
1

Black-Box Complexity:
From Complexity Theory to Playing Mastermind

Benjamin Doerr1 & Carola Doerr2

1École Polytechnique, Paris-Saclay, France
2CNRS & Univ. Pierre et Marie Curie, Paris, France

http://www.sigevo.org/gecco-2014/

Permission to make digital or hard copies of part or all of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses,
contact the Owner/Author.

Copyright is held by the owner/author(s).

GECCO '14, Jul 12-16 2014, Vancouver, BC, Canada
ACM 978-1-4503-2881-4/14/07.
http://dx.doi.org/10.1145/2598394.2605352 Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind 2

Instructors I/II
 Benjamin Doerr is a full professor at the French École Polytechnique. He

also is a senior researcher at the Max Planck Institute for Informatics
(Germany) and an adjunct professor at Saarland University.

 He received his diploma (1998), PhD (2000) and habilitation (2005) in
mathematics from Kiel University. His research area is the theory both of
problem-specific algorithms and of randomized search heuristics like
evolutionary algorithms. Major contributions to the latter include runtime
analyses for evolutionary algorithms and ant colony optimizers, as well as
the further development of the drift analysis method, in particular,
multiplicative and adaptive drift. In the young area of black-box complexity,
he proved several of the current best bounds.

 Together with Frank Neumann and Ingo Wegener, Benjamin Doerr founded
the theory track at GECCO, served as its co-chair 2007-2009 and serves
again in 2014. He is a member of the editorial boards of "Evolutionary
Computation", "Natural Computing", "Theoretical Computer Science" and
"Information Processing Letters". Together with Anne Auger, he edited the
book "Theory of Randomized Search Heuristics".

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind 3

Instructors II/II
 Carola Doerr, née Winzen, is a permanent researcher with the CNRS and

the Université Pierre et Marie Curie (Paris 6).

 She studied mathematics at Kiel University (Diploma in 2007) and computer
science at the Max Planck Institute for Informatics and Saarland University
(PhD in 2011). Her PhD studies were supported by a Google Europe
Fellowship in Randomized Algorithms. From Dec. 2007 to Nov. 2009,
Carola Doerr has worked as a business consultant for McKinsey &
Company, mainly in the area of network optimization. She was a post-doc at
the Université 7 in Paris and the Max Planck Institute for Informatics in
Saarbrücken.

 Carola’s main research interest is in the theory of randomized algorithms,
both in the design of efficient algorithms as well as in randomized query
complexities. She has published several papers about black-box
complexities. She has contributed to the field of evolutionary computation
also through results on the runtime analysis of evolutionary algorithms and
drift analysis, as well as through the development of search heuristics for
solving geometric discrepancy problems.

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Objectives of the Tutorial
 This is a tutorial on black-box complexity. This is currently one of the very

hot and active topics in the theory of randomized search heuristics.

 We shall try our best to…
 tell you on an elementary level what black-box complexity is and how it

shapes our understanding of randomized search heuristics
 give an in-depth coverage of some of what happened in the last three

years
 show you why this also is a fun topic

 Don’t hesitate to ask questions when they come up!

 Finally: We are happy to receive feed-back on this tutorial (email, coffee
breaks, receptions, …)

4

623

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Agenda

5

 Part 1: Introduction to black-box complexity (BBC)
 Motivation: complexity theory for randomized search heuristics (RSH)
 Definition of BBC
 Four benefits

 Part 2: Tools and techniques (in the language of guessing games)
 From black-box to guessing games
 A general lower bound
 How to play Mastermind
 A new game

 Part 3: From BBC to new algorithms

 Summary, open problems, [appendix]
Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Timeline

6

2002Droste, Jansen, Tinnefeld, Wegener. A new framework for the
valuation of algorithms for black-box optimization. FOGA

2006 Droste, Jansen, Wegener. Upper and lower bounds for ran-
domized search heuristics in black-box optimization. Theory
Comput. Syst. 39

2009Anil, Wiegand. Black-box search by elimination of fitness
functions. FOGA

2010 Lehre, Witt. Black-box search by unbiased variation. GECCO

2011Doerr, Johannsen, Kötzing, Lehre, Wagner, Winzen. Faster
black-box algorithms through higher arity operators.

FOGA Doerr, Winzen. Towards a complexity theory of randomized
search heuristics: Ranking-based black-box complexity.
CSRRowe, Vose. Unbiased black box search algorithms.

GECCO Doerr, Kötzing, Lengler, Winzen. Black-box complexities
of combinatorial problems. GECCO

Doerr, Kötzing, Winzen. Too fast unbiased black-box
algorithms. GECCO Doerr, Winzen. Black-box complexity: breaking the O(n log n)

barrier of LeadingOnes. EA

2012Doerr, Winzen. Playing Mastermind with constant-size
memory. STACS Doerr, Winzen. Reducing the arity in unbiased black-box

complexity. GECCO

2013Doerr, Spöhel, Thomas, Winzen. Playing Mastermind with
many colors. SODA Doerr, Doerr, Ebel. Lessons from the black-box: Fast

crossover-based genetic algorithms. GECCOAfshani, Agrawal, Doerr, Doerr, Green Larsen, Mehlhorn. The
query complexity of finding a hidden permutation. Munro-60

2014 Doerr, Doerr, Kötzing. Unbiased black-box complexities of
Jump functions--how to cross large plateaus. GECCO

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Part 1: Intro to Black-Box Complexity

7

 Why a complexity theory for RSH?
 Understand problem difficulty!

 How?
 Black-box complexity!

 What can we do with that?
 General lower bounds
 understand the working principles of EAs
 thorn in the flesh

 [Different notions of black-box complexity]

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Why a Complexity Theory for RSH?

8

 Understand problem difficulty!
 Randomized search heuristics (RSH) like evolutionary algorithms,

genetic algorithms, ant colony optimization, simulated annealing, …
are very successful for a variety of problems.

 Little general advice which problems are suitable for such general
methods

 Solution: Complexity theory for RSH

 Take a similar successful route as classic CS!
 Algorithmics: Design good algorithms and analyze their performance
 Complexity theory: Show that certain things are just not possible
 The interplay between the two areas provoked many cool results

624

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Algorithms vs. Complexity Theory
for RSHs – An Example

 Bottom line: Spanning tree is easy for RSHs, the Needle problem not.

9

Algorithm Analysis: Prove how
a certain algorithm solves a
particular problem.

The (1+1) EA finds a minimum
spanning tree with an expected
number of O(m2 log(m wmax))
fitness evaluations.

Complexity Theory: What can
the best possible algorithm for
this problem do or not.

No RSH can solve the Needle
problem in an expected number
of less than (2n+1)/2 fitness
evaluations.

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Reminder: Classic Complexity Theory

10

 General approach: Complexity (difficulty) of a problem := Performance of
the best algorithm on the hardest problem instance

 Example: “Sorting n numbers needs Θ(n log(n)) pair-wise comparisons.”
 Problem: “Sorting an array of n numbers”
 Instance (input to algorithm): An (unsorted) array of n numbers
 Algorithms: All that run on a Turing machine
 Performance (cost) measure: Number of pair-wise comparisons

 T(A,I) = number of comparisons performed when algorithm A runs
on instance I

 Theorem: “Complexity of sorting = minA maxI T(A,I) = Θ(n log(n)).”

 How does this work for RSH?
 Algorithms = RSHs, Performance = number of fitness evaluations, …

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

 Algorithms: Randomized search heuristics (RSH)
 may generate solutions and query their fitness
 no explicit access to the problem description
 black-box optimization algorithm

Complexity Theory for RSH

11

ESEA GA ACO SI

Evolutionary Computation [Ken de Jong]

Nature-inspired Computation RLS

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Complexity Theory for RSH

12

 Algorithms: Randomized search heuristics (RSH)
 may generate solutions and query their fitness
 no explicit access to the problem description
 black-box optimization algorithm

 Performance measure T(A,I) = expected number of fitness evaluations
until algorithm A running on instance I queries an optimum of I

 Black-box complexity: Expected number of fitness evaluations the best
black-box algorithm needs to query the optimum of the hardest instance.
 minA maxI T(A,I)

“How many search point have to be evaluated to find the optimum.”

625

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

BBC: What Can We Do With It?

13

 Black-box complexity: Expected number of fitness evaluations the best
black-box algorithm needs to query the optimum of the hardest instance.
 minA maxI T(A,I)

 4 benefits:
 Measure for problem difficulty [that’s how we designed the definition]
 universal lower bounds
 understand the working principles of EAs
 a thorn in the flesh & a route to better algorithms

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

BBC: Universal Lower Bounds

14

 Black-box complexity: Expected number of fitness evaluations the best
black-box algorithm needs to query the optimum of the hardest instance.
 minA maxI T(A,I)

 Follows right from the definition: The black-box complexity is a lower bound
on the performance of any RSH!
 BBC := minA maxI T(A,I) ≤ maxI T(B,I) = performance of B

 Example:
 Theorem [DJTW’02]: The black-box complexity of the needle function

class is (2n+1)/2.
 Consequence: No RSH can solve the needle problem in sub-

exponential time.
 One simple proof replaces several proofs for particular RSH

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

BBC: A Thorn in the Flesh

15

 If the black-box complexity is lower than what current best RSH achieve,
you should wonder if there are better RSH for this problem!

 Example: OneMax functions
 for all “bit-strings” z ∈ {0,1}n let

fz: {0,1}n → {0,…,n}; x ↦ “number of positions in which x and z agree”
 all fz have a fitness landscape equivalent to the classic OneMax

function (counting the number of ones in a bit-string).
 Theorem: The black-box complexity of the class of all OneMax

functions is Θ(n / log(n)).
 But: All standard RSH need at least Ω(n log(n)) time!
 Are there better natural RSH that we overlooked?

 Same motive as in classical theory: n x n matrix multiplication can be done
in time O(n 2.3727), only lower bound is Ω(n 2).

First answer:
Part 3 of this

tutorial

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

BBC: Understand Working Principles

16

 Unbiased unary black-box complexity:
minA maxI T(A,I),

where as A we only regard unbiased algorithms using unary variation
 unary (mutation-based): one parent gives one offspring
 unbiased:

 all bit-positions are treated equally
 symmetry in the bit-values 0 and 1.

 Theorem [LW’10]: The unbiased unary BBC of OneMax is Ω(n log n).

 “Insight”: The reason for many simple RSH needing Ω(n log n) iterations is
that they are unbiased.
 price for being unbiased is most Θ(log n)2

 fair price for having not relying on problem-specific knowledge

626

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Digression: Alternative BBC Models

17

 Previous slide:
 restricted BBC models help understanding particular features of EA
 different view: restricted BBC models might better capture the problem

difficulty in evolutionary computation

 Next x slides: Discuss alternative black-box models
 very active research area in the last 3 years
 no definitive answer

 Common theme: Instead of allowing all black-box optimization algorithms,
only regard a restricted class!
 restricted class should include most classic RSH

begin digression

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Alternative 1: Unbiased BBC

18

 Lehre&Witt (GECCO’10 theory track best paper award):
 allow only unbiased variation operators: treat all bit-positions (1, …, n)

and the two bit-values (0, 1) equally!
 equivalent: if σ is an automorphism of the hypercube, then the

probability that y is an offspring of x1, …, xk must be equal to the
probability that σ(y) is an offspring of σ(x1), … σ(xk)

 Observation: Most RSH are unbiased
 exception: one-point crossover

 Result: The unbiased, mutation-only BBC of OneMax is Θ(n log(n))
 as observed for random local search, (1+1) EA, …

 Anti-result [DKW’11]: Also the TRAPk function has an unbiased, mutation-
only BBC of Θ(n log(n)).
 contrasts the Ω(n k) performance of all classic RSH

 Interesting [DJKLW’11]: Unbiased 2-ary BBC of OneMax: O(n).

Crossover helps?

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Alternative 2: Ranking-Based BBC

19

 DW’11, following a suggestion by Niko Hansen (similar ideas in a paper by
Olivier Teytaud): ranking-based
 do not regard the absolute fitness values, but make all decisions

dependent only on how fitnesses of search points compare!
 Observation: Many RSH follow this scheme

 exception: fitness-proportionate selection
 Bad news: OneMax has a ranking-based BBC of Θ(n / log(n))
 Good news: For BinaryValue…

 BBC: log(n)
 ranking-based BBC: Ω(n)
 many RSH: Θ(n log n)

 Open problem: Partition…
 BBC: O(n), heavily exploits absolute fitness values
 Ranking-based: Maybe exponential?

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Alternative 3: Memory-Restricted BBC

20

 Droste, Jansen, Wegener (Theor. Comput. Syst. 2006):
 suggest to restrict the memory: store only a fixed number of search

points and their fitness
 inspired by bounded population size
 conjecture: with memory one, the BBC of OneMax becomes the

desired Θ(n log(n))

 DW’12: Disprove conjecture.
 Even with memory one, the BBC of OneMax is Θ(n / log (n)).

[I’ll give some proof ideas in the second part of the tutorial]

627

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Summary Alternative BBC Models

21

 Different models:
 unrestricted (classic)
 unbiased: don’t exploit the encoding of solutions
 ranking-based: only compare fitnesses
 memory-restricted

 None is yet “the ultimate complexity notion” for RSH
 Big open problem…

 Each expanded our understanding
 what makes a problem hard
 what makes a RSH powerful

end digression

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Summary Part 1

22

 Black-box complexity (BBC): “Minimum number of search points that have
to be evaluated to find the optimum”
 Expected number of fitness evaluations the best black-box algorithm

needs to query the optimum of the hardest instance.
 minA maxI T(A,I)

 Benefits:
 Measure of problem difficulty
 universal lower bounds
 understand the working principles of EAs
 thorn in the flesh & route to better algorithms

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Part 2: Tools and Techniques

23

Plan for the 2nd part of this tutorial:

 Explain, why BBC and guessing games are almost the same

 Use the language of guessing games to demonstrate some techniques
 Random guessing:

 The BBC of OneMax or “how to play Mastermind with two colors?”
 A simple “information theoretic” lower bound
 Clever random guessing:

 Mastermind with n colors
 Memory-restricted BBC of OneMax = Mastermind with 2 rows
 The LeadingOnes game

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

A Formal Definition of BBC

24

 Optimization problem: A set F of functions f: {0,1}n → ℝ
 Aim is to find the maximum of a given f ∈ F.
 Language:

 An f ∈ F is called an “instance of F”
 {0,1}n “search space”
 x ∈ {0,1}n “search point”

 Example “Maximum Clique”: For each graph G on the vertex set
{1,…,n}, fG(x) is the size of the vertex set represented by x, if this is a
clique in G, and 0 otherwise. F := {fG | G a graph with vertices 1,…,n}.

 A black-box algorithm for F : A randomized algorithm that finds the
maximum of any f ∈ F by asking f-values of search points only (no explicit
access to the instance f, e.g., the graph G in the clique example).

628

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

A Formal Definition of BBC

25

 A black-box algorithm for F : A randomized algorithm A that finds the
maximum of any f ∈ F by asking f-values of search points only.

 Performance T(A,f) of A for f ∈ F : Expected time until an x with f(x) =
OPT(f) is queried

 Performance T(A,F) of A on F: maxf ∈ F T(A,f)
 BBC of F: minA T(A,F), where A runs over all black-box algorithms for F

Search
Heuristic

Black-Box =
“Oracle”

x1

f(x1) f

Black-Box
Algorithm

A

[knows the
problem F]

x2

f(x2)

f ∈ F

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

From BBC to Guessing Games

26

 Guessing game:
 BlackBox chooses a hidden f ∈ F .
 Algo tries to guess an x with f(x) maximal
 For each incorrect guess, BlackBox tells f(x) to Algo

 Optimal strategy for Algo = optimal black-box algorithm
 Optimal strategy for black-box = “most difficult” f ∈ F
 Optimal number of rounds in the game = BBC(F)

Search
Heuristic

Black-Box

x1

f(x1) fAlgo

x2

f(x2)

f ∈ F

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Classic Guessing Game: Mastermind

 2-player game
 CodeMaker hides a 4-digit 6-color code C.
 CodeBreaker tries to guess it using few

guesses

 Guess: Some color code G

 Answer:
 Number of positions in which C and G

agree (“black answer-pegs” [here: red])
 Number of additional code letters that occur in a

wrong position (“white pegs”)

27

n k

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

2-Color Mastermind = BBC(OneMax)

28

 OneMax test function: f: {0,1}n → {0,…,n}; x ↦ “number of ones in x”
 easy to find the unique global optimum (1,…,1).
 RLS, (1+1) EA, … do this in Θ(n log n) time.

 (Generalized) OneMax function, OneMax problem:
 For each z ∈ {0,1}n, let

fz: {0,1}n → {0,…,n}; x ↦ “number of bits in which x and z agree”
 All fz have isomorphic fitness landscapes
 OneMax problem: F := {fz | z ∈ {0,1}n}, the set of all OneMax functions

 Observation: Mastermind with the two “colors” 0 and 1 corresponds to the
black-box complexity BBC(F)

629

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Mastermind: 3 (?) Results

 Θ(n / log n) guesses sufficient&necessary for k = 2 (BBC of OneMax)
 Anil, Wiegand: “Black-box search by elimination of fitness functions”.

Foundations of Genetic Algorithms (FOGA) (2009)
 lower bound from [DJW06]

 Θ(n log k / log n) for k ≤ n1- ε

 Chvátal: “Mastermind”. Combinatorica (1983)

 Θ(n / log n) for k = 2
 Erdős, Rényi: “On two problems in information theory”. Magyar Tud.

Akad. Mat. Kutató Int. Közl (1963)

29 Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Proof: Random Guessing

 CodeBreaker’s strategy:
Guess Θ(n / log n) random codes.
 Look at all answers.
With high probability, no secret code other than the true one leads to

these answers [elementary, straight-forward computation]

 Comments:
 Erdős probabilistic method at its best.
 Best possible (apart from constant factors hidden in Θ(…))
 Note: Non-adaptive strategy – questions do not depend on previous

questions and answers.

30

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

A General Lower Bound

31

 [Droste, Jansen, Wegener’06] Consider a guessing game such that
 there are s different secrets
 each query has at most k different answers (k ≥ 2).
 Then the expected number Q of queries necessary to find the secret is

at least (log2(s) / log2 (k)) – 1 = logk(s) – 1.

 Information theoretic view: To encode the secret in binary, you need log2(s)
bits. Each answer can be encoded in log2(k) bits. If Q rounds suffice, Q
log2(k) bits could encode the secret. 1)

 Game-theoretic view: In the game tree, each node has at most k children.
Hence at height Q, there are at most kQ nodes. If s is bigger, then at some
nodes, more secrets are possible. 1)

1) Argument correct for deterministic strategies. For randomized
ones, in addition, Yao’s minimax principle is needed.

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Back to 2-Color Mastermind…

32

 Lower bound: (1 + o(1)) n / log2(n)
 Argument: 2n possible secrets, n +1 possible answers
 general lower bound: log2 (2n) / log2 (n +1) = (1+o(1))n / log2 (n)

 Information theoretic view: “learn at most log2 (n) bits per question”

 Upper bound computed precisely: (2 + o(1)) n / log2 (n)
 Weaker by a factor of 2
 Reason (informal): Typically, a random question yields an answer

between n /2 – Θ(√n) and n /2 + Θ(√n).
 “learn log2 (Θ(√n)) ≈ (1/2) log2 (n) bits per question”
 game tree has relevant degree of only Θ(√n).

 Big open problem (already mentioned in the Erdős-Rényi paper):
What is the correct bound? Can you ask better questions?

630

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Part 2: Tools and Techniques

33

Plan for the 2nd part of this tutorial:

 Explain, why BBC and guessing games are almost the same

 Use the language of guessing games to demonstrate some techniques
 Random guessing:

 The BBC of OneMax or “how to play Mastermind with two colors?”
 A simple “information theoretic” lower bound
 Clever random guessing:

 Mastermind with n colors
 Memory-restricted BBC of OneMax = Mastermind with 2 rows
 The LeadingOnes game

we are here now

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Mastermind for k = n

34

 Best known lower bound: Ω(n)
 Information theory: n n secrets, each query has ≤ n+1 answers

 Best known upper bounds: O(n log(n))
 Chvátal (Combinatorica’83): 2n log(n) + 4n
 Chen, Cunha, Homer (COCOON’96): 2n log(n) + 2n + 3
 Goodrich (IPL’09): n log(n) +3n – 1
 [Random guessing takes Θ(n log(n)) guesses.]

 What is your guess?
 [Problem open for 30 years, so no reason to be shy]

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Plan: Clever Random Guessing

35

 Random guessing takes Θ(n log(n)) guesses.

 Informal justification:
 The expected answer to a random question is 1.
 “learn only a constant number of bits per question”.
 Information theory: log(n n)/log(constant) = n log(n) questions

 Can we ask better questions?
 Info-theory: We need to “learn more bits per question”
 Problem: For the first question, the expected answer is 1, no matter

what we ask (learn constant number of bits)
 If something works, it must be adaptive: Current question uses

previous answers!

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Reducing the Number of Colors

36

 Observation 1: Reducing the numbers of colors would help
 Chvátal+: For k ≤ n colors, O(n log(k) / log(n/k)) random guesses

suffice to find the secret code
 Intuition: s = kn, a random guess has an expected answer of λ =

n/k, this and the ≈ λ1/2 adjancent answers show up with roughly
equal probability learn log(λ1/2) = Θ(log(λ)) bits

 Note: For k = n/λ, this is O(n log(n) / log(λ))
 any λ = ω(1) would improve

 Observation 2: Reducing the number of colors is possible
 for k = n colors, the probability that a random guess gets a

“0”-answer, is (1 – (1/n))n ≈ 1/e ≈ 0.37
 Such a 0-guess tell us, for each position, one color that cannot be

there
 essentially reduced the number of colors by one

631

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Details: Reducing the Number of Colors

37

 For k colors and n positions, the probability that a random guess is
answered “0”, is (1 – (1/k))n ≥ 4-n /k.

 Reducing the number of colors from n to 4n / loglog(n) takes time at most
n 4-n /(4n / loglog(n)) = n (log n)1/2.

 Chvátal+: With only k = 4n / loglog(n) colors possible at each position,
random guessing needs O(n log(n) / logloglog(n)) queries.
 Intuition: “learn Θ(logloglog(n)) bits per query”

 First “Theorem”: O(n log(n) / logloglog(n)) questions suffice!

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Quickly Reducing the Colors

38

Reducing the number of colors from k to k-1:

 so far: get a “0”-answer after at most 4n /k random guesses
 Example: k = n /100.

• Random guess has an expected answer of 100.
• Time to wait for a “0” is (1+o(1)) e100.
• Waiting for something quite rare

 better: Partition the n positions into 100 blocks of equal size n /100 and ask
randomly in each block (fill up the rest with dummy colors)
• expected contribution per block: 1
• waiting time for a “0” in a block: constant
• total time: 100 times constant

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Details: Quick Color Reduction

39

 Improved reducing the number of colors from k to k -1:
• Assume that for each position we have a dummy color that for sure

does not appear there [can, e.g., be found in O(n) time]
• Partition the n positions into n/k blocks of roughly equal size.
• For each block do

• repeat

• ask random colors in the block, put a dummy color in

the rest

• until answer = 0

• expected waiting time for “answer = 0”: at most 4
• total expected number of queries: at most 4 n/k [previously: 4n /k]

 Total time to reduce the number of colors from k to k /2:
• at most (k /2) 4 n / (k /2) = 4n

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Details (2): Quick Color Reduction

40

 Just proved:
You can reduce the number of colors from k to k /2 colors in 4n queries

 Goodrich (2009): log(n) times halving the colors finds the secret code in
O(n log n) questions [apart from constants, the same bound as Chvátal]

 DSTW’12: Reduce colors, then random guessing
 Do the halving trick √log n times [O(n √log n) queries]
 k = n / 2√log n colors possible at each position

 Random guesses: O(n log(k) / log(n/k)) = O(n √log n) random guesses
using only these k colors find the secret
 “learn log(2√log n) = √log n bits per question”

 Theorem: Solve Mastermind with k =n colors in O(n √log n) questions

632

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Ultra-Quick Color Reduction

41

 So far:
 Reducing colors allows better queries
 from k to k-1 colors in n/k queries

 color reduction queries: constant info gain (exp. answer = 1)
 random query: expected answer n/k, info gain Θ(log(n/k))
 Pay for asking “color reduction queries”

 Solution [DSTW’13]: Ask questions that
(i) reduce the number of colors, and
(ii) tell us Θ(log(n/k)) bits of information on the secret.
 “k k-1” in O((n/k) / log(n/k)) queries instead of O(n/k).
 “k k/2” in O(n / log(n/k)) queries instead of O(n).
 “n n/2i” in O(n log(i)) queries instead of O(n i)! [harmonic series]
 i=log(n): Find the secret code in O(n loglog(n)) queries .

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Here is How We Do This:

42

 Again:
 Assume that we have a dummy color for each position.
 k colors, n positions, λ = n / k expected answer of random guess.

 Find a guess G with answer at most 2λ [expected constant time].

 Partition the positions into 4λ blocks of equal size
 half of them contain no correct code letter (“empty block”)

 Plan: Identify these with Θ(λ / log λ) queries [next slide]
 reduces the number of possible colors for n/2 positions
 some Chernoff bounds: This is sufficient...

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Indentifying Empty Blocks

43

 Situation:
 a guess G with answer at most 2λ.
 4λ blocks, at least half of them empty.

 Query “dummy out random blocks”: For each block independently do
 with prob. ½: copy the block from G
 with prob. ½: fill the block with dummy colors

 Analysis:
 Expected answer: λ “learn Θ(log λ) bits”
 Some calculations: Θ(λ / log λ) queries suffice to detect the empty

blocks.

 Done More details: SODA’13 or http://arxiv.org/abs/1207.0773
Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Method: Clever Random Guessing

44

 Needed: Ask increasingly powerful queries (adaptive)
 first query reveals only constant amount of info

 Generally good idea: randomized queries
 “fooling the adversary”: impossible to find a good secret for CodeMaker

 3 increasingly powerful ways to mix cleverness and randomness
 random queries composed of possible colors (and wait for “0”)
 random blocks, rest dummy colors: quicker to get a “0”
 “dummy out random blocks”: don’t wait for a zero, but learn “zeros”

from these more expressive queries

 Next: Two examples from true black-box complexity

633

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

A Second Example of “Clever Guessing”

45

 Problem: Memory-restricted BBC of OneMax
 Memory-restriction: From one iteration to the next, the BB-algorithm

may only store k search points together with their fitness.
 Conjecture [Droste, Jansen, Wegener’06]: For k = 1, the BBC of

OneMax is Θ(n log n) as known from the (1+1) EA.

 Transfer to guessing games:
 This BBC problem is equivalent to Mastermind with two rows only.

 Theorem [DW’12]: You can win 2-row Mastermind with O(n / log n)
queries.

 Corollary: The memory-one BBC of OneMax is Θ(n / log n).

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Details: Two Rows Suffice!

 Result: On a board with two rows,
you can still find the secret code
with O(n / log n) guesses!

 Precise rules:
We start the game with an empty board
 If there is an empty row, CodeBreaker can enter a guess, which will be

answered by CodeMaker
 If there is no empty row, CodeBreaker must empty one of the two rows

and forget the content.

 Theorem: CodeBreaker has a strategy that
 finds the secret code in O(n / log n) rounds
 uses two rows only (all actions depend solely on these rows).

46

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Fewer Rows: Proof Ideas

 Original Mastermind: Guess Θ(n / log n) random codes. Store all guesses
and answers on the board. Think.
 Needs Θ(n / log n) rows.

 3 ingredients of our proof:
 Find parts of the code: Determine Θ(nε) code letters with Θ(nε / log n)

relatively random guesses (ε constant)
Do this n1- ε times: find the code with Θ(nε / log n) rows.

 Determine such a part with constant number of rows
Do this n1- ε times: find the code with Θ(1) rows.

 Do everything in two rows

47 Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Proof Idea (1): Find Parts of the Code

 Lemma:
Let B ⊆ [n], |B| = nε. “part”
Let G1, G2, … be Θ(nε / log n) guesses such that

Gi is random in positions in B
All Gi are equal in positions in [n] \ B

Then with high probability these guesses and answers determine the
secret code in B.

 Argument:
 Basically, we play the game in B (and use the previous proof)
Only difficulty: The answers we get “are not for B only”, but for the

whole guess
Same deviation for all guesses

 Some maths: Not a problem, guesses also determine deviation
48

634

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Proof Idea (2): Same with O(1) Rows

 Plan: Simulate the previous slide in O(1) rows
 Example: Find the first L = Θ(nε) code letters

 B1 := L random letters.
 Guess B1 1…1 in row 1 and learn answer A1.
 Guess B1 A1 1….1 in row 2 and ignore answer
 B2 := L random letters
 Guess B2 1…1 in row 1 and learn answer A2

 Guess B1 A1 B2 A2 1…1 in row 3 and ignore answer
 …

 As before: Θ(L / log L) guesses determine the code in the block
 New: The whole search history of Θ(L / log L) guesses and answers can

be stored in one row
 Needs 3 rows: “Old storage + new guess new storage”

49

“A1”: Suitably encoded
with O(log n) of letters

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Proof Idea (3): Two Rows Only

 Difficulty:
 To enter a new guess, one of the two rows must be emptied
 You must store and guess in the same row

Problem: Storage influences CodeMaker’s answers!
 All control information must also be stored in this one row

what is the block I’m just optimizing?
what am I currently doing (guessing, storing, finding the unique

solution, finding the last few letters in a different way…)

 Solution:
 technical.
 read the paper at STACS’12 or arxiv.org/abs/1110.3619.

50

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Summary: Memory-BBC of OneMax

 Result: The complexity of Mastermind remains at Θ(n / log n) guesses
even if we allow only two rows.
 Key proof argument: Clever guesses inspired by random guesses

 Open problems / future work:
Our proof works for any constant number of colors – what happens for

larger numbers of colors?
 constant factors: “what’s hidden in the Θ(…)”

does a memory restriction lose us a constant factor?

51 Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Finally: A New Guessing Game

52

 So far: BBC is strongly related to guessing games
 In particular: BBC(OneMax) ≈ Mastermind
 Therefore: Use fun games to solve BBC problems

 Now [next few slides]: Use BBC problems to derive a fun games
 LeadingOnes Game

635

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

LeadingOnes Test Functions

53

 Classic test function:
 LeadingOnes: {0,1}n → {0,…,n}; x ↦ max{i ∈ {0,…,n} | x1 = … = xi = 1}

 “how many bits counted from the left are one”
 Unique optimum (1,…,1)
 “Harder than OneMax”: Each non-optimal solution has only one

superior Hamming neighbor

 LeadingOnes function class LOn:
 Let σ be a permutation of {1,…,n}
 Let z ∈ {0,1}n (“target string”)
 fzσ : {0,1}n → {0,…,n}; x ↦ max{i ∈ {0,…,n} | xσ(1) = zσ(1), …, xσ(i) = zσ(i)}

 “how many bits, counted in the order of σ, are as in z
 same fitness landscape as LeadingOnes

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

The LeadingOnes Game

54

Transfer the BBC(LOn) problem into a guessing game:

 CodeMaker: Picks a secret code z and a secret permutation σ

 Round:
 CodeBreaker guesses a bit-string x ∈ {0,1}n
 CodeMaker’s answer: fzσ(x) = “how many code letters in the order of σ

are correct?”

 Main message of this slide: This is fun to play with n=5 or n=6!
 try it during the next talks ;-)

 Next few slides: The theory is fun as well…

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Black-Box Complexity of LeadingOnes

 Reminder: LOn consists of all functions
 fzσ : {0,1}n → {0,…,n}; x ↦ max{i ∈ {0,…,n} | xσ(1) = zσ(1), …, xσ(i) = zσ(i)}

 Black-box complexity of LOn, lower bound [Droste, Jansen, Wegener’06]
 Ω(n), because you need Θ(n) fitness evaluations even if σ = id

 Black-box complexity of LOn, upper bounds
 O(n2), run-time of RLS, (1+1) EA, …
 O(n log(n)): determine “the next bit” with log(n) queries by simulating

binary search (flip half of the potential bit positions…)
Information theoretic view:

 “next bit”-position is a number in {1,…,n}, coding length log(n)
 a typical query teaches you a constant amount of information

(fitness increases by a small constant or not)
55 Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

BBC(LeadingOnes), cool upper bounds

 DW’11: O(n log(n) / loglog(n)) is enough.
 “learn average of loglog(n) bits per guess”

 AADLMW’13: O(n loglog(n)) is enough, but also necessary
 “learn avg. log(n)/loglog(n) bits per guess”
 first “really deep” lower bound proof on BBCs
 http://eccc.hpi-web.de/report/2012/087/

 Next slide: Key argument of the O(n log(n) / loglog(n)) proof
 how to learn more than constant information

56

636

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Proving O(n log(n) / loglog(n)): Outline

 Assume that you have a solution x with fzσ(x) = k and you know which k bit-
positions are responsible for this. Denote by I the remaining bit-positions. Let
L := log(n)1/2

 Step 1: Use L2 = log(n) iterations to find a y with fzσ(y) = k + L
 Flip the bits in I with probability 1/L, accept if improvement
 Note: We don’t learn which L bit-positions lead to the improvement!!!

 Step 2: Use log(n)3/2 / loglog(n) queries to determine the L bit-positions
 In y, flip the I-bits with probability 1/L. Do so log(n)3/2 / loglog(n) times.
 Look at all outcomes with fitness k+j and find out bit number k+j+1.
 With high probability, the log(n)3/2 / loglog(n) samples suffice to learn all L

bit-positions

 Step 1+2: log(n)3/2 / loglog(n) fitness evaluations to gain log(n)1/2 bits…
57 Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Summary Techniques

 Black-Box Complexity ≈ guessing games
 eases the language, increases the fun

 Information theoretic bound
 BBC ≳ log(|SearchSpace|) / log(|fitness_values|)

 Random guessing
 often: BBC ≲ log(|SearchSpace|) / log(|typical_answers|)

 Clever guessing: Increase the information gain!
Mastermind: Reduce number of colors increase |typical_answers|
 LeadingOnes: Don’t learn “the next bit”, but gain information on several

bits in parallel
Memory-restricted & unbiased BBC: Coding techniques

58

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Part 3: Learning from the Black-Box
 Reminder (part 1): If the black-box complexity is lower than what

current best RSH achieve, you should wonder if there are better RSH
for this problem!

 Example: OneMax

 Black-Box Complexity: Θ
୪୭	

 Standard EAs: Ωሺ݊	log	݊ሻ

>> What does an optimal black-box algorithm do that EAs do not?

59 Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Learning from the Black-Box (cont.)
 What does an optimal black-box algorithm do that EAs do not?

 ܱ
୪୭	

algorithm: samples uniformly at random

 ܱሺ݊ሻ algorithm: flip one bit in each step

60

1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1

5

4

1 0 1 1 1 1 1 1 1 6

1 0 1 1 0 1 1 0 1 9

...

637

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Learning from the Black-Box (cont.)
 What does an optimal black-box algorithm do that the EAs do not?

 ܱ
୪୭	

algorithm: samples uniformly at random

 ܱሺ݊ሻ algorithm: flip one bit in each step
>> Both algorithms learn also from search points of lower fitness

 EAs usually do not: search points of lower fitness are often...
 ...discarded immediately (elitist selection)
 ...kept only with the hope that after a while they can improve and

lead to an optimal solution in a different area of attraction

61 Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

A Class of New GAs
Exploit inferior search points in a simple manner: ሺ1 ,ߣ ߣ ሻ GA
1. Sample ݔ u.a.r.
2. for t=1,2,3,... do

Mutation phase:
i. Sample ℓ from ࣜ ݊, ;
ii. for ݅ ൌ 1,… , ߣ do: Sample ݔ from ݔ by flipping ℓ bits
iii. Choose ݔ with ݂ ݔ ൌ 	max	 ݂ ଵݔ , … , ݂ ఒݔ u.a.r.

Crossover phase:
i. for ݅ ൌ 1,… , ߣ do: Sample ݕ from ݔ, ݔ by crossover
ii. Choose ݕ with ݂ ݕ ൌ 	max	 ݂ ଵݕ , … , ݂ ఒݕ u.a.r.

Selection phase:
i. if ݂ሺݕሻ ݂ሺݔሻ then ݔ ← ݕ

62

E.g., ൌ ݇/݊ and ݇ 2
Created offspring typically
inferior to parent ݔ

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Results for the ሺ1 ,ߣ ߣ ሻ GAs
 Best results for ߣ ൌ ݇ ൌ Θሺ log	݊	ሻ: runtime is ܱሺ݊ log	݊)

>> first time a GA with an asymptotic gain over standard EAs is
proven for OneMax

 General bound: ܱ ଵ

 ଵ

ఒ
݊	log	݊ ݇ ߣ ݊

>> improvement over “classic” Θሺ݊	log	݊ሻ bound for quite a range of
different values for ݇ and ߣ

 Adaptive choice: For ߣ ൌ ݇ ൌ max ୬
୬ିሺ୶ሻ

, 2 : runtime is ܱሺ݊ሻ

 self-adaptive choice (1/5th rule): works well in experiments

 More details: DW’13 (last year’s GA track best paper award)

63 Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Final Summary

64

 Black-box complexity: Expected number of fitness evaluations the best
black-box algorithm needs to query the optimum of the hardest instance.
 minA maxI T(A,I)
 Note: lower bound on the performance of any EA, ACO, …

 Strongly related to guessing games
 BBC(OneMax) ≈ Mastermind
 BBC(LeadingOnes) ≈ what you should play in the next tutorial

[download the game from http://www.mpi-inf.mpg.de/~winzen/LeadingOnesGame.html]

 Interplay between runtime analysis and BBC theory may lead to new
algorithms
 analogous to research in classic algorithms Thanks!

638

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Some Open Problems

65

 Mastermind, BBC(OneMax):
 2 colors: determine the leading constant [very difficult, posed already in

the Erdős-Rényi paper]
 n colors: Is our O(n loglog n) bound tight? [difficulty unclear, possibly

easy and we just overlooked the right idea]
 memory-restricted BBC:

 say something on the leading constants [possibly easy]
 say something for non-constant k [possibly easy, start with k < n1-ε]

 Mastermind with faulty answers? [possibly easy, so far only one result
by Huang, Chen, Lin (2006)]

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Some Open Problems

66

 Unbiased black-box complexity:
 Lower bounds for the k-ary unbiased BBCs of OneMax, e.g., Ω(n) for

k=2 [difficulty unclear, best upper bounds DW’12]
 Improved bounds for the k-ary BBCs of LeadingOnes [best known

results in FOGA’11, potentially ideas from the AADLMW-result can be
used?]

 Ranking-based black-box complexity: Prove that the ranking-based BBC of
partition is much higher than the unrestricted one [maybe very hard]

 Memory-restricted black-box complexities: Give examples of problems
having a higher BBC with memory restriction than without [my guess:
should be easy and we were just unlucky that OneMax is not such an
example]

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Some Open Problems

67

 Other black-box models
 Find a black-box model that capture most RSHs, but avoids some of

the unrealistic low complexities of previous models.
 Models for particular algorithms classes: ACO, EDA, EMO, …

 Black-box complexities for combinatorial optimization problems
 Improve some of the non-tight bounds in DKLW’11 [since this is the

first and only paper on this topic, at least some improvements shouldn’t
be too difficult]

 Regard other CO problems than shortest paths and minimum spanning
trees.

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Appendix

68

639

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind 69 Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind 70

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind 71 Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind 72

640

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind 73 Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind 74

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind 75 Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind 76

641

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind 77 Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind 78

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind 79 Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind 80

642

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind 81 Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind 82

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind 83 Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind 84

643

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind 85 Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind 86

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind 87 Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind 88

644

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind 89 Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind 90

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind 91 Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind 92

645

