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Objectives of the Tutorial
 This is a tutorial on black-box complexity. This is currently one of the very 

hot and active topics in the theory of randomized search heuristics.

 We shall try our best to…
 tell you on an elementary level what black-box complexity is and how it 

shapes our understanding of randomized search heuristics
 give an in-depth coverage of some of what happened in the last three 

years
 show you why this also is a fun topic

 Don’t hesitate to ask questions when they come up!

 Finally: We are happy to receive feed-back on this tutorial (email, coffee 
breaks, receptions, …)

4
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Agenda
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 Part 1: Introduction to black-box complexity (BBC)
 Motivation: complexity theory for randomized search heuristics (RSH)
 Definition of BBC
 Four benefits

 Part 2: Tools and techniques (in the language of guessing games)
 From black-box to guessing games
 A general lower bound
 How to play Mastermind
 A new game

 Part 3: From BBC to new algorithms

 Summary, open problems, [appendix]
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Timeline
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Part 1: Intro to Black-Box Complexity
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 Why a complexity theory for RSH?
 Understand problem difficulty!

 How? 
 Black-box complexity!

 What can we do with that?
 General lower bounds
 understand the working principles of EAs
 thorn in the flesh

 [Different notions of black-box complexity]
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Why a Complexity Theory for RSH?

8

 Understand problem difficulty!
 Randomized search heuristics (RSH) like evolutionary algorithms, 

genetic algorithms, ant colony optimization, simulated annealing, … 
are very successful for a variety of problems.

 Little general advice which problems are suitable for such general 
methods

 Solution: Complexity theory for RSH

 Take a similar successful route as classic CS!
 Algorithmics: Design good algorithms and analyze their performance
 Complexity theory: Show that certain things are just not possible
 The interplay between the two areas provoked many cool results
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Algorithms vs. Complexity Theory 
for RSHs – An Example

 Bottom line: Spanning tree is easy for RSHs, the Needle problem not.

9

Algorithm Analysis: Prove how 
a certain algorithm solves a 
particular problem.

The (1+1) EA finds a minimum 
spanning tree with an expected 
number of O(m2 log(m wmax)) 
fitness evaluations. 

Complexity Theory: What can 
the best possible algorithm for 
this problem do or not.

No RSH can solve the Needle 
problem in an expected number 
of less than (2n+1)/2 fitness 
evaluations.
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Reminder: Classic Complexity Theory
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 General approach: Complexity (difficulty) of a problem := Performance of 
the best algorithm on the hardest problem instance

 Example: “Sorting n numbers needs Θ(n log(n)) pair-wise comparisons.”
 Problem: “Sorting an array of n numbers”
 Instance (input to algorithm): An (unsorted) array of n numbers
 Algorithms: All that run on a Turing machine
 Performance (cost) measure: Number of pair-wise comparisons

 T(A,I) = number of comparisons performed when algorithm A runs 
on instance I

 Theorem: “Complexity of sorting = minA maxI T(A,I) = Θ(n log(n)).”

 How does this work for RSH?
 Algorithms = RSHs, Performance = number of fitness evaluations, …
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 Algorithms: Randomized search heuristics (RSH)
 may generate solutions and query their fitness
 no explicit access to the problem description
  black-box optimization algorithm

Complexity Theory for RSH

11

ESEA GA ACO SI

Evolutionary Computation [Ken de Jong]

Nature-inspired Computation RLS
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Complexity Theory for RSH

12

 Algorithms: Randomized search heuristics (RSH)
 may generate solutions and query their fitness
 no explicit access to the problem description
  black-box optimization algorithm

 Performance measure T(A,I) = expected number of fitness evaluations 
until algorithm A running on instance I queries an optimum of I

 Black-box complexity: Expected number of fitness evaluations the best 
black-box algorithm needs to query the optimum of the hardest instance.
 minA maxI T(A,I)

“How many search point have to be evaluated to find the optimum.”
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BBC: What Can We Do With It?
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 Black-box complexity: Expected number of fitness evaluations the best 
black-box algorithm needs to query the optimum of the hardest instance.
 minA maxI T(A,I)

 4 benefits:
 Measure for problem difficulty [that’s how we designed the definition]
 universal lower bounds 
 understand the working principles of EAs 
 a thorn in the flesh  &  a route to better algorithms 
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BBC: Universal Lower Bounds
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 Black-box complexity: Expected number of fitness evaluations the best 
black-box algorithm needs to query the optimum of the hardest instance.
 minA maxI T(A,I)

 Follows right from the definition: The black-box complexity is a lower bound 
on the performance of any RSH!
 BBC := minA maxI T(A,I) ≤ maxI T(B,I) = performance of B

 Example: 
 Theorem [DJTW’02]: The black-box complexity of the needle function 

class is (2n+1)/2.
 Consequence: No RSH can solve the needle problem in sub-

exponential time.
 One simple proof replaces several proofs for particular RSH 
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BBC: A Thorn in the Flesh
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 If the black-box complexity is lower than what current best RSH achieve, 
you should wonder if there are better RSH for this problem!

 Example: OneMax functions
 for all “bit-strings” z ∈ {0,1}n let

fz: {0,1}n → {0,…,n}; x ↦ “number of positions in which x and z agree”
 all fz have a fitness landscape equivalent to the classic OneMax

function (counting the number of ones in a bit-string).
 Theorem: The black-box complexity of the class of all OneMax

functions is Θ(n / log(n)).
 But: All standard RSH need at least Ω(n log(n)) time!
 Are there better natural RSH that we overlooked?

 Same motive as in classical theory: n x n matrix multiplication can be done 
in time O(n 2.3727), only lower bound is Ω(n 2). 

First answer: 
Part 3 of this 

tutorial 
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BBC: Understand Working Principles
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 Unbiased unary black-box complexity:
minA maxI T(A,I),

where as A we only regard unbiased algorithms using unary variation
 unary (mutation-based): one parent gives one offspring
 unbiased:

 all bit-positions are treated equally
 symmetry in the bit-values 0 and 1.

 Theorem [LW’10]: The unbiased unary BBC of OneMax is Ω(n log n).

 “Insight”: The reason for many simple RSH needing Ω(n log n) iterations is 
that they are unbiased.
 price for being unbiased is most Θ(log n)2

 fair price for having not relying on problem-specific knowledge 
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Digression: Alternative BBC Models
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 Previous slide: 
 restricted BBC models help understanding particular features of EA
 different view: restricted BBC models might better capture the problem 

difficulty in evolutionary computation

 Next x slides: Discuss alternative black-box models
 very active research area in the last 3 years
 no definitive answer

 Common theme: Instead of allowing all black-box optimization algorithms, 
only regard a restricted class!
 restricted class should include most classic RSH

begin digression
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Alternative 1: Unbiased BBC
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 Lehre&Witt (GECCO’10 theory track best paper award): 
 allow only unbiased variation operators: treat all bit-positions (1, …, n) 

and the two bit-values (0, 1) equally!
 equivalent: if σ is an automorphism of the hypercube, then the 

probability that y is an offspring of x1, …, xk must be equal to the 
probability that σ(y) is an offspring of σ(x1), … σ(xk)

 Observation: Most RSH are unbiased 
 exception: one-point crossover

 Result: The unbiased, mutation-only BBC of OneMax is Θ(n log(n))
 as observed for random local search, (1+1) EA, …

 Anti-result [DKW’11]: Also the TRAPk function has an unbiased, mutation-
only BBC of Θ(n log(n)).
 contrasts the Ω(n k) performance of all classic RSH

 Interesting [DJKLW’11]: Unbiased 2-ary BBC of OneMax: O(n).

Crossover helps?

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Alternative 2: Ranking-Based BBC
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 DW’11, following a suggestion by Niko Hansen (similar ideas in a paper by 
Olivier Teytaud): ranking-based
 do not regard the absolute fitness values, but make all decisions 

dependent only on how fitnesses of search points compare!
 Observation: Many RSH follow this scheme

 exception: fitness-proportionate selection
 Bad news: OneMax has a ranking-based BBC of Θ(n / log(n))  
 Good news: For BinaryValue…

 BBC: log(n)
 ranking-based BBC: Ω(n)
 many RSH: Θ(n log n)

 Open problem: Partition…
 BBC: O(n), heavily exploits absolute fitness values
 Ranking-based: Maybe exponential?
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Alternative 3: Memory-Restricted BBC

20

 Droste, Jansen, Wegener (Theor. Comput. Syst. 2006):
 suggest to restrict the memory: store only a fixed number of search 

points and their fitness
 inspired by bounded population size
 conjecture: with memory one, the BBC of OneMax becomes the 

desired Θ(n log(n))

 DW’12: Disprove conjecture.
 Even with memory one, the BBC of OneMax is Θ(n / log (n)).

[I’ll give some proof ideas in the second part of the tutorial]
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Summary Alternative BBC Models

21

 Different models:
 unrestricted (classic)
 unbiased: don’t exploit the encoding of solutions
 ranking-based: only compare fitnesses
 memory-restricted

 None is yet “the ultimate complexity notion” for RSH
 Big open problem…

 Each expanded our understanding
 what makes a problem hard
 what makes a RSH powerful

end digression
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Summary Part 1
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 Black-box complexity (BBC): “Minimum number of search points that have 
to be evaluated to find the optimum”
 Expected number of fitness evaluations the best black-box algorithm 

needs to query the optimum of the hardest instance.
 minA maxI T(A,I)

 Benefits:
 Measure of problem difficulty
 universal lower bounds
 understand the working principles of EAs
 thorn in the flesh  &  route to better algorithms
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Part 2: Tools and Techniques 
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Plan for the 2nd part of this tutorial:

 Explain, why BBC and guessing games are almost the same

 Use the language of guessing games to demonstrate some techniques
 Random guessing: 

 The BBC of OneMax or “how to play Mastermind with two colors?”
 A simple “information theoretic” lower bound
 Clever random guessing: 

 Mastermind with n colors
 Memory-restricted BBC of OneMax = Mastermind with 2 rows
 The LeadingOnes game
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A Formal Definition of BBC

24

 Optimization problem: A set F of functions f: {0,1}n → ℝ
 Aim is to find the maximum of a given f ∈ F.
 Language: 

 An f ∈ F is called an “instance of F”
 {0,1}n “search space”
 x ∈ {0,1}n “search point”

 Example “Maximum Clique”: For each graph G on the vertex set 
{1,…,n}, fG(x) is the size of the vertex set represented by x, if this is a 
clique in G, and 0 otherwise. F := {fG | G a graph with vertices 1,…,n}.

 A black-box algorithm for F : A randomized algorithm that finds the 
maximum of any f ∈ F by asking f-values of search points only (no explicit 
access to the instance f, e.g., the graph G in the clique example).
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A Formal Definition of BBC

25

 A black-box algorithm for F : A randomized algorithm A that finds the 
maximum of any f ∈ F by asking f-values of search points only.

 Performance T(A,f) of A for f ∈ F : Expected time until an x with f(x) = 
OPT(f) is queried

 Performance T(A,F) of A on F: maxf ∈ F T(A,f)
 BBC of F: minA T(A,F), where A runs over all black-box algorithms for F

Search 
Heuristic

Black-Box = 
“Oracle”

x1

f(x1) f

Black-Box 
Algorithm

A

[knows  the 
problem F]

x2

f(x2)

f ∈ F
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From BBC to Guessing Games

26

 Guessing game: 
 BlackBox chooses a hidden f ∈ F .
 Algo tries to guess an x with f(x) maximal
 For each incorrect guess, BlackBox tells f(x) to Algo

 Optimal strategy for Algo = optimal black-box algorithm
 Optimal strategy for black-box = “most difficult” f ∈ F
 Optimal number of rounds in the game = BBC(F)

Search 
Heuristic

Black-Box

x1

f(x1) fAlgo

x2

f(x2)

f ∈ F
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Classic Guessing Game: Mastermind

 2-player game
 CodeMaker hides a 4-digit 6-color code C.
 CodeBreaker tries to guess it using few 

guesses

 Guess: Some color code G

 Answer: 
 Number of positions in which C and G

agree (“black answer-pegs” [here: red])
 Number of additional code letters that occur in a 

wrong position (“white pegs”)

27

n k
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2-Color Mastermind = BBC(OneMax)

28

 OneMax test function: f: {0,1}n → {0,…,n}; x ↦ “number of ones in x”
 easy to find the unique global optimum (1,…,1).
 RLS, (1+1) EA, … do this in Θ(n log n) time.

 (Generalized) OneMax function, OneMax problem:
 For each z ∈ {0,1}n, let 

fz: {0,1}n → {0,…,n}; x ↦ “number of bits in which x and z agree”
 All fz have isomorphic fitness landscapes
 OneMax problem: F := {fz | z ∈ {0,1}n}, the set of all OneMax functions

 Observation: Mastermind with the two “colors” 0 and 1 corresponds to the 
black-box complexity BBC(F)
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Mastermind: 3 (?) Results

 Θ(n / log n) guesses sufficient&necessary for k = 2 (BBC of OneMax)
 Anil, Wiegand: “Black-box search by elimination of fitness functions”. 

Foundations of Genetic Algorithms (FOGA) (2009)
 lower bound from [DJW06]

 Θ(n log k / log n) for k ≤ n1- ε

 Chvátal: “Mastermind”. Combinatorica (1983)

 Θ(n / log n) for k = 2
 Erdős, Rényi: “On two problems in information theory”. Magyar Tud. 

Akad. Mat. Kutató Int. Közl (1963)
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Proof: Random Guessing

 CodeBreaker’s strategy: 
Guess Θ(n / log n) random codes. 
 Look at all answers. 
With high probability, no secret code other than the true one leads to 

these answers [elementary, straight-forward computation]

 Comments:
 Erdős probabilistic method at its best.
 Best possible (apart from constant factors hidden in Θ(…))
 Note: Non-adaptive strategy – questions do not depend on previous 

questions and answers.

30
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A General Lower Bound

31

 [Droste, Jansen, Wegener’06] Consider a guessing game such that
 there are s different secrets
 each query has at most k different answers (k ≥ 2).
 Then the expected number Q of queries necessary to find the secret is 

at least (log2(s) / log2 (k)) – 1 = logk(s) – 1.

 Information theoretic view: To encode the secret in binary, you need log2(s)
bits. Each answer can be encoded in log2(k) bits. If Q rounds suffice, Q
log2(k) bits could encode the secret. 1)

 Game-theoretic view: In the game tree, each node has at most k children. 
Hence at height Q, there are at most kQ nodes. If s is bigger, then at some 
nodes, more secrets are possible. 1)

1) Argument correct for deterministic strategies. For randomized
ones, in addition, Yao’s minimax principle is needed.
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Back to 2-Color Mastermind…

32

 Lower bound: (1 + o(1)) n / log2(n)
 Argument: 2n possible secrets, n +1 possible answers 
 general lower bound: log2 (2n) / log2 (n +1) = (1+o(1))n / log2 (n)

 Information theoretic view: “learn at most log2 (n) bits per question”

 Upper bound computed precisely: (2 + o(1)) n / log2 (n)
 Weaker by a factor of 2
 Reason (informal): Typically, a random question yields an answer 

between n /2 – Θ(√n) and n /2 + Θ(√n). 
 “learn log2 (Θ(√n)) ≈ (1/2) log2 (n) bits per question”
 game tree has relevant degree of only Θ(√n).

 Big open problem (already mentioned in the Erdős-Rényi paper): 
What is the correct bound? Can you ask better questions?
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Part 2: Tools and Techniques 

33

Plan for the 2nd part of this tutorial:

 Explain, why BBC and guessing games are almost the same

 Use the language of guessing games to demonstrate some techniques
 Random guessing: 

 The BBC of OneMax or “how to play Mastermind with two colors?”
 A simple “information theoretic” lower bound
 Clever random guessing: 

 Mastermind with n colors
 Memory-restricted BBC of OneMax = Mastermind with 2 rows
 The LeadingOnes game

we are here now

Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Mastermind for k = n
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 Best known lower bound: Ω(n)
 Information theory: n n secrets, each query has ≤ n+1 answers

 Best known upper bounds: O(n log(n))
 Chvátal (Combinatorica’83): 2n log(n)  + 4n
 Chen, Cunha, Homer (COCOON’96): 2n log(n)  + 2n + 3
 Goodrich (IPL’09): n log(n) +3n – 1 
 [Random guessing takes Θ(n log(n)) guesses.]

 What is your guess?
 [Problem open for 30 years, so no reason to be shy]
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Plan: Clever Random Guessing
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 Random guessing takes Θ(n log(n)) guesses.

 Informal justification: 
 The expected answer to a random question is 1.
 “learn only a constant number of bits per question”.
 Information theory: log(n n)/log(constant) = n log(n) questions

 Can we ask better questions?
 Info-theory: We need to “learn more bits per question”
 Problem: For the first question, the expected answer is 1, no matter 

what we ask ( learn constant number of bits )
 If something works, it must be adaptive: Current question uses 

previous answers!
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Reducing the Number of Colors

36

 Observation 1: Reducing the numbers of colors would help
 Chvátal+: For k ≤ n colors, O(n log(k) / log(n/k)) random guesses 

suffice to find the secret code
 Intuition: s = kn, a random guess has an expected answer of λ = 

n/k, this and the ≈ λ1/2 adjancent answers show up with roughly 
equal probability  learn log(λ1/2) = Θ(log(λ)) bits

 Note: For k = n/λ, this is O(n log(n) / log(λ))
 any λ = ω(1) would improve 

 Observation 2: Reducing the number of colors is possible
 for k = n colors, the probability that a random guess gets a 

“0”-answer, is (1 – (1/n))n ≈ 1/e ≈ 0.37
 Such a 0-guess tell us, for each position, one color that cannot be 

there
 essentially reduced the number of colors by one 

631



Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Details: Reducing the Number of Colors

37

 For k colors and n positions, the probability that a random guess is 
answered “0”, is (1 – (1/k))n ≥ 4-n /k.

 Reducing the number of colors from n to 4n / loglog(n) takes time at most
n 4-n /(4n / loglog(n)) = n (log n)1/2.

 Chvátal+: With only k = 4n / loglog(n) colors possible at each position, 
random guessing needs O(n log(n) / logloglog(n)) queries.
 Intuition: “learn Θ(logloglog(n)) bits per query”

 First “Theorem”: O(n log(n) / logloglog(n)) questions suffice!
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Quickly Reducing the Colors

38

Reducing the number of colors from k to k-1:

 so far: get a “0”-answer after at most 4n /k random guesses
 Example: k = n /100.

• Random guess has an expected answer of 100.
• Time to wait for a “0” is (1+o(1)) e100.
• Waiting for something quite rare 

 better: Partition the n positions into 100 blocks of equal size n /100 and ask 
randomly in each block (fill up the rest with dummy colors)
• expected contribution per block: 1
• waiting time for a “0” in a block: constant
• total time: 100 times constant
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Details: Quick Color Reduction

39

 Improved reducing the number of colors from k to k -1:
• Assume that for each position we have a dummy color that for sure 

does not appear there [can, e.g., be found in O(n) time]
• Partition the n positions into n/k blocks of roughly equal size.
• For each block do

• repeat

• ask random colors in the block, put a dummy color in 

the rest

• until answer = 0

• expected waiting time for “answer = 0”: at most 4
• total expected number of queries: at most 4 n/k [previously: 4n /k] 

 Total time to reduce the number of colors from k to k /2:
• at most (k /2) 4 n / (k /2) = 4n
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Details (2): Quick Color Reduction

40

 Just proved: 
You can reduce the number of colors from k to k /2 colors in 4n queries

 Goodrich (2009): log(n) times halving the colors finds the secret code in 
O(n log n) questions [apart from constants, the same bound as Chvátal] 

 DSTW’12: Reduce colors, then random guessing
 Do the halving trick √log n times [O(n √log n) queries]
 k = n / 2√log n colors possible at each position

 Random guesses: O(n log(k) / log(n/k)) = O(n √log n) random guesses 
using only these k colors find the secret
 “learn log(2√log n) = √log n bits per question”

 Theorem: Solve Mastermind with k =n colors in O(n √log n) questions 
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Ultra-Quick Color Reduction 

41

 So far: 
 Reducing colors allows better queries 
 from k to k-1 colors in n/k queries

 color reduction queries: constant info gain (exp. answer = 1)
 random query: expected answer n/k, info gain Θ(log(n/k))
 Pay for asking “color reduction queries” 

 Solution [DSTW’13]: Ask questions that 
(i)  reduce the number of colors, and 
(ii) tell us Θ(log(n/k)) bits of information on the secret.
 “k k-1” in O((n/k) / log(n/k)) queries instead of O(n/k).
 “k k/2” in O(n / log(n/k)) queries instead of O(n).
 “n n/2i” in O(n log(i)) queries instead of O(n i)! [harmonic series]
 i=log(n): Find the secret code in O(n loglog(n)) queries .
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Here is How We Do This:

42

 Again: 
 Assume that we have a dummy color for each position.
 k colors, n positions, λ = n / k expected answer of random guess.

 Find a guess G with answer at most 2λ [expected constant time].

 Partition the positions into 4λ blocks of equal size
 half of them contain no correct code letter (“empty block”)

 Plan: Identify these with  Θ(λ / log λ) queries [next slide]
 reduces the number of possible colors for n/2 positions
 some Chernoff bounds: This is sufficient...
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Indentifying Empty Blocks
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 Situation:
 a guess G with answer at most 2λ.
 4λ blocks, at least half of them empty. 

 Query “dummy out random blocks”: For each block independently do
 with prob. ½: copy the block from G
 with prob. ½: fill the block with dummy colors

 Analysis: 
 Expected answer: λ “learn Θ(log λ) bits”
 Some calculations: Θ(λ / log λ) queries suffice to detect the empty 

blocks.

 Done  More details: SODA’13  or  http://arxiv.org/abs/1207.0773
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Method: Clever Random Guessing
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 Needed: Ask increasingly powerful queries (adaptive)
 first query reveals only constant amount of info

 Generally good idea: randomized queries
 “fooling the adversary”: impossible to find a good secret for CodeMaker

 3 increasingly powerful ways to mix cleverness and randomness
 random queries composed of possible colors (and wait for “0”)
 random blocks, rest dummy colors: quicker to get a “0”
 “dummy out random blocks”: don’t wait for a zero, but learn “zeros” 

from these more expressive queries

 Next: Two examples from true black-box complexity
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A Second Example of “Clever Guessing”

45

 Problem: Memory-restricted BBC of OneMax
 Memory-restriction: From one iteration to the next, the BB-algorithm 

may only store k search points together with their fitness.
 Conjecture [Droste, Jansen, Wegener’06]: For k = 1, the BBC of 

OneMax is Θ(n log n) as known from the (1+1) EA.

 Transfer to guessing games:
 This BBC problem is equivalent to Mastermind with two rows only.

 Theorem [DW’12]: You can win 2-row Mastermind with O(n / log n) 
queries.

 Corollary: The memory-one BBC of OneMax is Θ(n / log n).
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Details: Two Rows Suffice!

 Result: On a board with two rows, 
you can still find the secret code 
with O(n / log n) guesses! 

 Precise rules: 
We start the game with an empty board
 If there is an empty row, CodeBreaker can enter a guess, which will be 

answered by CodeMaker
 If there is no empty row, CodeBreaker must empty one of the two rows 

and forget the content.

 Theorem: CodeBreaker has a strategy that
 finds the secret code in O(n / log n) rounds
 uses two rows only (all actions depend solely on these rows).

46
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Fewer Rows: Proof Ideas

 Original Mastermind: Guess Θ(n / log n) random codes. Store all guesses 
and answers on the board. Think.
 Needs Θ(n / log n) rows.

 3 ingredients of our proof:
 Find parts of the code: Determine Θ(nε) code letters with Θ(nε / log n) 

relatively random guesses (ε constant)
Do this n1- ε times: find the code with Θ(nε / log n) rows.

 Determine such a part with constant number of rows
Do this n1- ε times: find the code with Θ(1) rows.

 Do everything in two rows
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Proof Idea (1): Find Parts of the Code

 Lemma: 
Let B ⊆ [n], |B| = nε. “part”
Let G1, G2, … be Θ(nε / log n) guesses such that

Gi is random in positions in B
All Gi are equal in positions in [n] \ B

Then with high probability these guesses and answers determine the 
secret code in B.

 Argument:
 Basically, we play the game in B (and use the previous proof)
Only difficulty: The answers we get “are not for B only”, but for the 

whole guess
Same deviation for all guesses

 Some maths: Not a problem, guesses also determine deviation 
48
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Proof Idea (2): Same with O(1) Rows

 Plan: Simulate the previous slide in O(1) rows
 Example: Find the first L = Θ(nε) code letters

 B1 := L random letters.
 Guess B1 1…1 in row 1 and learn answer A1.
 Guess B1 A1 1….1 in row 2 and ignore answer
 B2 := L random letters
 Guess B2 1…1 in row 1 and learn answer A2

 Guess B1 A1 B2 A2 1…1 in row 3 and ignore answer
 …

 As before: Θ(L / log L) guesses determine the code in the block
 New: The whole search history of Θ(L / log L) guesses and answers can 

be stored in one row
 Needs 3 rows: “Old storage + new guess  new storage”
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“A1”: Suitably encoded 
with O(log n) of letters
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Proof Idea (3): Two Rows Only

 Difficulty:
 To enter a new guess, one of the two rows must be emptied
 You must store and guess in the same row

Problem: Storage influences CodeMaker’s answers!
 All control information must also be stored in this one row

what is the block I’m just optimizing?
what am I currently doing (guessing, storing, finding the unique 

solution, finding the last few letters in a different way…)

 Solution:
 technical.
 read the paper at STACS’12 or  arxiv.org/abs/1110.3619.

50
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Summary: Memory-BBC of OneMax

 Result: The complexity of Mastermind remains at Θ(n / log n) guesses 
even if we allow only two rows.
 Key proof argument: Clever guesses inspired by random guesses

 Open problems / future work:
Our proof works for any constant number of colors – what happens for 

larger numbers of colors?
 constant factors: “what’s hidden in the Θ(…)” 

does a memory restriction lose us a constant factor?
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Finally: A New Guessing Game
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 So far: BBC is strongly related to guessing games
 In particular: BBC(OneMax) ≈ Mastermind
 Therefore: Use fun games to solve BBC problems

 Now [next few slides]: Use BBC problems to derive a fun games 
 LeadingOnes Game
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LeadingOnes Test Functions
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 Classic test function:
 LeadingOnes: {0,1}n → {0,…,n}; x ↦ max{i ∈ {0,…,n} | x1 = … = xi = 1}

 “how many bits counted from the left are one”
 Unique optimum (1,…,1)
 “Harder than OneMax”: Each non-optimal solution has only one 

superior Hamming neighbor

 LeadingOnes function class LOn: 
 Let σ be a permutation of {1,…,n}
 Let z ∈ {0,1}n (“target string”)
 fzσ : {0,1}n → {0,…,n}; x ↦ max{i ∈ {0,…,n} | xσ(1) = zσ(1), …, xσ(i) = zσ(i)}

 “how many bits, counted in the order of σ, are as in z
 same fitness landscape as LeadingOnes
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The LeadingOnes Game
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Transfer the BBC(LOn) problem into a guessing game:

 CodeMaker: Picks a secret code z and a secret permutation σ

 Round:
 CodeBreaker guesses a bit-string x ∈ {0,1}n
 CodeMaker’s answer: fzσ(x) = “how many code letters in the order of σ 

are correct?”

 Main message of this slide: This is fun to play with n=5 or n=6! 
 try it during the next talks ;-) 

 Next few slides: The theory is fun as well…
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Black-Box Complexity of LeadingOnes

 Reminder: LOn consists of all functions
 fzσ : {0,1}n → {0,…,n}; x ↦ max{i ∈ {0,…,n} | xσ(1) = zσ(1), …, xσ(i) = zσ(i)}

 Black-box complexity of LOn, lower bound [Droste, Jansen, Wegener’06]
 Ω(n), because you need Θ(n) fitness evaluations even if σ = id

 Black-box complexity of LOn, upper bounds
 O(n2), run-time of RLS, (1+1) EA, …
 O(n log(n)): determine “the next bit” with log(n) queries by simulating 

binary search (flip half of the potential bit positions…)
Information theoretic view:

 “next bit”-position is a number in {1,…,n}, coding length log(n)
 a typical query teaches you a constant amount of information

(fitness increases by a small constant or not)
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BBC(LeadingOnes), cool upper bounds

 DW’11: O(n log(n) / loglog(n)) is enough.
 “learn average of loglog(n) bits per guess”

 AADLMW’13: O(n loglog(n)) is enough, but also necessary
 “learn avg. log(n)/loglog(n) bits per guess”
 first “really deep” lower bound proof on BBCs
 http://eccc.hpi-web.de/report/2012/087/

 Next slide: Key argument of the O(n log(n) / loglog(n)) proof
 how to learn more than constant information

56
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Proving O(n log(n) / loglog(n)): Outline

 Assume that you have a solution x with fzσ(x) = k and you know which k bit-
positions are responsible for this. Denote by I the remaining bit-positions. Let 
L := log(n)1/2 

 Step 1: Use L2 = log(n) iterations to find a y with fzσ(y) = k + L
 Flip the bits in I with probability 1/L, accept if improvement
 Note: We don’t learn which L bit-positions lead to the improvement!!!

 Step 2: Use log(n)3/2 / loglog(n) queries to determine the L bit-positions
 In y, flip the I-bits with probability 1/L. Do so log(n)3/2 / loglog(n)  times.
 Look at all outcomes with fitness k+j and find out bit number k+j+1.
 With high probability, the log(n)3/2 / loglog(n)  samples suffice to learn all L

bit-positions

 Step 1+2: log(n)3/2 / loglog(n) fitness evaluations to gain log(n)1/2 bits…
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Summary Techniques

 Black-Box Complexity ≈ guessing games
 eases the language, increases the fun

 Information theoretic bound
 BBC ≳ log(|SearchSpace|) / log(|fitness_values|)

 Random guessing
 often: BBC ≲ log(|SearchSpace|) / log(|typical_answers|)

 Clever guessing: Increase the information gain!
Mastermind: Reduce number of colors  increase |typical_answers|
 LeadingOnes: Don’t learn “the next bit”, but gain information on several 

bits in parallel
Memory-restricted & unbiased BBC: Coding techniques  

58
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Part 3: Learning from the Black-Box 
 Reminder (part 1): If the black-box complexity is lower than what 

current best RSH achieve, you should wonder if there are better RSH 
for this problem!

 Example: OneMax

 Black-Box Complexity: Θ 
୪୭	

 Standard EAs: Ωሺ݊	log	݊ሻ

>> What does an optimal black-box algorithm do that EAs do not?
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Learning from the Black-Box (cont.)
 What does an optimal black-box algorithm do that EAs do not?

 ܱ 
୪୭	

algorithm: samples uniformly at random

 ܱሺ݊ሻ algorithm: flip one bit in each step

60

1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1

5

4

1 0 1 1 1 1 1 1 1 6

1 0 1 1 0 1 1 0 1 9

...
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Learning from the Black-Box (cont.)
 What does an optimal black-box algorithm do that the EAs do not?

 ܱ 
୪୭	

algorithm: samples uniformly at random

 ܱሺ݊ሻ algorithm: flip one bit in each step
>> Both algorithms learn also from search points of lower fitness

 EAs usually do not: search points of lower fitness are often...
 ...discarded immediately (elitist selection)
 ...kept only with the hope that after a while they can improve and 

lead to an optimal solution in a different area of attraction
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A Class of New GAs
Exploit inferior search points in a simple manner: ሺ1  ,ߣ ߣ ሻ GA
1. Sample ݔ u.a.r.
2. for t=1,2,3,... do

Mutation phase:
i. Sample ℓ from ࣜ ݊,  ;
ii. for ݅ ൌ 1,… , ߣ do: Sample ݔ from ݔ by flipping ℓ bits
iii. Choose ݔ with ݂ ݔ ൌ 	max	 ݂ ଵݔ , … , ݂ ఒݔ u.a.r.

Crossover phase:
i. for ݅ ൌ 1,… , ߣ do: Sample ݕ from ݔ, ݔ by crossover
ii. Choose ݕ with ݂ ݕ ൌ 	max	 ݂ ଵݕ , … , ݂ ఒݕ u.a.r.

Selection phase:
i. if ݂ሺݕሻ  ݂ሺݔሻ then ݔ ← ݕ

62

E.g.,  ൌ ݇/݊ and ݇  2
Created offspring typically 
inferior to parent ݔ
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Results for the ሺ1  ,ߣ ߣ ሻ GAs
 Best results for ߣ ൌ ݇ ൌ Θሺ log	݊	ሻ: runtime is ܱሺ݊ log	݊	)

>> first time a GA with an asymptotic gain over standard EAs is 
proven for OneMax

 General bound: ܱ ଵ

 ଵ

ఒ
݊	log	݊  ݇  ߣ ݊

>> improvement over “classic” Θሺ݊	log	݊ሻ bound for quite a range of 
different values for ݇ and ߣ

 Adaptive choice: For ߣ ൌ ݇ ൌ max ୬
୬ିሺ୶ሻ

, 2 : runtime is ܱሺ݊ሻ

 self-adaptive choice (1/5th rule): works well in experiments

 More details: DW’13 (last year’s GA track best paper award)

63 Benjamin Doerr and Carola Doerr: Black-Box Complexity & Mastermind

Final Summary 
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 Black-box complexity: Expected number of fitness evaluations the best 
black-box algorithm needs to query the optimum of the hardest instance.
 minA maxI T(A,I)
 Note: lower bound on the performance of any EA, ACO, …

 Strongly related to guessing games
 BBC(OneMax) ≈ Mastermind
 BBC(LeadingOnes) ≈ what you should play in the next tutorial 

[download the game from http://www.mpi-inf.mpg.de/~winzen/LeadingOnesGame.html]

 Interplay between runtime analysis and BBC theory may lead to new 
algorithms
 analogous to research in classic algorithms Thanks!
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Some Open Problems
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 Mastermind, BBC(OneMax):
 2 colors: determine the leading constant [very difficult, posed already in 

the Erdős-Rényi paper]
 n colors: Is our O(n loglog n) bound tight? [difficulty unclear, possibly 

easy and we just overlooked the right idea]
 memory-restricted BBC: 

 say something on the leading constants [possibly easy]
 say something for non-constant k [possibly easy, start with k < n1-ε ]

 Mastermind with faulty answers? [possibly easy, so far only one result 
by Huang, Chen, Lin (2006)]
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Some Open Problems
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 Unbiased black-box complexity:
 Lower bounds for the k-ary unbiased BBCs of OneMax, e.g., Ω(n) for 

k=2 [difficulty unclear, best upper bounds DW’12]
 Improved bounds for the k-ary BBCs of LeadingOnes [best known 

results in FOGA’11, potentially ideas from the AADLMW-result can be 
used? ]

 Ranking-based black-box complexity: Prove that the ranking-based BBC of 
partition is much higher than the unrestricted one [maybe very hard ]

 Memory-restricted black-box complexities: Give examples of problems 
having a higher BBC with memory restriction than without [my guess: 
should be easy and we were just unlucky that OneMax is not such an 
example]
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Some Open Problems
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 Other black-box models
 Find a black-box model that capture most RSHs, but avoids some of 

the unrealistic low complexities of previous models.
 Models for particular algorithms classes: ACO, EDA, EMO, …

 Black-box complexities for combinatorial optimization problems
 Improve some of the non-tight bounds in DKLW’11 [since this is the 

first and only paper on this topic, at least some improvements shouldn’t 
be too difficult]

 Regard other CO problems than shortest paths and minimum spanning 
trees.
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Appendix

68
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