min, max; T(A,I)
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BBC: What Can We Do With It?

% Black-box complexity: Expected number of fithess evaluations the best
black-box algorithm needs to query the optimum of the hardest instance.
% min, max; T(4,I)

4 benefits:
% Measure for problem difficulty [that's how we designed the definition]
» universal lower bounds

» understand the working principles of EAs

» a thorn in the flesh & a route to better algorithms

o

e

<

e
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BBC: A Thorn in the Flesh

< If the black-box complexity is lower than what current best RSH achieve,
you should wonder if there are better RSH for this problem!

+ Example: OneMax functions
+ for all “bit-strings” z € {0,1}" let
£,:{0,1}* > {0,...,n}; z » “number of positions in which x and = agree”
« all f, have a fitness landscape equivalent to the classic OneMax
function (counting the number of ones in a bit-string).

% Theorem: The black-box complexity of the class of all OneMax
functions is O(n / log(n)).

% But: All standard RSH need at least Q(n log(n)) time!
« Are there better natural RSH that we overlooked?

o

First answer:
Part 3 of this
tutorial

*

g

% Same motive as in classical theory: n x n matrix multiplication can be done
in time O(n23727), only lower bound is Q(n?).
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BBC: Universal Lower Bounds

« Black-box complexity: Expected number of fithess evaluations the best
black-box algorithm needs to query the optimum of the hardest instance.

% min, max; T(A,I)

++ Follows right from the definition: The black-box complexity is a lower bound
on the performance of any RSH!

< BBC := min, max; T(A,I) < max; 1T{B,I) = performance of B

< Example:

% Theorem [DJTW’02]: The black-box complexity of the needle function
class is (27+1)/2.

% Consequence: No RSH can solve the needle problem in sub-
exponential time.

% One simple proof replaces several proofs for particular RSH ©
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BBC: Understand Working Principles

«+ Unbiased unary black-box complexity:
min, max; T(4,1),
where as A we only regard unbiased algorithms using unary variation
% unary (mutation-based): one parent gives one offspring

0

< unbiased:
®,

<+ all bit-positions are treated equally
% symmetry in the bit-values 0 and 1.

« Theorem [LW’10]: The unbiased unary BBC of OneMax is Q(n log n).

¢ “Insight”: The reason for many simple RSH needing Q(n log n) iterations is
that they are unbiased.

% price for being unbiased is most ©(log n)?
+ fair price for having not relying on problem-specific knowledge ©
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Digression: Alternative BBC Models

+“ Previous slide:
+“ restricted BBC models help understanding particular features of EA

+ different view: restricted BBC models might better capture the problem
difficulty in evolutionary computation

+ Next z slides: Discuss alternative black-box models
¢ very active research area in the last 3 years
<+ no definitive answer

% Common theme: Instead of allowing all black-box optimization algorithms,
only regard a restricted class!

¢ restricted class should include most classic RSH

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind 17

Alternative 2: Ranking-Based BBC

< DW’11, following a suggestion by Niko Hansen (similar ideas in a paper by
Olivier Teytaud): ranking-based

+ do not regard the absolute fitness values, but make all decisions
dependent only on how fitnesses of search points compare!
% Observation: Many RSH follow this scheme
++ exception: fitness-proportionate selection
» Bad news: OneMax has a ranking-based BBC of ©(n / log(n)) ®
» Good news: For BinaryValue...
“ BBC: log(n)
% ranking-based BBC: Q(n)
* many RSH: O(n log n)
» Open problem: Partition...
++ BBC: O(n), heavily exploits absolute fithess values

“ Ranking-based: Maybe exponential?

o

oo

B

o
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Alternative 1: Unbiased BBC

< Lehre&Witt (GECCO’10 theory track best paper award):

«+ allow only unbiased variation operators: treat all bit-positions (1, ..., n)
and the two bit-values (0, 1) equally!

% equivalent: if g is an automorphism of the hypercube, then the
probability that y is an offspring of x4, ..., z;, must be equal to the
probability that a(y) is an offspring of o(z,), ... o(x};)

«» Observation: Most RSH are unbiased

«+ exception: one-point crossover
++ Result: The unbiased, mutation-only BBC of OneMax is ©(n log(n))

<+ as observed for random local search, (1+1) EA, ...
« Anti-result [DKW’11]: Also the TRAP, function has an unbiased, mutation-

only BBC of O(n log(n)). G =
. rossover helps?
% contrasts the Q(n*) performance of all classic RSH

¢ Interesting [DJKLW’11]: Unbiased 2-ary BBC of OneMax: O(n).
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Alternative 3: Memory-Restricted BBC

+ Droste, Jansen, Wegener (Theor. Comput. Syst. 2006):

% suggest to restrict the memory: store only a fixed number of search
points and their fitness

+ inspired by bounded population size

% conjecture: with memory one, the BBC of OneMax becomes the
desired O(n log(n))

«» DW’12: Disprove conjecture.
% Even with memory one, the BBC of OneMax is ©(n / log (n)).
[I'll give some proof ideas in the second part of the tutorial]
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Summary Alternative BBC Models

+ Different models:
% unrestricted (classic)

» unbiased: don’t exploit the encoding of solutions
» ranking-based: only compare fitnesses

» memory-restricted

o

B

e

<

% None is yet “the ultimate complexity notion” for RSH
+«+ Big open problem...

+ Each expanded our understanding
++» what makes a problem hard

R

+ what makes a RSH powerful -
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Part 2: Tools and Techniques

Plan for the 2" part of this tutorial:

% Explain, why BBC and guessing games are almost the same

% Use the language of guessing games to demonstrate some techniques
“ Random guessing:
++ The BBC of OneMax or “how to play Mastermind with two colors?”
++ A simple “information theoretic” lower bound
% Clever random guessing:
% Mastermind with n colors
+ Memory-restricted BBC of OneMax = Mastermind with 2 rows
% The LeadingOnes game

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind 23
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Summary Part 1

« Black-box complexity (BBC): “Minimum number of search points that have
to be evaluated to find the optimum”

+ Expected number of fitness evaluations the best black-box algorithm
needs to query the optimum of the hardest instance.

% min, max; T(A,I)

« Benefits:

% Measure of problem difficulty

* universal lower bounds

» understand the working principles of EAs

» thorn in the flesh & route to better algorithms

o

D

oS

0’0
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A Formal Definition of BBC

« Optimization problem: A set F of functions f: {0,1}» - R
<+ Aim is to find the maximum of a given f € F.
% Language:
% An fe Fis called an “instance of F’
% {0,1} “search space”
% x €{0,1}" “search point”
% Example “Maximum Clique”: For each graph G on the vertex set

{1,....n}, fo(x) is the size of the vertex set represented by z, if this is a
clique in G, and 0 otherwise. F':= {f | G a graph with vertices 1,...,n}.

¢+ A black-box algorithm for F: A randomized algorithm that finds the
maximum of any fe F by asking f-values of search points only (no explicit
access to the instance f, e.g., the graph G in the clique example).
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A Formal Definition of BBC

<+ A black-box algorithm for F: A randomized algorithm A that finds the

maximum of any f € F by asking f-values of search points only. @
=

Black-Box z,
AIgoArlthm flz,)
[knows the T,
Black-Box =
problem F] ) “Oracle”

«+ Performance T(A,f) of A for f € F: Expected time until an z with f(z) =
OPT(f) is queried

% Performance T(A,F) of A on F: max;. » 1(4,f)

% BBC of F: min, T(A,F), where A runs over all black-box algorithms for F
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Classic Guessing Game: Mastermind

< 2-player game n k
< CodeMaker hides a 4-digit 8-color code C.

< CodeBreaker tries to guess it using few
guesses

+» Guess: Some color code G

« Answer:
“ Number of positions in which C and G
agree (“black answer-pegs” [here: red])

SR
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From BBC to Guessing Games

o
f@)
xz
f(il?g) Black-Box

o

» Guessing game:

% BlackBox chooses a hidden fe F'.

% Algo tries to guess an x with f(z) maximal

<+ For each incorrect guess, BlackBox tells f(x) to Algo

’0

*

Optimal strategy for Algo = optimal black-box algorithm
» Optimal strategy for black-box = “most difficult” f € F’
» Optimal number of rounds in the game = BBC(F)

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind 26

0’0

0’0

2-Color Mastermind = BBC(OneMax)

« OneMax test function: f: {0,1}* - {0,...,n}; = » “number of ones in z”
% easy to find the unique global optimum (1,...,1).
< RLS, (1+1) EA, ... do this in ©(n log n) time.

« (Generalized) OneMax function, OneMax problem:
% For each z € {0,1}", let
£.:{0,1}» = {0,...,n}; = » “number of bits in which = and z agree”
< All f, have isomorphic fithess landscapes
% OneMax problem: F:={f, | z € {0,1}"}, the set of all OneMax functions

«» Observation: Mastermind with the two “colors” 0 and 1 corresponds to the
black-box complexity BBC(F)
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Mastermind: 3 (?) Results

« O(n /log n) guesses sufficient&necessary for k = 2 (BBC of OneMax)

< Anil, Wiegand: “Black-box search by elimination of fithess functions”.
Foundations of (FOGA) (2009)

+ lower bound from [DJWO06]

< O(n log k / log n) for k < n'-¢
< Chvatal: “M&sterming . Combinatorica (1983)

« O(n/logn)fork =2

< Erdés, Rényi: “On two problems in [ifofmationtheory . Magyar Tud.

Akad. Mat. Kutato Int. K6z/ (1963)

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind 29

A General Lower Bound

«+ [Droste, Jansen, Wegener'06] Consider a guessing game such that
+ there are s different secrets
++ each query has at most & different answers (k = 2).

% Then the expected number @ of queries necessary to find the secret is
at least (log,(s) / log, (k)) — 1 = log,(s) — 1.

« Information theoretic view: To encode the secret in binary, you need log,(s)
bits. Each answer can be encoded in log,(k) bits. If @ rounds suffice, Q
log,(k) bits could encode the secret. "

% Game-theoretic view: In the game tree, each node has at most k children.
Hence at height Q, there are at most k9 nodes. If s is bigger, then at some
nodes, more secrets are possible. "

) Argument correct for deterministic strategies. For randomized
ones, in addition, Yao’s minimax principle is needed.
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Proof: Random Guessing

+ CodeBreaker’s strategy:
« Guess O(n / log n) random codes.
+ Look at all answers.

«» With high probability, no secret code other than the true one leads to
these answers [elementary, straight-forward computation]

% Comments:
< Erdds probabilistic method at its best.
«+ Best possible (apart from constant factors hidden in ©(...))

+» Note: Non-adaptive strategy — questions do not depend on previous
questions and answers.
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Back to 2-Color Mastermind...

« Lower bound: (1 + o(1)) n / log,(n)

<+ Argument: 2" possible secrets, n+1 possible answers
- general lower bound: log, (2") / log, (n+1) = (1+o(1))n / log, (n)

« Information theoretic view: “learn at most log, (n) bits per question”

« Upper bound computed precisely: (2 + o(1)) n / log, (n)
«» Weaker by a factor of 2

% Reason (informal): Typically, a random question yields an answer
between n/2 - ©(vn) and n/2 + O(Vn).

< “learn log, (©(v¥n)) = (1/2) log, (n) bits per question”
% game tree has relevant degree of only O(vn).

< Big open problem (already mentioned in the Erdés-Rényi paper):
What is the correct bound? Can you ask better questions?
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Part 2: Tools and Techniques

Plan for the 2" part of this tutorial:

<+ Explain, why BBC and guessing games are almost the same

% Use the language of guessing games to demonstrate some techniques

+*+ Random guessing:

++ The BBC of OneMax or “how to play Mastermind with two colors?”
« A simple “information theoretic; lower bound

% Clever random guessing:
% Mastermind with n colors

“ Memory-restricted BBC of OneMax = Mastermind with 2 rows
% The LeadingOnes game

Qe

Qe
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Plan: Clever Random Guessing
% Random guessing takes O(n log(n)) guesses.

% Informal justification:
%+ The expected answer to a random question is 1.
% “learn only a constant number of bits per question”.
+ Information theory: log(n")/log(constant) = n log(n) questions

«+ Can we ask better questions?
% Info-theory: We need to “learn more bits per question”

++ Problem: For the first question, the expected answer is 1, no matter
what we ask (= learn constant number of bits ®)

% If something works, it must be adaptive: Current question uses
previous answers!

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind 35
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Mastermind for k = n

«+ Best known lower bound: Q(n)
« Information theory: n" secrets, each query has < n+1 answers

+« Best known upper bounds: O(n log(n))

% Chvatal (Combinatorica’83): 2n log(n) + 4n

» Chen, Cunha, Homer (COCOON’96): 2n log(n) +2n + 3
» Goodrich (IPL’09): n log(n) +3n -1

» [Random guessing takes O(n log(n)) guesses.]

o

D

o

0’0

« What is your guess?
% [Problem open for 30 years, so no reason to be shy]
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Reducing the Number of Colors

++ Observation 1: Reducing the numbers of colors would help
< Chvatal+: For k < n colors, O(n log(k) / log(n/k)) random guesses
suffice to find the secret code
< Intuition: s = £k, a random guess has an expected answer of A =
nlk, this and the = A'2 adjancent answers show up with roughly
equal probability > learn log(A'2) = ©(log(\)) bits
« Note: For k& = n/A, this is O(n log(n) / log(A))
- any A = w(1) would improve ©

«+ Observation 2: Reducing the number of colors is possible
% for k = n colors, the probability that a random guess gets a
“0”-answer, is (1 — (1/n))* = 1/e = 0.37

% Such a 0-guess tell us, for each position, one color that cannot be
there
- essentially reduced the number of colors by one ©
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Details: Reducing the Number of Colors

« For k colors and n positions, the probability that a random guess is
answered “0”, is (1 - (1/k))" = 4/k,

+* Reducing the number of colors from n to 4n / loglog(n) takes time at most
n, 4-n/(4n/loglog(n)) = (log n)wz_

< Chvatal+: With only k£ = 4n / loglog(n) colors possible at each position,
random guessing needs O(n log(n) / logloglog(n)) queries.

+ Intuition: “learn O(logloglog(n)) bits per query”

« First “Theorem”: O(n log(n) / logloglog(n)) questions suffice!
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Details: Quick Color Reduction

% Improved reducing the number of colors from k to k-1:

» Assume that for each position we have a dummy color that for sure
does not appear there [can, e.g., be found in O(n) time]

» Partition the n positions into n/k blocks of roughly equal size.
¢ For each block do
* repeat

* ask random colors in the block, put a dummy color in
the rest

¢ until answer = 0
» expected waiting time for “answer = 0”: at most 4
« total expected number of queries: at most 4 n/k [previously: 4] ©©©

<+ Total time to reduce the number of colors from & to k/2:
e atmost (k/2) 4 n/ (k/2) =4n
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Quickly Reducing the Colors

Reducing the number of colors from k to k-1:

0

< so far: get a “0"-answer after at most 4"/* random guesses
« Example: k = n/100.

» Random guess has an expected answer of 100.

+ Time to wait for a “0” is (1+0(1)) ',

* - Waiting for something quite rare ®

« better: Partition the n positions into 100 blocks of equal size n/100 and ask
randomly in each block (fill up the rest with dummy colors)

» expected contribution per block: 1
» waiting time for a “0” in a block: constant
» total time: 100 times constant
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Details (2): Quick Color Reduction

% Just proved:
You can reduce the number of colors from & to k/2 colors in 4n queries

% Goodrich (2009): log(n) times halving the colors finds the secret code in
O(n log n) questions [apart from constants, the same bound as Chvatal]

% DSTW’12: Reduce colors, then random guessing

% Do the halving trick vlog n times [O(n Vlog n) queries]
> k =n /239" colors possible at each position

% Random guesses: O(n log(k) / log(n/k)) = O(n vlog n) random guesses
using only these & colors find the secret
- “learn log(2¥'°9 ") = vlog n bits per question”

0

% Theorem: Solve Mastermind with k=n colors in O(n vlog n) questions ©
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Ultra-Quick Color Reduction

% So far:
+“ Reducing colors allows better queries ©
< from k to k-1 colors in n/k queries
++ color reduction queries: constant info gain (exp. answer = 1)
“ random query: expected answer n/k, info gain ©(log(n/k))
% Pay for asking “color reduction queries” ®

% Solution [DSTW’13]: Ask questions that
(i) reduce the number of colors, and
(i) tell us O(log(n/k)) bits of information on the secret.

 “k > k-1"in O((n/k) I log(n/k)) queries instead of O(n/k).

» “k > k/2” in O(n / log(n/k)) queries instead of O(n).

“n = n/2” in O(n log(i)) queries instead of O(n )! [harmonic series]
% i=log(n): Find the secret code in O(n loglog(n)) queries ©©©©©.
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Indentifying Empty Blocks

0’0

» Situation:

% aguess G with answer at most 2A.
% 4A blocks, at least half of them empty.

o

» Query “dummy out random blocks”: For each block independently do
“ with prob. %: copy the block from G
% with prob. %%: fill the block with dummy colors

o

% Analysis:
+ Expected answer: A “learn ©(log A) bits”

°

« Some calculations: ©(A / log A) queries suffice to detect the empty
blocks.

o

% Done ©
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More details: SODA’13 or http://arxiv.org/abs/1207.0773
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Here is How We Do This:

RS

w Again:
% Assume that we have a dummy color for each position.
% k colors, n positions, A = n / k expected answer of random guess.

o

» Find a guess G with answer at most 2\ [expected constant time].

0’0

» Partition the positions into 4A blocks of equal size
-> half of them contain no correct code letter (“empty block”)

» Plan: Identify these with O(A / log A) queries [next slide]
-> reduces the number of possible colors for n/2 positions

<+ some Chernoff bounds: This is sufficient...

0’0
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Method: Clever Random Guessing

0’0

» Needed: Ask increasingly powerful queries (adaptive)
% first query reveals only constant amount of info

0’0

» Generally good idea: randomized queries
% “fooling the adversary”: impossible to find a good secret for CodeMaker

0

% 3 increasingly powerful ways to mix cleverness and randomness
«+ random queries composed of possible colors (and wait for “0”)
+“ random blocks, rest dummy colors: quicker to get a “0”

< “dummy out random blocks”: don’t wait for a zero, but learn “zeros”
from these more expressive queries

0’0

» Next: Two examples from true black-box complexity
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A Second Example of “Clever Guessing”

K3

% Problem: Memory-restricted BBC of OneMax

“ Memory-restriction: From one iteration to the next, the BB-algorithm
may only store k search points together with their fithess.

++ Conjecture [Droste, Jansen, Wegener'06]: For k£ = 1, the BBC of
OneMax is O(n log n) as known from the (1+1) EA.

‘0

% Transfer to guessing games:
++ This BBC problem is equivalent to Mastermind with two rows only.

R

% Theorem [DW’12]: You can win 2-row Mastermind with O(n / log n)
queries.

3

% Corollary: The memory-one BBC of OneMax is ©(n / log n).
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Fewer Rows: Proof Ideas

« Original Mastermind: Guess O(n / log n) random codes. Store all guesses
and answers on the board. Think.

% Needs O(n / log n) rows.

+« 3 ingredients of our proof:
% Find parts of the code: Determine ©(nf) code letters with O(n¢ / log n)
relatively random guesses (¢ constant)
“Do this n'-¢ times: find the code with ©(n¢ / log n) rows.
++ Determine such a part with constant number of rows
Do this n'-¢ times: find the code with ©(1) rows.
“ Do everything in fworows
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Details: Two Rows Suffice!

% Result: On a board with two rows,
you can still find the secret code
with O(n / log n) guesses!

« Precise rules:
+» We start the game with an empty board
« If there is an empty row, CodeBreaker can enter a guess, which will be
answered by CodeMaker
« If there is no empty row, CodeBreaker must empty one of the two rows
and forget the content.

++ Theorem: CodeBreaker has a strategy that
« finds the secret code in O(n / log n) rounds
« uses two rows only (all actions depend solely on these rows).
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Proof Idea (1): Find Parts of the Code

« Lemma:
Let B < [n], | B] = nt. “part”
Let G4, G, ... be O(nt/ log n) guesses such that
G, is random in positions in B
“All G; are equal in positions in [n] \ B
Then with high probability these guesses and answers determine the
secret code in B.

++ Argument:
« Basically, we play the game in B (and use the previous proof)
¢+ Only difficulty: The answers we get “are not for B only”, but for the
whole guess
++*Same deviation for all guesses
+ Some maths: Not a problem, guesses also determine deviation ©
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Proof Idea (2): Same with O(1) Rows

« Plan: Simulate the previous slide in O(1) rows

« Example: Find the first L = ©(n¢) code letters
= B, := L random letters.
= Guess B; 1...1inrow 1 and learn answer A,.
= Guess By A, 1....1in row 2 and ignore answer

= B, := L random |etters\[ “A,”: Suitably encoded
= Guess B, 1...1in row 1 and learn answer 4, with O(log n) of letters

= Guess By A B, A, 1...1in row 3 and ignore answer
« As before: O(L / log L) guesses determine the code in the block

« New: The whole search history of ©(L / log L) guesses and answers can
be stored in one row

++ Needs 3 rows: “Old storage + new guess - new storage”
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Summary: Memory-BBC of OneMax

+ Result: The complexity of Mastermind remains at ©(n/ log n) guesses
even if we allow only two rows.

+“ Key proof argument: Clever guesses inspired by random guesses

« Open problems / future work:

+ Our proof works for any constant number of colors — what happens for
larger numbers of colors?

+“ constant factors: “what’s hidden in the O(...)"
«+»does a memory restriction lose us a constant factor?
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Proof Idea (3): Two Rows Only

+ Difficulty:

« To enter a new guess, one of the two rows must be emptied

¢+ You must store and guess in the same row
«+Problem: Storage influences CodeMaker’s answers!

« All control information must also be stored in this one row
«»what is the block I'm just optimizing?
«»what am | currently doing (guessing, storing, finding the unique

solution, finding the last few letters in a different way...)

< Solution:

« technical.
« read the paper at STACS’12 or arxiv.org/abs/1110.3619.
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Finally: A New Guessing Game
«+ So far: BBC is strongly related to guessing games
% In particular: BBC(OneMax) = Mastermind

% Therefore: Use fun games to solve BBC problems

« Now [next few slides]: Use BBC problems to derive a fun games ©
% LeadingOnes Game
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LeadingOnes Test Functions

« Classic test function:
% LeadingOnes: {0,1}"- {0,...,n}; x » max{i € {0,...,n} | z; = ... =2, = 1}
< “how many bits counted from the left are one”
¢+ Unique optimum (1,...,1)
% “Harder than OneMax”: Each non-optimal solution has only one
superior Hamming neighbor

« LeadingOnes function class LO,:

% Let g be a permutation of {1,...,n}

< Let z€{0,1}* (“target string”)

* [0 {01} >{0,...,n}; z» max{i €{0,....,n} | T5(1)= 2501y -+ Tapp) = Zo)
% “how many bits, counted in the order of g, are as in z

+ same fitness landscape as LeadingOnes

*

B3

D
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The LeadingOnes Game

Transfer the BBC(LO, ) problem into a guessing game:

«» CodeMaker: Picks a secret code z and a secret permutation o

+ Round:
% CodeBreaker guesses a bit-string = € {0,1}"
% CodeMaker’s answer: f,(x) = “how many code letters in the order of o

are correct?”

«» Main message of this slide: This is fun to play with n=5 or n=6!
« try it during the next talks ;-)

++ Next few slides: The theory is fun as well...
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Black-Box Complexity of LeadingOnes

« Reminder: LO,, consists of all functions

« Black-box complexity of LO,,, lower bound [Droste, Jansen, Wegener'06]
= Q(n), because you need O(n) fithess evaluations even if g = id

« Black-box complexity of LO,,, upper bounds
= O(n?), run-time of RLS, (1+1) EA, ...
= O(n log(n)): determine “the next bit” with log(n) queries by simulating
binary search (flip half of the potential bit positions...)
“*Information theoretic view:

(fitness increases by a small constant or not)

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

" f0:{0,1}" > {0,...,n}; z » max{i € {0,...,n} | T51)= 251y, -1 Togy = Zop)

= “next bit"-position is a number in {1,...,n}, coding length log(n)
= a typical query teaches you a constant amount of information

55

BBC(LeadingOnes), cool upper bounds

s DW’11: O(n log(n) / loglog(n)) is enough.
+ “learn average of loglog(n) bits per guess”

% AADLMW’13: O(n loglog(n)) is enough, but also necessary
« “learn avg. log(n)/loglog(n) bits per guess”
« first “really deep” lower bound proof on BBCs
“» http://eccc.hpi-web.de/report/2012/087/

“ Next slide: Key argument of the O(n log(n) / loglog(n)) proof
«» how to learn more than constant information
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Proving O(n log(n) / loglog(n)): Outline

+ Assume that you have a solution = with f_,(z) = k and you know which & bit-
positions are responsible for this. Denote by I the remaining bit-positions. Let
L :=log(n)"?

< Step 1: Use L? = log(n) iterations to find a y with f,;(y) =k + L
« Flip the bits in I with probability 1/L, accept if improvement
< Note: We don’t learn which L bit-positions lead to the improvement!!!

< Step 2: Use log(n)32 / loglog(n) queries to determine the L bit-positions
% In y, flip the I-bits with probability 1/L. Do so log(n)3? / loglog(n) times.
« Look at all outcomes with fitness k+; and find out bit number £+j+1.
“ With high probability, the log(n)%? / loglog(n) samples suffice to learn all L
bit-positions

< Step 1+2: log(n)? / loglog(n) fitness evaluations to gain log(n)'? bits...
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Part 3: Learning from the Black-Box
++ Reminder (part 1): If the black-box complexity is lower than what

current best RSH achieve, you should wonder if there are better RSH
for this problem!

« Example: OneMax
«+ Black-Box Complexity: © (@)
% Standard EAs: Q(n logn)

>> What does an optimal black-box algorithm do that EAs do not?
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Summary Techniques

% Black-Box Complexity = guessing games
« eases the language, increases the fun

+ Information theoretic bound
« BBC 2 log(|SearchSpace]|) / log(|fitness_values|)

++ Random guessing
« often: BBC < log(|SearchSpace]|) / log(|typical_answers|)

++ Clever guessing: Increase the information gain!
+» Mastermind: Reduce number of colors = increase [typical_answers|
« LeadingOnes: Don't learn “the next bit”, but gain information on several
bits in parallel
« Memory-restricted & unbiased BBC: Coding techniques
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Learning from the Black-Box (cont.)
“ What does an optimal black-box algorithm do that EAs do not?
0 (@) algorithm: samples uniformly at random

% 0(n) algorithm: flip one bit in each step
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Learning from the Black-Box (cont.)

+*+ What does an optimal black-box algorithm do that the EAs do not?
0 (@) algorithm: samples uniformly at random

% 0(n) algorithm: flip one bit in each step
>> Both algorithms learn also from search points of lower fitness

% EAs usually do not: search points of lower fitness are often...
...discarded immediately (elitist selection)

...kept only with the hope that after a while they can improve and
lead to an optimal solution in a different area of attraction

*

*,
X3
RS

<.
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Results for the (1 + (1,1)) GAs

« Best results for A = k = 0(y/log n): runtime is 0(n,/logn)
>> first time a GA with an asymptotic gain over standard EAs is
proven for OneMax

++ General bound: 0 ((% + %) nlogn+ (k + A)n)

>> improvement over “classic” ©(n log n) bound for quite a range of
different values for k and 4

% Adaptive choice: For 1 = k = max {H_Lf(x)z} runtime is 0(n)

+“ self-adaptive choice (1/5'" rule): works well in experiments

+» More details: DW’13 (last year's GA track best paper award)
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A Class of New GAs

Exploit inferior search points in a simple manner: (1 + (4,4)) GA
1. Sample x u.a.r.
2. fort=1,2_3,...do
Mutation phase:
i. Sample ¢ from B(n, p);
i. fori=1,..,4do: SampleX® from x by flipping ¢ bits
iii. Choose x! with f(x) = max {f(x1), ..., f(x*)} u.ar.
Crossover phase:
i. fori=1,..,Ado: Sample y from x, x! by crossover
i. Choose y! with f(y") = max {f(1),....f(3*)} u.ar.
Selection phase:
i. iffOY) = f(x) then x « y!

E.g,p=k/nandk > 2
Created offspring typically

inferior to parent x
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Final Summary ©

«+ Black-box complexity: Expected number of fitness evaluations the best
black-box algorithm needs to query the optimum of the hardest instance.

% min, max; 7(4,I)
% Note: lower bound on the performance of any EA, ACO, ...

«+ Strongly related to guessing games
+ BBC(OneMax) = Mastermind
% BBC(LeadingOnes) = what you should play in the next tutorial ©

[download the game from ]

¢ Interplay between runtime analysis and BBC theory may lead to new

algorithms
Thanks!

«» analogous to research in classic algorithms
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Some Open Problems

+« Mastermind, BBC(OneMax):
% 2 colors: determine the leading constant [very difficult, posed already in
the Erdds-Rényi paper]
% n colors: Is our O(n loglog n) bound tight? [difficulty unclear, possibly
easy and we just overlooked the right idea]
“ memory-restricted BBC:
% say something on the leading constants [possibly easy]
< say something for non-constant k [possibly easy, start with k < n'1¢]
% Mastermind with faulty answers? [possibly easy, so far only one result
by Huang, Chen, Lin (2006)]
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Some Open Problems

<+ Other black-box models

% Find a black-box model that capture most RSHs, but avoids some of
the unrealistic low complexities of previous models.

“ Models for particular algorithms classes: ACO, EDA, EMO, ...

<+ Black-box complexities for combinatorial optimization problems

+ Improve some of the non-tight bounds in DKLW’11 [since this is the
first and only paper on this topic, at least some improvements shouldn’t

be too difficult]
+ Regard other CO problems than shortest paths and minimum spanning
trees.
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Some Open Problems

++ Unbiased black-box complexity:
+“ Lower bounds for the k-ary unbiased BBCs of OneMax, e.g., Q(n) for
k=2 [difficulty unclear, best upper bounds DW’12]
<+ Improved bounds for the k-ary BBCs of LeadingOnes [best known
results in FOGA’11, potentially ideas from the AADLMW-result can be
used? ]

+ Ranking-based black-box complexity: Prove that the ranking-based BBC of
partition is much higher than the unrestricted one [maybe very hard ®]

« Memory-restricted black-box complexities: Give examples of problems
having a higher BBC with memory restriction than without [my guess:
should be easy and we were just unlucky that OneMax is not such an
example]
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Appendix

1  Summary

In the following appendix, we survey the known black-box complexities of classic test functions
in evolutionary computation. We tried our best to be exhaustive, so wherever lower and upper
bounds do not match, we feel that it is an open problem to close this gap. In the tables below,
we highlight some of these open problems which we find particularly interesting and try to grade
their problem difficulty. Of course, what looks difficult now might look easy in the future, and
what looks difficult for us might be easy for other researchers. Hence these subjective difficulty
estimates should not be takes too serious. Still, they might be helpful, in particular, for younger
researchers.
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Our rating scheme is as follows:

# % k% Most likely a really difficult problem. Classic open problem in discrete mathematies.
Several researchers from both the mathematics and the computer science community have
addressed this problem. Should be worth an immediate PhD.

Most likely a quite difficult problem. We know that this problem has been looked at
hy a number of researchers in the evolutionary computation community without success.
Solving it would impress a number of people.

RS

#*

Interesting problem that eould he solvable with reasonable effort, though some under-
standing of non-trivial previous work will be needed. A progress here should easily make
a good conference publication.

*

*

*

Nice problem. We see a good chance that it can be solved without a broader background
in black-box complexity theory. Possibly a good first problem to try when interested in
this field. Results still publishable at good venues.

(unrated) No rating simply means that we did not want to highlight this as one of the problems
where we feel that progress is most urgent. It could still be an interesting problem and
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2.1 OneMax

The generalized ONEMAX function class is the one that consists of all functions f, : {0,1}" —
[0.nl.z = |{i € [n] | 2 = 2}, 2 € {0,1}". The table below summarizes the known lower
and upper bounds for the black-box complexities of this function class. Bounds given without
reference follow trivially from identical bounds in stronger models, e.g., the Q2(n/logn) lower
bound for the memory-restricted black-box complexity follows directly from the same bound

the unrestricted model.

Model Lower Bound Upper Bound E. Diff.
. in/Togn) mfo-theo. | O(n/Togn) [ERG3, AW0E]

unrestricted {1+0{1))(n/logn) [ERG3 (2+o(1))(n/logn) [Lin64,Lin5,CMBE] | sx=x

unbiased, arity 1 Dnlogn) [LW13] O(nlogn)

unbiased, arity 2 < k < logn | Q{n/logn) O(n/k) [DW12c, DDE13] L

r.b. unrestricted Ti(n/Togn) O(n/Togn) [DWId]

r.b. unbiased, arity 1 Qnlogn) O(nlogn) [Miih82] for (14+1) BA

rb. unbinsed, arity 2 < k< n | Q(n/logn) O(n/ lagk) [DW14] .

{1+1) memory-restricted THn/Togn) O(n/logn]) [OWTIZH]

(E.Diff. abbreviates estimated problem difficulty; r.b. abbreviates ranking-based; info-theo.
the information-theoretic bound [Yao77], cf. also [DJW06].)
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It is a major open question to determine the correct bound for unrestricted algorithms. While
it is known that all nen-udaptive algorithms need (2 £ o(1))(n/ log n) queries to determine the
target string =z, it is not known whether faster adaptive query algorithms exist.

As discussed in the tutorial, determining the black-box complexity of the ONEMAX function
class is equivalent to identifying optimal winning strategies for the Mastermind game with 2
colors and n positions, ef also [DW12h]. We believe that the tools needed to determine
the correct bound for the ONEMAaX function class are the same as needed to compute the
correct query complexity of the Mastermind game with » positions and & = » colors. The
recent Cnloglogn) bound for this game that we have discussed in the tutorial can be found
in [DSTW13]. The best known lower bound for this game is the information-theoretic one,
which is linear in n.

The lower bound of Lehre and Witt for 1-ary unbiased black-box algorithms holds for any
psendo-Boolean function with a unique global optimum.
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2.2 Linear Functions 2.3  BinaryValue

The linear function class contains for all » € {0,1}" and for all w € R™ the function f. ,, : The generalized BINARYVALUE function class contains for every 2 € {0,1}" and every w € S,

n e ars 1 3] 1 3 - Ty . i - .
{0,1}" = Rz EtE[nLI,:;,- wi. The following table summarizes known upper and lower the function f. - : {0,1}" = R,z EiE[n]‘:n‘_\::w 2'. The following table summarizes known
bonnds for the black-hox complexity this function class. upper and lower bounds for the black-box complexity of BINARYVALUE.

Model Lower Bound Upper Bound E. Diff.

unrestricted Q(n/logn)  cof. ONEMax [ n+1 % Mnd.al_ Lower Bound _ Uppei Bound

mbinsed, arity T Tnlozn) o ONEMax | O(nlogn)  [OTW03 for (151) TA umrestricted i [logyn] (folklore) | logy n] +2 (folklore)

unbiased, arity k > 2 0n/logn) O(n) - ranking-based unrestricted [ > n—1  [DWI]] n+1 (Tolklore)

r.b. unrestricted n/logn) n+1 (Tolklore) R

r.b. unbiased, arity k > 2 | Q{n/logn) O(n) [DIK*11] The black-hox complexity of non-permutation-invariant function class BINARYVALUE® := { f;.iri-n] |

ny je 9 _ 9—n o 7
(E.Diff. abbreviates estimated problem difficulty; r.b. abbreviates ranking-based ) 2€{0.1)"} is 227", cf. e, [DIWOG, Theorem 4].

One of the main challenges here is to determine the correct unrestricted black-box complex-
ity. We conjecture a linear lower bound.
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2.5 Jump

The class Jumpy, the class of all generalized Jumpy functions with jump size ¢, consists of all

24 LeadingOnes functions {f: | z € {0,1}"} with

The LEADINGONES function class is the class {f. : {0,1}" — [0..n], 2 — max{i € [0.n] | Vj < . n, ifo= .:7
; n B k LAY w0z {ich] | m=u), ff<|{ic]|z=2u)<n—4f
it za() =T} | 2 € {0, 1}, ™ € Sp}. The following table summarizes known upper and lower o otherwise

hounds for the black-box complexity of LEADINGONES.

Known lower bounds are: ()(nlog n) for the unary unbiased black-box complexity of the gen-

&:?ﬂgﬂm = o (n]ﬂ?}’:;:) BOF?\T’?I) T3 [ Oinlozlozn) Upper P['i‘;l:)‘i 5T E. Diff. eralized jump functions with arbitrary jump size £ [LW12]. For arbitrary arity and for the un-
tnbiased, arity 1 omT) e o) TRudD] for (171) EA restricted black-box complexity the lower bound ©(n/logn) follows from information-theoretie
unbiased, ; Qnloglogn) O(nlogn) [DIK*11] considerations. The unrestricted and the unbiased black-box complexities of the extreme jump
unbiased, arity > 3 Q(nloglogn) Ofnlog(n)/loglogn) [DW12a] ** function (i.e., Jumpy with £ = n/2 — 1 is Q(n), which can be verified by information-theoretic
r.b. unbiased, arity = 3 | Q(nloglogn) Oinlog(n)/Toglogr)  [DW132a] 4 considerations [DDK14].

. i . . i . Known upper bounds for the unbiased black-box complexities are as follows:
(E.Diff. abbreviates estimated problem difficulty; r.b. abbreviates ranking-based )

The black-box complexity of the non-permutation-invariant function class LEADINGONES® := - .
- ‘ ‘onstant. Jump Short Jump Long Jump Extreme Jump
{feia, | 2 € {0,1}"} is § + o(n), see e.g., [DIJWO06, Theorem 6]. Arity =00 £=0(n!/25) £=(1/2-cn i=n/2-1
n] - F=1 Blnlogn) DRWIT] Binlozn) [DDKU] | O(n?)  [DDKU] | 0%  [DDKI]
k=2 O(m)  [DKWILDJKH11] |  O(m)  [DDK14] | O(nlogn) [DDKM] | O(nlogn)  [DDK14]
3<k<logn | O(n/k)  [DKWIL,DW12] | O(m/k) [DDKU] | Ofn/k) [DDKM] | ©(n)  [DDK14]

Using the following Lemma, which is taken from [DDK14], it is not hard to see that new
(better) upper bounds for the ONEMAX function class would immediately translate into better
upper bounds for Jump; (see [DDK14] for details).

Lemma 1. For all constants ¢ and ¢ and all { € 0[:1”2’[)‘ there is a unary unbiased subrou-
tine s using O(1) queries to JUMP; such that, for aoll bit strings z, s(z) = ONEMAX(z) with
probability 1 — O(n™°).
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2.6 Needle and Trap Functions

We summarize known upper and lower bounds for the generalized NEEDLE and TRAP function
classes. NEEDLE consists of all functions {f: | 2 € {0,1}"} with

1, fz=z,

-

0,1} = {01}z e
(0.1} (0.1} {0! otherwise,

and the function class TRAP contains for all 2 € {0, 1}™ the function

fo {01} — [0.2n), 2 — {L:e [n] | w =1}, ifx#z

otherwise.
Model Lower Bound Upper Bound E. Diff.
unrestricted T T 172 [DIWE] | (T +1)/2__[DIWoh] |
All models allowing random sampling " (folklore) | =
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3  Black-Box Complexities of Combinatorial Problems

3.1 MaxCligue

MAXCLIQUE is the problem of determining the size of a maximum clique in a graph. Droste,
Jansen, and Wegener [DIJWOG] regard the following class of functions, and give a simple algo-
rithm that needs at most {g) + 1 queries to compute the size of a maximum clique.

V], if Vis a clique in &
{f(_, solnl v {||j | lt.l ' T( fquem G is a graph on n \1‘11.'1:'(‘5} 5
'y oLherwise

where 20 .= {A]| AC[n]} denotes the power set of [n].

This simple example is often cited to show that there exist NP-hard problems with small
polynomial black-box complexity. That this is not an artifact of the unrestricted black-box
model, but applies also to the unary unbiased black-box model was shown in [DIKW11] for the
PARTITION problem.

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind 79

642

2.7 Polynomials and Monomials of Bounded Degree

Droste, Jansen, and Wegener regard in [DJWO0G] the black-box complexity of the class of mono-
tone pseudo-Boolean bounded degree polynomials. This contains for all. A C {A C [n] | |A]| < d}
and all wy € R[:'[Jl the polynomial fau, @ {0,1}" = RBoe v+ 3 40 g wa[licq #i the parameter
d is the deyree bound.

It is shown [DJW06, Theorem 7] that the black-box complexity of this function class is
hounded from below by gd-1 1/2 and from above by O(Zd log n+ ,,2)_ The upper bound applies
also to the (341) memory-restricted setting. The unary unbiased black-box complexity of this
function elass is at most O(29(n/d)log(1 + n/d)) by a result of Wegener and Witt [WWO05,
Theorem 4.2] for the Randomized Local Search (RLS) algorithm. This hound is tight for
RLS [WW05, Theorem 5.1].
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3.2 Partition

In [DKW11] an NP-hard subclass of the PARTITION problem is considered, and it is shown that
the unary unbiased black-box complexity of this class is O(nlogn). In the following, we briefly
present the class PARTITION:.

Partition. Whereas the decision version of the PARTITION problem asks the question
“Given a multiset T of positive integers (“weights”), is it possible to split the set into two
disjoint subsets T = TyOT; such that 37, I, W =3 e, w 77, the optimization version asks
for a partition (Zy.T,) of T such that the difference |37, ¢ w — 37, 7, w| is minimized.

Partition:. It is easily seen that PARTITION remains NP-hard if we restrict the problem to
instances with all weights distinet. Let PARTITION: be the class of all instances T of PARTITION
with v # w for all v,w € I. Given an instance T of PARTITION,, let us fix some enumeration
o : T — [n] of the elements of I. Let

fr 0 s Zaw 3 o) - YD el

iE[n],xy=0 i€[n],x;=1

The result in [DKW11] states that the unary unbiased black-box complexity of the function
class {f7 | T € PARTITIONz} is O(nlogn). Note here that we aim at minimizing the functions
|fz|. The result also applies to the function class {|fz| | T € PARTITION. }.

The unrestricted black-box complexity and the 3-ary unbiased black-box complexity of
PARTITION is linear in the size |I|.
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3.3 Minimum Spanning Trees

It is one of the most interesting questions currently in the area of runtime analysis to deter-
mine the exact runtime of the (1+1) Evolutionary Algorithm (EA) on the minimum spanning
tree (MST) problem. This question is open since Neumann and Wegener [NWO07] proved an
upper bound of O(mg log(nwmyay ) fitness evaluations that are needed until the (1+1) EA finds
an optimal MST. Here n is the number of vertices, m the number of edges and wy,,, is the
maximum of the positive and integral edge weights. It is widely believed that the dependence
on the maximum edge weight is not necessary. However, so far this could be proven only for
a randomized local search (RLS) variant doing one-bit and two-bit flips each with probability
1/2, cof. [RSOT7].

The black-box complexity of MST has been analyzed in [DKLW13]. Since the MST problem
has a natural representation via bit-strings, all existing black-box notions can be analyzed
without further discussion. The only minor detail to take care of is that in the MST problem
usually the fitness is a two-criteria one, that is, the fitness function returns both the number of
connected components and the total weight of the solution. For all black-box notions apart from
the ranking-based one, this provides no difficulties. For the ranking-based black-box complexity,
the model in which the ranking information is given for each component of the fitness separately
is regarded in [DKLW13]. All bounds except for the ones in the ranking-based model apply
also to the MST model in which the single-criterion fitness function is used that penalizes each
connected component by some large value € > n2wmax.
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The bounds from [lf)KL\-‘\-"lE] are summarized in the following table. The unary unbiased
black-box complexity reduces to O(mnlog(m/n)) if the edge weights are pairwise different.

Model Lower Bound | Upper Bound | Estimated Difficulty
(ranking-based) unrestricted n—2 2m + 1 ]
unbiased, arity 1 Q(mlogn) O(mnlogn)
ranking-based unbiased, arity 1 N(mlogn) O(mnlogn)
(ranking-based) unbiased, arity 2 | £2(m/logn) O(mlogn)
(ranking-based) unbiased, arity 3 | £2(m/logn) Q(m) =
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3.4 Single-Source Shortest Paths Problem

Another intensively studied problem in the runtime analysis community is the single-source
shortest paths (SSSP) problem. For a given graph G = (V, E') with edge weights and a distin-
guished source vertex s € V, the SSSP problem asks to determine for each vertex w € V' {s}
the shortest path between w and the source s, i.e., a path py that minimizes 3~ e Wie). For
the SSSP problem, a bit-string representation of the solution candidates is not very natural.
Therefore, [STW04] and all subsequent works represent individuals by (directed) shortest-paths
trees.
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3.4.1 Multi-Criteria Fitness Function

In this model, which is regarded in [DJWO06], an algorithm may query arbitrary trees on V
and the objective value of any such tree is an n — 1 tuple of the distances of the n — 1 non-
source vertices to the source s (if an edge is traversed which does not exist in the input graph,
the entry of the tuple is co or some artificially large value). Known bounds for the black-box
complexity of the SSSP problem in this setting are summarized in the following table. As argued
in [DKLW13, Section 5.1}, imposing certain symmetry conditions among the vertices makes little
sense if the fitness function explicitly distinguishes them. Unbiased black-box complexities have
therefore not been considered in the multi-eriteria setting.

Model Graph Lower Bound Upper Bound
ricted arbitrary | n—1  [DKIWI3] | n—1 [DRIW 13|
tnrestnie complete | n/4  [DKIW13] | [(r+1)/2] +1 [DKLW13]
(24+1) memory-restricted | arbitrary 2n—3 [DJWOE]
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3.4.2 Single-Criterion Fitness Function

One may also consider the SSSP problem with a single-criterion fitness function, which assigns
to each search point the snm of the distances of all vertices to the source. In this model, it is
important that each unconnected vertex contributes some fixed large value to the fitness but
not co. The solution candidates (search points) in this model are vectors (p(v))yev () € yret
to be interpreted that the predecessor of a vertex v € V'\ {s} is node p(v). It is known that the
running time of the (1+1) EA for this problem is O(mn log(nimax)), see [DJ10]. Again, it is a
well-known open problem whether the dependence on iy, is necessary or not.

For the single-criterion fitness function, it is an interesting question how to model unbiased-
ness. Three different versions are discussed in [DKLW13]: the generalized unbiased black-hox
complexity model as defined in [RV11], the redirecting unbiased model, and the structure pre-
serving unbiased model.
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3.5 BSorting

Bounds for the unrestricted and memory-restricted black-hox complexities of different sorting
problems can be found in [DJWOG, Section 3|
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Intuitively speaking, in the structure preserving unbiased black-box model, the operators do
not regard the [abels of different nodes, but only their structure. In the redirecting nnbiased
black-box model, intuitively, a node may choose to change its predecessor in the shortest path
tree but if it decides to do so, then all possible predecessors must be equally likely to be chosen.
In contrast to the structure preserving and the generalized unbiased hlack-box models, this
notion seems to be much better suited for the SSSP problem. The bounds from [DKLW13] are
summarized in the following table. The upper bounds for the generalized and the structure
preserving unbiased black-box models differ from the unrestricted ones by at most one query.
The lower bound for the redirecting unbiased model holds for arbitrary arity.

The lower bound for the unrestricted black-box complexity follows from the one for linear
functions.

Model Lower Bound | Upper Bound | Estimated Difficulty
unrestricted Q(n/logn) nin—1)/2 e
ranking-based unrestricted Q(n/logn) (n—1)
ranking-based redirecting unbiased, arity 1 | T2(n/Togn) O(n™)
redirecting unbiased, arty 2 !!(nQ] O(n?log n}
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