
1/70

Bioinspired Computation in Combinatorial
Optimization – Algorithms and Their
Computational Complexity

Carsten Witt

Technical University of Denmark

www.compute.dtu.dk/˜cawi

Tutorial at GECCO 2014

Copyright is held by the author/owner(s).

GECCO’14 Companion, July 12–16, 2014, Vancouver, BC, Canada.

ACM 978-1-4503-2662-9/14/07.

Parts of the material used with kind permission by Frank Neumann.

Book available at www.bioinspiredcomputation.com

Carsten Witt Bioinspired Computation in Combinatorial Optimization 2/70

Permission to make digital or hard copies of part or all of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses,
contact the Owner/Author.

Copyright is held by the owner/author(s).
GECCO ’14, Jul 12–16 2014, Vancouver, BC, Canada
ACM 978-1-4503-2881-4/14/07.
http://dx.doi.org/10.1145/2598394.2605353

3/70

4/70

Evolutionary Algorithms and Other Search Heuristics

Most famous search heuristic: Evolutionary Algorithms (EAs)

a bio-inspired heuristic

paradigm: evolution in nature,
“survival of the fittest”

Initialization

Selection

Variation

Selection

Stop?

no

Carsten Witt Bioinspired Computation in Combinatorial Optimization

647

4/70

Evolutionary Algorithms and Other Search Heuristics

Most famous search heuristic: Evolutionary Algorithms (EAs)

a bio-inspired heuristic

paradigm: evolution in nature,
“survival of the fittest”

actually it’s only an algorithm, a
randomized search heuristic (RSH)

Initialization

Selection

Variation

Selection

Stop?

no

Carsten Witt Bioinspired Computation in Combinatorial Optimization

4/70

Evolutionary Algorithms and Other Search Heuristics

Most famous search heuristic: Evolutionary Algorithms (EAs)

a bio-inspired heuristic

paradigm: evolution in nature,
“survival of the fittest”

actually it’s only an algorithm, a
randomized search heuristic (RSH)

Initialization

Selection

Variation

Selection

Stop?

no

Goal: optimization

Here: discrete search spaces, combinatorial optimization, in
particular pseudo-boolean functions

Optimize f : {0, 1}n → R

Carsten Witt Bioinspired Computation in Combinatorial Optimization

5/70

Why Do We Consider Randomized Search Heuristics?

Not enough resources (time, money, knowledge)
for a tailored algorithm

Black Box Scenario
x f (x)

rules out problem-specific algorithms

We like the simplicity, robustness, . . .
of Randomized Search Heuristics

They are surprisingly successful.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

5/70

Why Do We Consider Randomized Search Heuristics?

Not enough resources (time, money, knowledge)
for a tailored algorithm

Black Box Scenario
x f (x)

rules out problem-specific algorithms

We like the simplicity, robustness, . . .
of Randomized Search Heuristics

They are surprisingly successful.

Point of view

Want a solid theory to understand how (and when) they work.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

648

6/70

What RSHs Do We Consider?

Theoretically considered RSHs

(1+1) EA

(1+λ) EA (offspring population)

(µ+1) EA (parent population)

(µ+1) GA (parent population and crossover)

GIGA (crossover)

SEMO, DEMO, FEMO, . . . (multi-objective)

Randomized Local Search (RLS)

Metropolis Algorithm/Simulated Annealing (MA/SA)

Ant Colony Optimization (ACO)

Particle Swarm Optimization (PSO)

. . .

First of all: define the simple ones

Carsten Witt Bioinspired Computation in Combinatorial Optimization

7/70

The Most Basic RSHs

(1+1) EA, RLS, MA and SA for maximization problems

(1+1) EA

1 Choose x0 ∈ {0, 1}n uniformly at random.
2 For t := 0, . . . ,∞

1 Create y by flipping each bit of xt indep. with probab. 1/n.
2 If f (y) ≥ f (xt) set xt+1 := y else xt+1 := xt .

Carsten Witt Bioinspired Computation in Combinatorial Optimization

7/70

The Most Basic RSHs

(1+1) EA, RLS, MA and SA for maximization problems

RLS

1 Choose x0 ∈ {0, 1}n uniformly at random.
2 For t := 0, . . . ,∞

1 Create y by flipping one bit of xt uniformly.
2 If f (y) ≥ f (xt) set xt+1 := y else xt+1 := xt .

Carsten Witt Bioinspired Computation in Combinatorial Optimization

7/70

The Most Basic RSHs

(1+1) EA, RLS, MA and SA for maximization problems

MA

1 Choose x0 ∈ {0, 1}n uniformly at random.
2 For t := 0, . . . ,∞

1 Create y by flipping one bit of xt uniformly.
2 If f (y) ≥ f (xt) set xt+1 := y

else xt+1 := y with probability e(f (xt)−f (y))/T anyway
and xt+1 := xt otherwise.

T is fixed over all iterations.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

649

7/70

The Most Basic RSHs

(1+1) EA, RLS, MA and SA for maximization problems

SA

1 Choose x0 ∈ {0, 1}n uniformly at random.
2 For t := 0, . . . ,∞

1 Create y by flipping one bit of xt uniformly.
2 If f (y) ≥ f (xt) set xt+1 := y

else xt+1 := y with probability e(f (xt)−f (y))/Tt anyway
and xt+1 := xt otherwise.

Tt is dependent on t, typically decreasing

Carsten Witt Bioinspired Computation in Combinatorial Optimization

8/70

What Kind of Theory Are We Interested in?

Not studied here: convergence, local progress, models of EAs (e. g.,
infinite populations), . . .

Treat RSHs as randomized algorithm!

Analyze their “runtime” (computational complexity)
on selected problems

Carsten Witt Bioinspired Computation in Combinatorial Optimization

8/70

What Kind of Theory Are We Interested in?

Not studied here: convergence, local progress, models of EAs (e. g.,
infinite populations), . . .

Treat RSHs as randomized algorithm!

Analyze their “runtime” (computational complexity)
on selected problems

Definition

Let RSH A optimize f . Each f -evaluation is counted as a time step. The
runtime TA,f of A is the random first point of time such that A has
sampled an optimal search point.

Often considered: expected runtime, distribution of TA,f

Asymptotical results w. r. t. n

Carsten Witt Bioinspired Computation in Combinatorial Optimization

9/70

How Do We Obtain Results?

We use (rarely in their pure form):

Coupon Collector’s Theorem

Principle of Deferred Decisions

Concentration inequalities:
Markov, Chebyshev, Chernoff, Hoeffding, . . . bounds

Markov chain theory: waiting times, first hitting times

Rapidly Mixing Markov Chains

Random Walks: Gambler’s Ruin, drift analysis (Wald’s equation),
martingale theory, electrical networks

Random graphs (esp. random trees)

Identifying typical events and failure events

Potential functions and amortized analysis

. . .

Carsten Witt Bioinspired Computation in Combinatorial Optimization

650

9/70

How Do We Obtain Results?

We use (rarely in their pure form):

Coupon Collector’s Theorem

Principle of Deferred Decisions

Concentration inequalities:
Markov, Chebyshev, Chernoff, Hoeffding, . . . bounds

Markov chain theory: waiting times, first hitting times

Rapidly Mixing Markov Chains

Random Walks: Gambler’s Ruin, drift analysis (Wald’s equation),
martingale theory, electrical networks

Random graphs (esp. random trees)

Identifying typical events and failure events

Potential functions and amortized analysis

. . .

Adapt tools from the analysis of randomized algorithms; understanding
the stochastic process is often the hardest task.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

10/70

Early Results

Analysis of RSHs already in the 1980s:

Sasaki/Hajek (1988): SA and Maximum Matchings

Sorkin (1991): SA vs. MA

Jerrum (1992): SA and Cliques

Jerrum/Sorkin (1993, 1998): SA/MA for Graph Bisection

. . .

High-quality results, but limited to SA/MA (nothing about EAs) and
hard to generalize.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

10/70

Early Results

Analysis of RSHs already in the 1980s:

Sasaki/Hajek (1988): SA and Maximum Matchings

Sorkin (1991): SA vs. MA

Jerrum (1992): SA and Cliques

Jerrum/Sorkin (1993, 1998): SA/MA for Graph Bisection

. . .

High-quality results, but limited to SA/MA (nothing about EAs) and
hard to generalize.

Since the early 1990s

Systematic approach for the analysis of RSHs,
building up a completely new research area

Carsten Witt Bioinspired Computation in Combinatorial Optimization

11/70

This Tutorial

1 The origins: example functions and toy problems
A simple toy problem: OneMax for (1+1) EA

2 Combinatorial optimization problems
Minimum spanning trees
Maximum matchings
Shortest paths
Makespan scheduling
SA beats MA in combinatorial optimization

3 End

Carsten Witt Bioinspired Computation in Combinatorial Optimization

651

12/70

How the Systematic Research Began — Toy Problems

Simple example functions (test functions)

OneMax(x1, . . . , xn) = x1 + · · ·+ xn

LeadingOnes(x1, . . . , xn) =
∑n

i=1

∏i
j=1 xj

BinVal(x1, . . . , xn) =
∑n

i=1 2
n−ixi

polynomials of fixed degree

Goal: derive first runtime bounds and methods

Carsten Witt Bioinspired Computation in Combinatorial Optimization

12/70

How the Systematic Research Began — Toy Problems

Simple example functions (test functions)

OneMax(x1, . . . , xn) = x1 + · · ·+ xn

LeadingOnes(x1, . . . , xn) =
∑n

i=1

∏i
j=1 xj

BinVal(x1, . . . , xn) =
∑n

i=1 2
n−ixi

polynomials of fixed degree

Goal: derive first runtime bounds and methods

Artificially designed functions

with sometimes really horrible definitions

but for the first time these allow rigorous statements

Goal: prove benefits and harm of RSH components,
e. g., crossover, mutation strength, population size . . .

Carsten Witt Bioinspired Computation in Combinatorial Optimization

13/70

Agenda

1 The origins: example functions and toy problems
A simple toy problem: OneMax for (1+1) EA

2 Combinatorial optimization problems
Minimum spanning trees
Maximum matchings
Shortest paths
Makespan scheduling
SA beats MA in combinatorial optimization

3 End

Carsten Witt Bioinspired Computation in Combinatorial Optimization

14/70

Example: OneMax

Theorem

The expected runtime of the RLS, (1+1) EA, (µ+1) EA, (1+λ) EA on
OneMax is Ω(n log n).

Proof by modifications of Coupon Collector’s Theorem.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

652

14/70

Example: OneMax

Theorem

The expected runtime of the RLS, (1+1) EA, (µ+1) EA, (1+λ) EA on
OneMax is Ω(n log n).

Proof by modifications of Coupon Collector’s Theorem.

Theorem

The expected runtime of RLS and the (1+1) EA on OneMax is
O(n log n).

Holds also for population-based (µ+1) EA and
for (1+λ) EA with small populations.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

15/70

Proof of the O(n log n) bound

Fitness levels: Li := {x ∈ {0, 1}n | OneMax(x) = i}

Carsten Witt Bioinspired Computation in Combinatorial Optimization

15/70

Proof of the O(n log n) bound

Fitness levels: Li := {x ∈ {0, 1}n | OneMax(x) = i}

(1+1) EA never decreases its current fitness level.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

15/70

Proof of the O(n log n) bound

Fitness levels: Li := {x ∈ {0, 1}n | OneMax(x) = i}

(1+1) EA never decreases its current fitness level.

From i to some higher-level set with prob. at least

(
n − i

1

)

︸ ︷︷ ︸

choose a 0-bit

·

(
1

n

)

︸ ︷︷ ︸

flip this bit

·

(

1−
1

n

)n−1

︸ ︷︷ ︸

keep the other bits

≥
n − i

en

Expected time to reach a higher-level set is at most en
n−i

.

Expected runtime is at most

n−1∑

i=0

en

n − i
= O(n log n). �

Carsten Witt Bioinspired Computation in Combinatorial Optimization

653

16/70

Later Results Using Toy Problems

Find the theoretically optimal mutation strength
(1/n for all linear functions!).

Bound the optimization time for linear functions (O(n log n)).

Monotone functions can be difficult.

Optimal population size (often 1!)

Crossover vs. no crossover → Real Royal Road Functions

Multistarts vs. populations

Frequent restarts vs. long runs

Dynamic schedules

. . .

Carsten Witt Bioinspired Computation in Combinatorial Optimization

17/70

RSHs for Combinatorial Optimization

Analysis of runtime and approximation quality on well-known
combinatorial optimization problems, e. g.,

sorting problems (is this an optimization problem?),
covering problems,
cutting problems,
subsequence problems,
traveling salesperson problem,
Eulerian cycles,
shortest path problems,
minimum spanning trees,
maximum matchings,
scheduling problems,
. . .

Carsten Witt Bioinspired Computation in Combinatorial Optimization

17/70

RSHs for Combinatorial Optimization

Analysis of runtime and approximation quality on well-known
combinatorial optimization problems, e. g.,

sorting problems (is this an optimization problem?),
covering problems,
cutting problems,
subsequence problems,
traveling salesperson problem,
Eulerian cycles,
shortest path problems,
minimum spanning trees,
maximum matchings,
scheduling problems,
. . .

We do not hope: to be better than the best problem-specific
algorithms

Carsten Witt Bioinspired Computation in Combinatorial Optimization

17/70

RSHs for Combinatorial Optimization

Analysis of runtime and approximation quality on well-known
combinatorial optimization problems, e. g.,

sorting problems (is this an optimization problem?),
covering problems,
cutting problems,
subsequence problems,
traveling salesperson problem,
Eulerian cycles,
shortest path problems,
minimum spanning trees,
maximum matchings,
scheduling problems,
. . .

We do not hope: to be better than the best problem-specific
algorithms

In the following no fine-tuning of the results

More details in the books (last slide)

Carsten Witt Bioinspired Computation in Combinatorial Optimization

654

18/70

Agenda

1 The origins: example functions and toy problems
A simple toy problem: OneMax for (1+1) EA

2 Combinatorial optimization problems
Minimum spanning trees
Maximum matchings
Shortest paths
Makespan scheduling
SA beats MA in combinatorial optimization

3 End

Carsten Witt Bioinspired Computation in Combinatorial Optimization

19/70

Minimum Spanning Trees

Problem

Given: Undirected connected graph G = (V ,E) with n vertices and m
edges with positive integer weights.
Find: Edge set E ′ ⊆ E with minimal weight connecting all vertices.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

19/70

Minimum Spanning Trees

Problem

Given: Undirected connected graph G = (V ,E) with n vertices and m
edges with positive integer weights.
Find: Edge set E ′ ⊆ E with minimal weight connecting all vertices.

Fitness function

One bit for each edge.

Decrease number of connected components, find minimum spanning tree:

f (s) := (c(s),w(s)).

Minimization of f with respect to the lexicographic order.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

19/70

Minimum Spanning Trees

Problem

Given: Undirected connected graph G = (V ,E) with n vertices and m
edges with positive integer weights.
Find: Edge set E ′ ⊆ E with minimal weight connecting all vertices.

Fitness function

One bit for each edge.

Decrease number of connected components, find minimum spanning tree:

f (s) := (c(s),w(s)).

Minimization of f with respect to the lexicographic order.

Connected graph

Connected graph in expected time O(m log n)
(fitness level arguments)

Carsten Witt Bioinspired Computation in Combinatorial Optimization

655

20/70

Combinatorial Argument to Approach MSTs

From arbitrary spanning tree T to MST T ∗ (Mayr/Plaxton, 1992):

e1

α(e3)

e3
e2

α(e1) α(e2)

k := |E (T ∗) \ E (T)|

Bijection α : E (T ∗) \ E (T) → E (T) \ E (T ∗)

α(ei) on the cycle of E (T) ∪ {ei}

w(ei) ≤ w(α(ei))

Carsten Witt Bioinspired Computation in Combinatorial Optimization

20/70

Combinatorial Argument to Approach MSTs

From arbitrary spanning tree T to MST T ∗ (Mayr/Plaxton, 1992):

e1

α(e3)

e3
e2

α(e1) α(e2)

k := |E (T ∗) \ E (T)|

Bijection α : E (T ∗) \ E (T) → E (T) \ E (T ∗)

α(ei) on the cycle of E (T) ∪ {ei}

w(ei) ≤ w(α(ei))

=⇒ k accepted 2-bit flips that turn T into T ∗

Carsten Witt Bioinspired Computation in Combinatorial Optimization

21/70

Upper Bound

Theorem

The expected time until (1+1) EA constructs a minimum spanning tree
is bounded by O(m2(log n + logwmax)).

Sketch of proof:

w(s) weight current solution s; assume to be tree

wopt weight minimum spanning tree T ∗

Carsten Witt Bioinspired Computation in Combinatorial Optimization

21/70

Upper Bound

Theorem

The expected time until (1+1) EA constructs a minimum spanning tree
is bounded by O(m2(log n + logwmax)).

Sketch of proof:

w(s) weight current solution s; assume to be tree

wopt weight minimum spanning tree T ∗

Combinatorial argument → set of k operations to reach T ∗

(1+1) EA chooses operations uniformly

=⇒ average weight decrease (w(s)− wopt)/k

Carsten Witt Bioinspired Computation in Combinatorial Optimization

656

22/70

Upper Bound

Concentrate on 2-bit flips:

Expected weight decrease by a factor 1− 1/k (or smaller → better)
due to the good 2-bit flips

Probability ≥ k/(em2) for a good 2-bit flip

Expected weight decrease 1− 1/(em2) in arbitrary step

Carsten Witt Bioinspired Computation in Combinatorial Optimization

22/70

Upper Bound

Concentrate on 2-bit flips:

Expected weight decrease by a factor 1− 1/k (or smaller → better)
due to the good 2-bit flips

Probability ≥ k/(em2) for a good 2-bit flip

Expected weight decrease 1− 1/(em2) in arbitrary step

Method multiplicative drift drift analysis
(aka. expected multiplicative distance decrease):

Have to bridge distance at most D := w(s)− wopt ≤ m · wmax.

Relative improvement by factor δ := 1− 1/(em2)

Expected time O((lnD)/δ) = O(m2(log n + logwmax))

Carsten Witt Bioinspired Computation in Combinatorial Optimization

23/70

Further Results

Lower Bound Ω(n4 log n)

2n22n2

3n2

2n2

3n2

2n2

3n2

2n22n2
Kn/2
weights 1

Carsten Witt Bioinspired Computation in Combinatorial Optimization

23/70

Further Results

Lower Bound Ω(n4 log n)

2n22n2

3n2

2n2

3n2

2n2

3n2

2n22n2
Kn/2
weights 1

Related Results

Experimental investigations

Biased mutation operators

O(mn2) for a multi-objective approach due to help objectives

Approximations for multi-objective minimum spanning trees

SA/MA and minimum spanning trees (Later!)

Carsten Witt Bioinspired Computation in Combinatorial Optimization

657

24/70

Agenda

1 The origins: example functions and toy problems
A simple toy problem: OneMax for (1+1) EA

2 Combinatorial optimization problems
Minimum spanning trees
Maximum matchings
Shortest paths
Makespan scheduling
SA beats MA in combinatorial optimization

3 End

Carsten Witt Bioinspired Computation in Combinatorial Optimization

25/70

Maximum Matchings

A matching in an undirected graph is a subset of pairwise disjoint edges;
aim: find a maximum matching (solvable in poly-time)

Carsten Witt Bioinspired Computation in Combinatorial Optimization

25/70

Maximum Matchings

A matching in an undirected graph is a subset of pairwise disjoint edges;
aim: find a maximum matching (solvable in poly-time)

Simple example: path of odd length

Carsten Witt Bioinspired Computation in Combinatorial Optimization

25/70

Maximum Matchings

A matching in an undirected graph is a subset of pairwise disjoint edges;
aim: find a maximum matching (solvable in poly-time)

Simple example: path of odd length

Maximum matching with more than half of edges

Carsten Witt Bioinspired Computation in Combinatorial Optimization

658

25/70

Maximum Matchings

A matching in an undirected graph is a subset of pairwise disjoint edges;
aim: find a maximum matching (solvable in poly-time)

Simple example: path of odd length

Suboptimal matching

Carsten Witt Bioinspired Computation in Combinatorial Optimization

25/70

Maximum Matchings

A matching in an undirected graph is a subset of pairwise disjoint edges;
aim: find a maximum matching (solvable in poly-time)

Simple example: path of odd length

Suboptimal matching

Concept: augmenting path

Alternating between edges being inside and outside the matching

Starting and ending at “free” nodes not incident on matching

Flipping all choices along the path improves matching

Carsten Witt Bioinspired Computation in Combinatorial Optimization

25/70

Maximum Matchings

A matching in an undirected graph is a subset of pairwise disjoint edges;
aim: find a maximum matching (solvable in poly-time)

Simple example: path of odd length

Suboptimal matching

Concept: augmenting path

Alternating between edges being inside and outside the matching

Starting and ending at “free” nodes not incident on matching

Flipping all choices along the path improves matching

Example: whole graph is augmenting path

Carsten Witt Bioinspired Computation in Combinatorial Optimization

25/70

Maximum Matchings

A matching in an undirected graph is a subset of pairwise disjoint edges;
aim: find a maximum matching (solvable in poly-time)

Simple example: path of odd length

Suboptimal matching

Concept: augmenting path

Alternating between edges being inside and outside the matching

Starting and ending at “free” nodes not incident on matching

Flipping all choices along the path improves matching

Example: whole graph is augmenting path

Interesting: how simple EAs find augmenting paths

Carsten Witt Bioinspired Computation in Combinatorial Optimization

659

26/70

Maximum Matchings: Upper Bound

Fitness function f : {0, 1}# edges → R:

one bit for each edge, value 1 iff edge chosen

value for legal matchings: size of matching

otherwise penalty leading to empty matching

Carsten Witt Bioinspired Computation in Combinatorial Optimization

26/70

Maximum Matchings: Upper Bound

Fitness function f : {0, 1}# edges → R:

one bit for each edge, value 1 iff edge chosen

value for legal matchings: size of matching

otherwise penalty leading to empty matching

Example: path with n + 1 nodes, n edges: bit string selects edges

Carsten Witt Bioinspired Computation in Combinatorial Optimization

26/70

Maximum Matchings: Upper Bound

Fitness function f : {0, 1}# edges → R:

one bit for each edge, value 1 iff edge chosen

value for legal matchings: size of matching

otherwise penalty leading to empty matching

Example: path with n + 1 nodes, n edges: bit string selects edges

Theorem

The expected time until (1+1) EA finds a maximum matching on a path
of n edges is O(n4).

Carsten Witt Bioinspired Computation in Combinatorial Optimization

27/70

Maximum Matchings: Upper Bound (Ctnd.)

Proof idea for O(n4) bound

Consider the level of second-best matchings.

Fitness value does not change (walk on plateau).

If “free” edge: chance to flip one bit! → probability Θ(1/n).

Else steps flipping two bits → probability Θ(1/n2).

Carsten Witt Bioinspired Computation in Combinatorial Optimization

660

27/70

Maximum Matchings: Upper Bound (Ctnd.)

Proof idea for O(n4) bound

Consider the level of second-best matchings.

Fitness value does not change (walk on plateau).

If “free” edge: chance to flip one bit! → probability Θ(1/n).

Else steps flipping two bits → probability Θ(1/n2).

Shorten or lengthen augmenting path

Carsten Witt Bioinspired Computation in Combinatorial Optimization

27/70

Maximum Matchings: Upper Bound (Ctnd.)

Proof idea for O(n4) bound

Consider the level of second-best matchings.

Fitness value does not change (walk on plateau).

If “free” edge: chance to flip one bit! → probability Θ(1/n).

Else steps flipping two bits → probability Θ(1/n2).

Shorten or lengthen augmenting path

Carsten Witt Bioinspired Computation in Combinatorial Optimization

27/70

Maximum Matchings: Upper Bound (Ctnd.)

Proof idea for O(n4) bound

Consider the level of second-best matchings.

Fitness value does not change (walk on plateau).

If “free” edge: chance to flip one bit! → probability Θ(1/n).

Else steps flipping two bits → probability Θ(1/n2).

Shorten or lengthen augmenting path

Carsten Witt Bioinspired Computation in Combinatorial Optimization

27/70

Maximum Matchings: Upper Bound (Ctnd.)

Proof idea for O(n4) bound

Consider the level of second-best matchings.

Fitness value does not change (walk on plateau).

If “free” edge: chance to flip one bit! → probability Θ(1/n).

Else steps flipping two bits → probability Θ(1/n2).

Shorten or lengthen augmenting path

Carsten Witt Bioinspired Computation in Combinatorial Optimization

661

27/70

Maximum Matchings: Upper Bound (Ctnd.)

Proof idea for O(n4) bound

Consider the level of second-best matchings.

Fitness value does not change (walk on plateau).

If “free” edge: chance to flip one bit! → probability Θ(1/n).

Else steps flipping two bits → probability Θ(1/n2).

Shorten or lengthen augmenting path

At length 1, chance to flip the free edge!

Carsten Witt Bioinspired Computation in Combinatorial Optimization

27/70

Maximum Matchings: Upper Bound (Ctnd.)

Proof idea for O(n4) bound

Consider the level of second-best matchings.

Fitness value does not change (walk on plateau).

If “free” edge: chance to flip one bit! → probability Θ(1/n).

Else steps flipping two bits → probability Θ(1/n2).

Shorten or lengthen augmenting path

At length 1, chance to flip the free edge!

Carsten Witt Bioinspired Computation in Combinatorial Optimization

27/70

Maximum Matchings: Upper Bound (Ctnd.)

Proof idea for O(n4) bound

Consider the level of second-best matchings.

Fitness value does not change (walk on plateau).

If “free” edge: chance to flip one bit! → probability Θ(1/n).

Else steps flipping two bits → probability Θ(1/n2).

Shorten or lengthen augmenting path

At length 1, chance to flip the free edge!

Carsten Witt Bioinspired Computation in Combinatorial Optimization

27/70

Maximum Matchings: Upper Bound (Ctnd.)

Proof idea for O(n4) bound

Consider the level of second-best matchings.

Fitness value does not change (walk on plateau).

If “free” edge: chance to flip one bit! → probability Θ(1/n).

Else steps flipping two bits → probability Θ(1/n2).

Shorten or lengthen augmenting path

At length 1, chance to flip the free edge!

Carsten Witt Bioinspired Computation in Combinatorial Optimization

662

27/70

Maximum Matchings: Upper Bound (Ctnd.)

Proof idea for O(n4) bound

Consider the level of second-best matchings.

Fitness value does not change (walk on plateau).

If “free” edge: chance to flip one bit! → probability Θ(1/n).

Else steps flipping two bits → probability Θ(1/n2).

Shorten or lengthen augmenting path

At length 1, chance to flip the free edge!

Carsten Witt Bioinspired Computation in Combinatorial Optimization

27/70

Maximum Matchings: Upper Bound (Ctnd.)

Proof idea for O(n4) bound

Consider the level of second-best matchings.

Fitness value does not change (walk on plateau).

If “free” edge: chance to flip one bit! → probability Θ(1/n).

Else steps flipping two bits → probability Θ(1/n2).

Shorten or lengthen augmenting path

At length 1, chance to flip the free edge!

Carsten Witt Bioinspired Computation in Combinatorial Optimization

27/70

Maximum Matchings: Upper Bound (Ctnd.)

Proof idea for O(n4) bound

Consider the level of second-best matchings.

Fitness value does not change (walk on plateau).

If “free” edge: chance to flip one bit! → probability Θ(1/n).

Else steps flipping two bits → probability Θ(1/n2).

Shorten or lengthen augmenting path

At length 1, chance to flip the free edge!

Length changes according to a fair random walk
→ equal probability for lengthenings and shortenings

Carsten Witt Bioinspired Computation in Combinatorial Optimization

28/70

Fair Random Walk

Scenario: fair random walk

Initially, player A and B both have n
2 $

Repeat: flip a coin

If heads: A pays 1 $ to B , tails: other way round

Until one of the players is ruined.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

0 nn
2

663

28/70

Fair Random Walk

Scenario: fair random walk

Initially, player A and B both have n
2 $

Repeat: flip a coin

If heads: A pays 1 $ to B , tails: other way round

Until one of the players is ruined.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

0 nn
2

28/70

Fair Random Walk

Scenario: fair random walk

Initially, player A and B both have n
2 $

Repeat: flip a coin

If heads: A pays 1 $ to B , tails: other way round

Until one of the players is ruined.

How long does the game take in expectation?

Carsten Witt Bioinspired Computation in Combinatorial Optimization

0 nn
2

28/70

Fair Random Walk

Scenario: fair random walk

Initially, player A and B both have n
2 $

Repeat: flip a coin

If heads: A pays 1 $ to B , tails: other way round

Until one of the players is ruined.

How long does the game take in expectation?

Theorem:
Fair random walk on {0, . . . , n} takes in expectation O(n2) steps.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

0 nn
2

29/70

Maximum Matchings: Upper Bound (Ctnd.)

Proof idea for O(n4) bound

Consider the level of second-best matchings.

Fitness value does not change (walk on plateau).

If “free” edge: chance to flip one bit! → probability Θ(1/n).

Else steps flipping two bits → probability Θ(1/n2).

Shorten or lengthen augmenting path

At length 1, chance to flip the free edge!

Length changes according to a fair random walk, expected O(n2) two-bit
flips suffice, expected optimization time O(n2) · O(n2) = O(n4).

Carsten Witt Bioinspired Computation in Combinatorial Optimization

664

30/70

Maximum Matchings: Lower Bound

Worst-case graph Gh,ℓ

h ≥ 3

ℓ = 2ℓ′ + 1

Carsten Witt Bioinspired Computation in Combinatorial Optimization

30/70

Maximum Matchings: Lower Bound

Worst-case graph Gh,ℓ

h ≥ 3

ℓ

Augmenting path

Carsten Witt Bioinspired Computation in Combinatorial Optimization

30/70

Maximum Matchings: Lower Bound

Worst-case graph Gh,ℓ

h ≥ 3

ℓ

Augmenting path can get shorter

Carsten Witt Bioinspired Computation in Combinatorial Optimization

30/70

Maximum Matchings: Lower Bound

Worst-case graph Gh,ℓ

h ≥ 3

ℓ

Augmenting path can get shorter but is more likely to get longer.
(unfair random walk)

Theorem

For h ≥ 3, (1+1) EA has exponential expected optimization time 2Ω(ℓ)

on Gh,ℓ.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

665

30/70

Maximum Matchings: Lower Bound

Worst-case graph Gh,ℓ

h ≥ 3

ℓ

Augmenting path can get shorter but is more likely to get longer.
(unfair random walk)

Theorem

For h ≥ 3, (1+1) EA has exponential expected optimization time 2Ω(ℓ)

on Gh,ℓ.

Proof requires analysis of negative drift (simplified drift theorem).

Carsten Witt Bioinspired Computation in Combinatorial Optimization

31/70

Maximum Matching: Approximations

Insight: do not hope for exact solutions but for approximations

For maximization problems: solution with value a is called
(1 + ε)-approximation if OPT

a
≤ 1 + ε, where OPT optimal value.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

31/70

Maximum Matching: Approximations

Insight: do not hope for exact solutions but for approximations

For maximization problems: solution with value a is called
(1 + ε)-approximation if OPT

a
≤ 1 + ε, where OPT optimal value.

Theorem

For ε > 0, (1+1) EA finds a (1 + ε)-approximation of a maximum
matching in expected time O(m2/ε+2) (m number of edges).

Carsten Witt Bioinspired Computation in Combinatorial Optimization

31/70

Maximum Matching: Approximations

Insight: do not hope for exact solutions but for approximations

For maximization problems: solution with value a is called
(1 + ε)-approximation if OPT

a
≤ 1 + ε, where OPT optimal value.

Theorem

For ε > 0, (1+1) EA finds a (1 + ε)-approximation of a maximum
matching in expected time O(m2/ε+2) (m number of edges).

Proof idea: If current solution worse than (1 + ε)-approximate, there is a
“short” augmenting path (length ≤ 2/ε+ 1); flip it in one go.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

666

32/70

Agenda

1 The origins: example functions and toy problems
A simple toy problem: OneMax for (1+1) EA

2 Combinatorial optimization problems
Minimum spanning trees
Maximum matchings
Shortest paths
Makespan scheduling
SA beats MA in combinatorial optimization

3 End

Carsten Witt Bioinspired Computation in Combinatorial Optimization

522_&/"'%_%7#'.(%._&/.7*T5HJHV*&'#12(,*

*

81-'29 !"22'+&': :1)'+&': 5)$, # ; 0"$%6< %" % ; & *2: %%% ; '<
*2: * (%2+&1"2 (9 % &) 4,1+, *//152/ $"/1&1-' 12&'5') 4'15,&/ &" &,' ':5'/=

!"#$%&' ()"# '*+, -')&'. !! ! " * /,")&'/& $*&, 0$*&, "(#121#*3 4'15,&6
&" '-')7 "&,') -')&'. !" ! " " #!!$

&

Carsten Witt Bioinspired Computation in Combinatorial Optimization

\(&'(%($./0#$F*

*

[$)"@")-/2%*/'(*&/.7%*1(.B(($*.B#*&/'0E-2/'*

@('0E(%*@"*/$)*@h*

! !" !"!"# " ##$ %$"##$ %$ # &$■�✐t✐❛❧ ✥♦♣✉❧❛t✐♦�✿

Carsten Witt Bioinspired Computation in Combinatorial Optimization

K-./0#$F*

*

*

*

P�❝❦ �♥❞�✈�❞✉❛❧ ■✁✂✄ ✉♥�❢☎✆♠❧② ❛✝ ✆❛♥❞☎♠

%
!"&#$ %&'()%&* +,*+- (. / %

!"'#$
%
!"&#$ %&'()%&* +,*+- (. / %

!"'#$ (/0*(%&* +,*+- (. 1
!

✞

✟

s

t

! ! ""# $# ! %!"&# "%!"'#✠✡☛☞ ✌✍✡✎♦r✏✑✒ ✓✔ r✓✍✕♦✏ ✓✍ ❡✕❣❡

❆✖✖ ✗

!

◆✘✇ ✐✙✚✐✛✐✚✜✢✣ ✤Õ✥✦✧

Carsten Witt Bioinspired Computation in Combinatorial Optimization

667

K-./0#$_1/%()*Y5*

!" #$% ! & !"!"# & '#$ %(" '#$ %(# &$"
)" *+,,-$./ 0/102013.4 "$"% # ! 3/05,6748 .% 6./1,7"
9" :3%.%$ "$"% %, ,;%.0/ ./ 0/102013.4 "

!

&"'"
<" =5 %+6 0- /, 0/102013.4 "&"' # ! > ! & ! % !"

!

&"'$>
$4-$ 05 ''" !&"'(& ''"&"'(> ! & '! % !"

!

&"'$(' !"&"'$
?" @A.% #%$A-)B< 5,6$2$6"

❙�❡❛❞② ❙�❛�❡ ❊❆

Carsten Witt Bioinspired Computation in Combinatorial Optimization

!"# ! ! $%&"' ()" "*+",#"- #./" 01#.$)23 4%01- 2$$ 3)%5#"3# +2#)3
6.#) 2# /%3# ! "-&"3 .3 #7"!!8'

▲�✁✁❛✂

!

6.#) 2# /%3# ! "-&"3 .3 #7" !8'

!"# $ 9: 7%" : &' %#' (((' %!
!
$" : %8 ;" 2 3)%5#"3# +2#)

45%/ & #% % ,%13.3#.1& %4 !!< !! " !< "-&"3 .1)

=%13.-"5 #6% >"5#.,"3 & 21- %< & #: %'

#)" 30;?+2#) $! : 7%" : &' %#' (((' %"8 .3 2 3)%5#"3# +2#) 45%/ & #% %" '

✉

✈

✈❥

P✄♦♦❢ ✐❞❡☎✿

Carsten Witt Bioinspired Computation in Combinatorial Optimization

H#&-2/0#$*%"4(*"%*-&&('*1#-$)()*$R**

TA#'(/E7*&/"'*#A*@('0E(%*/.*,#%.*#$(*&/.7V*

*

•  H"E=*%7#'.(%.*&/.7*A'#,*-*.#*@h*/$)*/&&($)**

()6(*T@hO*@hfPV*

•  J7#'.(%.*&/.7*A'#,*-*.#*@hfP*
*

•  H'#1/1"2".:*.#*&"E=*[-O@h*"%*/.*2(/%.*Pk$
R*

•  H'#1/1"2".:*.#*/&&($)*'"67.*()6(*"%*/.*2(/%.**PkTR$V*

•  J-EE(%%*B".7*&'#1/1"2".:*/.*2(/%.*&*`*PkTR$WV*

•  5.*,#%.*2*%-EE(%%(%*$(()()*.#*#1./"$*%7#'.(%.*&/.7*
A'#,*-*.#*@*

Carsten Witt Bioinspired Computation in Combinatorial Optimization

+#$%")('*.:&"E/2*'-$*E#$%"%0$6*#A*8`E$W2*%.(&%;*

D7/.*"%*.7(*&'#1/1"2".:*.7/.*.7(*%7#'.(%.*&/.7*A'#,*-*.#*@*

7/%*1(($*#1./"$()I*

D(*$(()*/.*,#%.*2*%-EE(%%(%O*B7('(*/*%-EE(%%*7/&&($%*"$*

(/E7*%.(&*B".7*&'#1/1"2".:*/.*2(/%.*&*`*PkTR$WV*

!"#$" %&' "()* +,"- ! ('($.&/ 0('1(23" "!4

"! 5 6 1% +,"- ! 1+ (+7))"++

"! 5 8 1% +,"- ! 1+ $&, (+7))"++

Carsten Witt Bioinspired Computation in Combinatorial Optimization

668

5$/2:%"%*

g#2)%*A#'*/$:*&7/%(*#A*8*%.(&%*

!"#$!%! " #$! & " #'!%(
!$

123*45*/ +-78*(,; =-44*==*=

$

==*= +!%$! 0'!%(!

% "
!&

!(%
%!

$ " "

% ! / >>>!

!"#$!%) !#" *$+!,$$ # -!""##$
!%$

123*45*/ +-78*(,; =-44*==*= +!%$! 0'!%(!$ " ('")
$'" "

()
$

!
!

❈�✁✂♥♦✄✄✿ !"#$!%) !#" *$+!,$$ # -!""##$
!%$

* " %

! $'

!

* " %

$

!"#$!%) !#

$

!"#$!%) !#" %
$$+!,$$ # -

!""##%& # -!&%"%''
"# " -!('

")%"%''"# " -!()%"%'#

($ $ -!()%%'

" # #

P☎✆❜❛❜✐❧✐t② ❢✆☎ ❢❛✐❧✉☎❡ ✆❢ ❛t ❧❡❛st ✆✝❡ ♣❛✐☎ ✆❢ ✈❡☎t✐❝❡s ❛t ✞✆st✟

. &'()* *+,-). '+/ / ! &,)(0

($ $ -!()%%'

. &'()* *+,-). '+/ / ! &,)(0

:, ;'6&-(* 6+ '+9 3'5. <65. 3(,8

!

:, ;'6&-(* 6+ '+9 3'5. <65. 3(,8'86&659 '5 &*'=5 1 " #"($ $-!()%%' " #"#!#$

123*45*/ 567* -33*(8,-+/ 89 0'1 " 2!(!/$

Carsten Witt Bioinspired Computation in Combinatorial Optimization

J7#'.(%.*&/.7%*7/@(*2($6.7*/.*,#%.*$_P;*

J(.*2*`*$_P*

*

*

N-(%0#$F**

+/$*E'#%%#@('*7(2&*.#*/E7"(@(*/*1(C('*(9&(E.()*#&0,"4/0#$*0,(I*

❚�✁✂✄✁♠

!"# #,-#*)#. /-)&0&1%)&/')&0# /2 ;)#%.< ;)%)# 89
2/$)"# 9=;= -$/>?#0 &(#3"!6@

!"#$# %$# &'()%'*#(+"#$#)"# #,-#*)#. /-)&0&1%)&/' /2 3!456789 &(:3"!6

❘☎✆❛✝❦✿

Carsten Witt Bioinspired Computation in Combinatorial Optimization

+'#%%#@('*

H"E=*.B#*"$)"@")-/2%**[-O@*/$)*[%O.*A'#,*&#&-2/0#$*

-$"A#',2:*/.*'/$)#,;*

*

.*

✈

✉

t

s

�

✁

✂✄☎

■✆ ✂✄☎

Carsten Witt Bioinspired Computation in Combinatorial Optimization

!" #$% ! & !"!"# & '#$ %(" '#$ %(# &$"
)" *+,,-$ ' # ./$!0 1234,5678 9% 592:,6"
;" <4 ' % ($= >+,,-$ %?, 32:3@3:197- "%"& # ! 92: "%!"&! # ! 1234,5678 9%
592:,6 92: A$54,56 >5,--,@$5 %, ,B%932 92 32:3@3:197 " !'"(=
$7-$ >+,,-$ 92 32:3@3:197 "%"& # ! 1234,5678 9% 592:,6 92: 61%9%$ "%"&
%, ,B%932 92 32:3@3:197 " !'"("

C" <4 " !'"(3- 9 A9%+ 45,6) %, * %+$2
! !" #$%&% '()* ')+','+-./ !!"# ! " 0 " 1 " " #!

!

!"#$0
! %/(% '" #2! !!"#3 % #2!!"#30 " 1 2" " #!

!

!"#$3 & #!!"#$4

D" EA9% #%$A-)FC 4,5$@$5"

($ 3- 9 >,2-%92%

❙�❡❛❞② ❙�❛�❡ ●❆

Carsten Witt Bioinspired Computation in Combinatorial Optimization

669

J7#BF*n#$6('*&/.7%*/'(*#1./"$()*1:*E'#%%#@('*B".7"$**

.7(*%./.()*0,(*1#-$);*

!"# #$%#&'#()%'*+*,-'*). '*+#)/ 0'#-(1 0'-'# 23 *4 !5"!!"
!
6)7"89

❚�❡♦r❡♠✿

!

!

#! :;
!
" 6)7"▼✁t❛t✐✂♥ ❛♥❞

❆✄✄ s❤✂☎t✆st ♣❛t❤ ✂❢ ✄✆♥❣t❤ ❛t ✝✂st ✄✯ ✆❞❣✆s ❛☎✆ ✂❜t❛✐♥✆❞

Carsten Witt Bioinspired Computation in Combinatorial Optimization

5$/2:%"%*+'#%%#@('*

n#$6*&/.7%*1:*E'#%%#@('F*

5%%-,&0#$F*522*%7#'.(%.*&/.7%*B".7*/.*,#%.*2o*

()6(%*7/@(*/2'(/):*1(($*#1./"$();*

5%%-,(*.7/.*/22*%7#'.(%.*&/.7%*#A*2($6.7*=*l*2o**

7/@(*1(($*#1./"$();***

D7/.*"%*.7(*(9&(E.()*0,(*.#*#1./"$*/22*%7#'.(%.*&/.7%*#A*

2($6.7/.*,#%.*W=kRI*

Carsten Witt Bioinspired Computation in Combinatorial Optimization

5$/2:%"%*+'#%%#@('*

+#$%")('*&/"'*#A*@('0E(%*9*/$)*:*A#'*B7"E7**/*%7#'.(%.*

&/.7*#A*'O*=*p*'*l*W=kRO*()6(%*(9"%.%;*

87('(*/'(*R=_'*&/"'%*#A*%7#'.(%.*&/.7%*#A*2($6.7*/.*,#%.*=*

.7/.*E/$*1(*h#"$()*.#*#1./"$*%7#'.(%.*&/.7*A'#,*9*.#*:;*

H'#1/1"2".:*A#'*#$(*%&(E"ME*&/"'F*/.*2(/%.*Pk$q*

5.*2(/%.*R=fP_'*&#%%"12(*&/"'%F*&'#1/1"2".:**

/.*2(/%.*TR=fP_'Vk$q*V*r*=kTR$qV**

*
5.*,#%.*$R*%7#'.(%.*&/.7%*#A*2($6.7*'O*=*p*'*l*W=kR**

8",(*.#*E#22(E.*/22*&/.7%*3T$q*2#6*$k*=V***

T%","2/'*.#*+#-&#$*+#22(E.#'%*87(#'(,V*

Carsten Witt Bioinspired Computation in Combinatorial Optimization

5$/2:%"%*+'#%%#@('*

!"# "$ %&'()*' +,-'('.) &/0"'1 %2 !3 ./#'04

!
" 0%5"# $!

!
" 0%5"# $! !

!
" 0%5"# % % % # $"#$!%!"

!
! "#$!&

!

!
" 0%5"#

6*'(' $ 7 8&9:! ! ! !

❊�♣❡❝t❡❞ ❖♣t✐♠✐③❛t✐♦♥

"#$
!
%!"

!
! "#$!&"

#'(

#
'

#
") 0%5"
"
" 0%5 "

$
$
"#
$
7 ';"*$+

!
0%5"<

#"

#'(

$
"# 7 ';"*$+

!
0%5"<

Carsten Witt Bioinspired Computation in Combinatorial Optimization

670

48/70

Agenda

1 The origins: example functions and toy problems
A simple toy problem: OneMax for (1+1) EA

2 Combinatorial optimization problems
Minimum spanning trees
Maximum matchings
Shortest paths
Makespan scheduling
SA beats MA in combinatorial optimization

3 End

Carsten Witt Bioinspired Computation in Combinatorial Optimization

49/70

Makespan Scheduling

What about NP-hard problems? → Study approximation quality

Carsten Witt Bioinspired Computation in Combinatorial Optimization

49/70

Makespan Scheduling

What about NP-hard problems? → Study approximation quality

Makespan scheduling on 2 machines:

n objects with weights/processing times w1, . . . ,wn

2 machines (bins)

Minimize the total weight of fuller bin = makespan.

Formally, find I ⊆ {1, . . . , n} minimizing

max

{
∑

i∈I

wi ,
∑

i /∈I

wi

}

.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

49/70

Makespan Scheduling

What about NP-hard problems? → Study approximation quality

Makespan scheduling on 2 machines:

n objects with weights/processing times w1, . . . ,wn

2 machines (bins)

Minimize the total weight of fuller bin = makespan.

Formally, find I ⊆ {1, . . . , n} minimizing

max

{
∑

i∈I

wi ,
∑

i /∈I

wi

}

.

Sometimes also called the Partition problem.
This is an “easy” NP-hard problem, good approximations possible

Carsten Witt Bioinspired Computation in Combinatorial Optimization

671

50/70

Fitness Function

Problem encoding: bit string x1, . . . , xn reserves a bit for each
object, put object i in bin xi + 1.

Fitness function

f (x1, . . . , xn) := max

{
n∑

i=1

wixi ,

n∑

i=1

wi (1− xi)

}

to be minimized.

Consider (1+1) EA and RLS.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

51/70

Types of Results

Worst-case results

Success probabilities and approximations

An average-case analysis

Carsten Witt Bioinspired Computation in Combinatorial Optimization

52/70

Sufficient Conditions for Progress

Abbreviate S := w1 + · · ·+ wn ⇒ perfect partition has cost S
2 .

Carsten Witt Bioinspired Computation in Combinatorial Optimization

52/70

Sufficient Conditions for Progress

Abbreviate S := w1 + · · ·+ wn ⇒ perfect partition has cost S
2 .

Suppose we know

s∗ = size of smallest object in the fuller bin,

Carsten Witt Bioinspired Computation in Combinatorial Optimization

672

52/70

Sufficient Conditions for Progress

Abbreviate S := w1 + · · ·+ wn ⇒ perfect partition has cost S
2 .

Suppose we know

s∗ = size of smallest object in the fuller bin,

f (x) > S
2 + s∗

2 for the current search point x

then the solution is improvable by a single-bit flip.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

52/70

Sufficient Conditions for Progress

Abbreviate S := w1 + · · ·+ wn ⇒ perfect partition has cost S
2 .

Suppose we know

s∗ = size of smallest object in the fuller bin,

f (x) > S
2 + s∗

2 for the current search point x

then the solution is improvable by a single-bit flip.

s∗ ≥ s∗S
2

Carsten Witt Bioinspired Computation in Combinatorial Optimization

52/70

Sufficient Conditions for Progress

Abbreviate S := w1 + · · ·+ wn ⇒ perfect partition has cost S
2 .

Suppose we know

s∗ = size of smallest object in the fuller bin,

f (x) > S
2 + s∗

2 for the current search point x

then the solution is improvable by a single-bit flip.

≥ s∗S
2 s∗

If f (x) < S
2 + s∗

2 , no improvements can be guaranteed.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

52/70

Sufficient Conditions for Progress

Abbreviate S := w1 + · · ·+ wn ⇒ perfect partition has cost S
2 .

Suppose we know

s∗ = size of smallest object in the fuller bin,

f (x) > S
2 + s∗

2 for the current search point x

then the solution is improvable by a single-bit flip.

≥ s∗S
2 s∗

If f (x) < S
2 + s∗

2 , no improvements can be guaranteed.

Lemma

If smallest object in fuller bin is always bounded by s∗ then (1+1) EA
and RLS reach f -value ≤ S

2 + s∗

2 in expected O(n2) steps.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

673

53/70

Worst-Case Results

Theorem

On any instance to the makespan scheduling problem, the (1+1) EA and
RLS reach a solution with approximation ratio 4

3 in expected time O(n2).

Use study of object sizes and previous lemma.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

53/70

Worst-Case Results

Theorem

On any instance to the makespan scheduling problem, the (1+1) EA and
RLS reach a solution with approximation ratio 4

3 in expected time O(n2).

Use study of object sizes and previous lemma.

Theorem

There is an instance W ∗
ε such that the (1+1) EA and RLS need with

prob. Ω(1) at least nΩ(n) steps to find a solution with a better ratio than
4/3− ε.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

54/70

Worst-Case Instance

Instance W ∗
ε = {w1, . . . ,wn} is defined by w1 := w2 :=

1
3 − ε

4 (big

objects) and wi :=
1/3+ε/2

n−2 for 3 ≤ i ≤ n, ε very small constant; n even

Carsten Witt Bioinspired Computation in Combinatorial Optimization

54/70

Worst-Case Instance

Instance W ∗
ε = {w1, . . . ,wn} is defined by w1 := w2 :=

1
3 − ε

4 (big

objects) and wi :=
1/3+ε/2

n−2 for 3 ≤ i ≤ n, ε very small constant; n even

Sum is 1; there is a perfect partition.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

674

54/70

Worst-Case Instance

Instance W ∗
ε = {w1, . . . ,wn} is defined by w1 := w2 :=

1
3 − ε

4 (big

objects) and wi :=
1/3+ε/2

n−2 for 3 ≤ i ≤ n, ε very small constant; n even

Sum is 1; there is a perfect partition.

But if one bin with big and one bin with small objects: value 2
3 − ε

2 .

Move a big object in the emptier bin ⇒ value (13 +
ε
2) + (13 −

ε
4) =

2
3 +

ε
4 !

Need to move ≥ εn small objects at once for improvement: very unlikely.

Ω(n) small objects

With constant probability in this situation, nΩ(n) needed to escape.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

55/70

Worst Case – PRAS by Parallelism

Previous result shows: success dependent on big objects

Theorem

On any instance, the (1+1) EA and RLS with prob. ≥ 2−c⌈1/ε⌉ ln(1/ε)

find a (1 + ε)-approximation within O(n ln(1/ε)) steps.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

55/70

Worst Case – PRAS by Parallelism

Previous result shows: success dependent on big objects

Theorem

On any instance, the (1+1) EA and RLS with prob. ≥ 2−c⌈1/ε⌉ ln(1/ε)

find a (1 + ε)-approximation within O(n ln(1/ε)) steps.

2O(⌈1/ε⌉ ln(1/ε)) parallel runs find a (1 + ε)-approximation
with prob. ≥ 3/4 in O(n ln(1/ε)) parallel steps.

Parallel runs form a polynomial-time randomized approximation
scheme (PRAS)!

Carsten Witt Bioinspired Computation in Combinatorial Optimization

56/70

Worst Case – PRAS by Parallelism (Proof Idea)

Set s :=
⌈
2
ε

⌉

Assuming w1 ≥ · · · ≥ wn, we have wi ≤ εS
2 for i ≥ s.

︸ ︷︷ ︸

s−1 large objects

︸ ︷︷ ︸

small objects

Carsten Witt Bioinspired Computation in Combinatorial Optimization

675

56/70

Worst Case – PRAS by Parallelism (Proof Idea)

Set s :=
⌈
2
ε

⌉

Assuming w1 ≥ · · · ≥ wn, we have wi ≤ εS
2 for i ≥ s.

︸ ︷︷ ︸

s−1 large objects

︸ ︷︷ ︸

small objects

analyze probability of distributing

large objects in an optimal way,

small objects greedily ⇒ error ≤ εS
2 ,

Random search rediscovers algorithmic idea of early algorithms.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

57/70

Average-Case Analyses

Models: each weight drawn independently at random, namely

1 uniformly from the interval [0, 1],

2 exponentially distributed with parameter 1
(i. e., Prob(X ≥ t) = e−t for t ≥ 0).

Approximation ratio no longer meaningful, we investigate:

discrepancy = absolute difference between weights of bins.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

57/70

Average-Case Analyses

Models: each weight drawn independently at random, namely

1 uniformly from the interval [0, 1],

2 exponentially distributed with parameter 1
(i. e., Prob(X ≥ t) = e−t for t ≥ 0).

Approximation ratio no longer meaningful, we investigate:

discrepancy = absolute difference between weights of bins.

How close to discrepancy 0 do we come?

Carsten Witt Bioinspired Computation in Combinatorial Optimization

58/70

Makespan Scheduling – Known Averge-Case Results

Deterministic, problem-specific heuristic LPT

Sort weights decreasingly,
put every object into currently emptier bin.

Known for both random models:

LPT creates a solution with discrepancy O((log n)/n).

Carsten Witt Bioinspired Computation in Combinatorial Optimization

676

58/70

Makespan Scheduling – Known Averge-Case Results

Deterministic, problem-specific heuristic LPT

Sort weights decreasingly,
put every object into currently emptier bin.

Known for both random models:

LPT creates a solution with discrepancy O((log n)/n).

What discrepancy do the (1+1) EA and RLS reach in poly-time?

Carsten Witt Bioinspired Computation in Combinatorial Optimization

59/70

Average-Case Analysis of the (1+1) EA

Theorem

In both models, the (1+1) EA reaches discrepancy O((log n)/n) after
O(nc+4 log2 n) steps with probability 1− O(1/nc).

Almost the same result as for LPT!

Carsten Witt Bioinspired Computation in Combinatorial Optimization

59/70

Average-Case Analysis of the (1+1) EA

Theorem

In both models, the (1+1) EA reaches discrepancy O((log n)/n) after
O(nc+4 log2 n) steps with probability 1− O(1/nc).

Almost the same result as for LPT!

Proof exploits order statistics:

If X(i) (i-th largest) in fuller bin, X(i+1) in emptier one, and discrepancy
> 2(X(i) − X(i+1)) > 0, then objects can be swapped; discrepancy falls

Consider such “difference objects”.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

59/70

Average-Case Analysis of the (1+1) EA

Theorem

In both models, the (1+1) EA reaches discrepancy O((log n)/n) after
O(nc+4 log2 n) steps with probability 1− O(1/nc).

Almost the same result as for LPT!

Proof exploits order statistics:

If X(i) (i-th largest) in fuller bin, X(i+1) in emptier one, and discrepancy
> 2(X(i) − X(i+1)) > 0, then objects can be swapped; discrepancy falls

Consider such “difference objects”.

W. h. p. X(i) − X(i+1) = O((log n)/n)
(for i = Ω(n)).

}X(i) − X(i+1)

Carsten Witt Bioinspired Computation in Combinatorial Optimization

677

60/70

Agenda

1 The origins: example functions and toy problems
A simple toy problem: OneMax for (1+1) EA

2 Combinatorial optimization problems
Minimum spanning trees
Maximum matchings
Shortest paths
Makespan scheduling
SA beats MA in combinatorial optimization

3 End

Carsten Witt Bioinspired Computation in Combinatorial Optimization

61/70

Simulated Annealing vs. Metropolis

Metropolis Algorithm (MA) and Simulated Annealing (SA)
for the minimization of functions f : {0, 1}n → R

1 t := 0. Choose x ∈ {0, 1}n uniformly at random.
2 y := x .
3 Flip exactly one bit in y chosen uniformly at random.

4 If f (y) ≤ f (x) then x := y else x := y with probability e
f (x)−f (y)

Tt

5 t := t + 1. Continue at line 2.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

61/70

Simulated Annealing vs. Metropolis

Metropolis Algorithm (MA) and Simulated Annealing (SA)
for the minimization of functions f : {0, 1}n → R

1 t := 0. Choose x ∈ {0, 1}n uniformly at random.
2 y := x .
3 Flip exactly one bit in y chosen uniformly at random.

4 If f (y) ≤ f (x) then x := y else x := y with probability e
f (x)−f (y)

Tt

5 t := t + 1. Continue at line 2.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

61/70

Simulated Annealing vs. Metropolis

Metropolis Algorithm (MA) and Simulated Annealing (SA)
for the minimization of functions f : {0, 1}n → R

1 t := 0. Choose x ∈ {0, 1}n uniformly at random.
2 y := x .
3 Flip exactly one bit in y chosen uniformly at random.

4 If f (y) ≤ f (x) then x := y else x := y with probability e
f (x)−f (y)

Tt

5 t := t + 1. Continue at line 2.

Given positive Tt , worse search point can be accepted and escapes from
local optima (where RLS would be stuck) are possible.

Probability of accepting a worsening depends on Tt and fitness difference.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

678

61/70

Simulated Annealing vs. Metropolis

Metropolis Algorithm (MA) and Simulated Annealing (SA)
for the minimization of functions f : {0, 1}n → R

1 t := 0. Choose x ∈ {0, 1}n uniformly at random.
2 y := x .
3 Flip exactly one bit in y chosen uniformly at random.

4 If f (y) ≤ f (x) then x := y else x := y with probability e
f (x)−f (y)

Tt

5 t := t + 1. Continue at line 2.

Given positive Tt , worse search point can be accepted and escapes from
local optima (where RLS would be stuck) are possible.

Probability of accepting a worsening depends on Tt and fitness difference.

Example: With T = 1, f -increase by 1 accepted w. prob. e−1 = Ω(1).

Carsten Witt Bioinspired Computation in Combinatorial Optimization

61/70

Simulated Annealing vs. Metropolis

Metropolis Algorithm (MA) and Simulated Annealing (SA)
for the minimization of functions f : {0, 1}n → R

1 t := 0. Choose x ∈ {0, 1}n uniformly at random.
2 y := x .
3 Flip exactly one bit in y chosen uniformly at random.

4 If f (y) ≤ f (x) then x := y else x := y with probability e
f (x)−f (y)

Tt

5 t := t + 1. Continue at line 2.

Given positive Tt , worse search point can be accepted and escapes from
local optima (where RLS would be stuck) are possible.

Probability of accepting a worsening depends on Tt and fitness difference.

Example 2: With T = 0, f -increase accepted w. prob. e−∞ = 0.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

61/70

Simulated Annealing vs. Metropolis

Metropolis Algorithm (MA) and Simulated Annealing (SA)
for the minimization of functions f : {0, 1}n → R

1 t := 0. Choose x ∈ {0, 1}n uniformly at random.
2 y := x .
3 Flip exactly one bit in y chosen uniformly at random.

4 If f (y) ≤ f (x) then x := y else x := y with probability e
f (x)−f (y)

Tt

5 t := t + 1. Continue at line 2.

Typical distinction:
Tt fixed, i. e., independent of t → heuristic is called MA.
Tt varies depending on t → heuristic is called SA.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

62/70

Simulated Annealing Beats Metropolis
in Combinatorial Optimization

SA’s choice of Tt is usually called cooling schedule.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

679

62/70

Simulated Annealing Beats Metropolis
in Combinatorial Optimization

SA’s choice of Tt is usually called cooling schedule.

Typically: Tt decreases (cools down) with t to “simulate annealing”
→ large jumps in the beginning, later only small changes

Jerrum/Sinclair (1996)

“It remains an outstanding open problem to exhibit a natural example in
which simulated annealing with any non-trivial cooling schedule provably
outperforms the Metropolis algorithm at a carefully chosen fixed value”
of the temperature.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

62/70

Simulated Annealing Beats Metropolis
in Combinatorial Optimization

SA’s choice of Tt is usually called cooling schedule.

Typically: Tt decreases (cools down) with t to “simulate annealing”
→ large jumps in the beginning, later only small changes

Jerrum/Sinclair (1996)

“It remains an outstanding open problem to exhibit a natural example in
which simulated annealing with any non-trivial cooling schedule provably
outperforms the Metropolis algorithm at a carefully chosen fixed value”
of the temperature.

Solution (Wegener, 2005): MSTs are such an example.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

63/70

The MST Instance: Connected Triangles

Let n = 6k . Instance consists of n/3 connected triangles, half light and
half heavy. Each triangle has two light and one heavy edge.

n

11

n

11

n

11

n

11

n3

n2n2

n3

n2n2

n3

n2n2

n3

n2n2

Carsten Witt Bioinspired Computation in Combinatorial Optimization

63/70

The MST Instance: Connected Triangles

Let n = 6k . Instance consists of n/3 connected triangles, half light and
half heavy. Each triangle has two light and one heavy edge.

n

11

n

11

n

11

n

11

n3

n2n2

n3

n2n2

n3

n2n2

n3

n2n2

Optimal solution is unique and chooses only light edges.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

680

63/70

The MST Instance: Connected Triangles

Let n = 6k . Instance consists of n/3 connected triangles, half light and
half heavy. Each triangle has two light and one heavy edge.

n

11

n

11

n

11

n

11

n3

n2n2

n3

n2n2

n3

n2n2

n3

n2n2

Optimal solution is unique and chooses only light edges.

Claims: MA with arbitrary temperature typically needs exponential time
on the connected-triangles instance (= inefficient). SA with an
appropriate cooling schedule typically finds optimum in polynomial time
(= efficient).

→ “SA Beats Metropolis in Combinatorial Optimization”

Proof idea: need different temperatures to optimize all triangles.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

64/70

Proof Idea

Concentrate on wrong triangles:
one heavy, one light edge chosen

lightlight

heavy

Carsten Witt Bioinspired Computation in Combinatorial Optimization

64/70

Proof Idea

Concentrate on wrong triangles:
one heavy, one light edge chosen

lightlight

heavy

Soon after initialization Ω(n) wrong triangles,
both in heavy and light part of the graph

To correct such triangle, light edge must be flipped in.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

64/70

Proof Idea

Concentrate on wrong triangles:
one heavy, one light edge chosen

lightlight

heavy

Soon after initialization Ω(n) wrong triangles,
both in heavy and light part of the graph

To correct such triangle, light edge must be flipped in.

Such flip leads to a worse spanning tree
→ need high temperature T ∗ to correct wrong heavy triangles.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

681

64/70

Proof Idea

Concentrate on wrong triangles:
one heavy, one light edge chosen

lightlight

heavy

Soon after initialization Ω(n) wrong triangles,
both in heavy and light part of the graph

To correct such triangle, light edge must be flipped in.

Such flip leads to a worse spanning tree
→ need high temperature T ∗ to correct wrong heavy triangles.

Light edges of heavy triangles still much heavier than heavy edges of
light triangles → at temperature T ∗ almost random search on light
triangles → many light triangles remain wrong.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

64/70

Proof Idea

Concentrate on wrong triangles:
one heavy, one light edge chosen

lightlight

heavy

Soon after initialization Ω(n) wrong triangles,
both in heavy and light part of the graph

To correct such triangle, light edge must be flipped in.

Such flip leads to a worse spanning tree
→ need high temperature T ∗ to correct wrong heavy triangles.

Light edges of heavy triangles still much heavier than heavy edges of
light triangles → at temperature T ∗ almost random search on light
triangles → many light triangles remain wrong.

SA first corrects heavy triangles at temperature T ∗.

After temperature has dropped, SA corrects light triangles, without
destroying heavy ones.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

65/70

The Traveling Salesperson Problem

MST is a polynomial-time solvable problem.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

65/70

The Traveling Salesperson Problem

MST is a polynomial-time solvable problem.

Can SA beat MA also on an NP-hard problem (i. e., problems for which
no optimal polynomial-time algorithm is known)?

Carsten Witt Bioinspired Computation in Combinatorial Optimization

682

65/70

The Traveling Salesperson Problem

MST is a polynomial-time solvable problem.

Can SA beat MA also on an NP-hard problem (i. e., problems for which
no optimal polynomial-time algorithm is known)?

Traveling Salesperson Problem (TSP), a notorious NP-hard problem:
Given a complete graph on the vertex set V = {1, . . . , n} and edge costs
c(i , j) ∈ R

+, find a permutation π ∈ Sn resulting in a Hamiltonian circuit
(round trip) of minimum total cost.

1 2

3 4

12

34

20

42

30 35

Carsten Witt Bioinspired Computation in Combinatorial Optimization

65/70

The Traveling Salesperson Problem

MST is a polynomial-time solvable problem.

Can SA beat MA also on an NP-hard problem (i. e., problems for which
no optimal polynomial-time algorithm is known)?

Traveling Salesperson Problem (TSP), a notorious NP-hard problem:
Given a complete graph on the vertex set V = {1, . . . , n} and edge costs
c(i , j) ∈ R

+, find a permutation π ∈ Sn resulting in a Hamiltonian circuit
(round trip) of minimum total cost.

1 2

3 4

12

34

20

42

30 35

Carsten Witt Bioinspired Computation in Combinatorial Optimization

66/70

SA/MA for the TSP

Search space: Sn (all permuations on {1, . . . , n})

Initialization: tour 1, . . . , n

Carsten Witt Bioinspired Computation in Combinatorial Optimization

66/70

SA/MA for the TSP

Search space: Sn (all permuations on {1, . . . , n})

Initialization: tour 1, . . . , n

What mutation operator to use (“how to flip a bit”)?

Carsten Witt Bioinspired Computation in Combinatorial Optimization

683

66/70

SA/MA for the TSP

Search space: Sn (all permuations on {1, . . . , n})

Initialization: tour 1, . . . , n

What mutation operator to use (“how to flip a bit”)?

Solution: 2-opt local change

v1

vn

1 Let v1, . . . , vn be the vertices
on the current TSP tour.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

66/70

SA/MA for the TSP

Search space: Sn (all permuations on {1, . . . , n})

Initialization: tour 1, . . . , n

What mutation operator to use (“how to flip a bit”)?

Solution: 2-opt local change

v1

vn

vj+1 vj

vi+1vi

1 Let v1, . . . , vn be the vertices
on the current TSP tour.

2 Choose two edges (vi , vi+1) and
(vj , vj+1), j > i , uniformly.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

66/70

SA/MA for the TSP

Search space: Sn (all permuations on {1, . . . , n})

Initialization: tour 1, . . . , n

What mutation operator to use (“how to flip a bit”)?

Solution: 2-opt local change

v1

vn

vj+1 vj

vi+1vi

1 Let v1, . . . , vn be the vertices
on the current TSP tour.

2 Choose two edges (vi , vi+1) and
(vj , vj+1), j > i , uniformly.

3 Let the new tour be (v1, . . . , vi) +
(vj , vj−1, . . . , vi+1) +
(vj+1, . . . , vn).

Carsten Witt Bioinspired Computation in Combinatorial Optimization

67/70

The TSP Instance – Skeletons

Role of former triangles now taken by Skeleton Graph.

3

1 2

4

65

Implicit entries/exits 1 and 6

(1, 3) will become heaviest edge, (1, 2)
second-heaviest; all other edges light.

Three possible paths visiting all vertices:
pwst = 132456, pmid = 123456, popt = 154236
(listed according to falling cost)

SA starts with pmid.

Only possible transitions by 2-opt:
pmid ↔ pwst ↔ popt

No direct transition from pmid to popt
⇒ intermediate worsening necessary

Used in a heavy and a light variant

Carsten Witt Bioinspired Computation in Combinatorial Optimization

684

68/70

The TSP Instance – Results

Final TSP instance is composed of equally many light and heavy
skeletons.

heavy heavy heavy heavy

light light light light

Carsten Witt Bioinspired Computation in Combinatorial Optimization

68/70

The TSP Instance – Results

Final TSP instance is composed of equally many light and heavy
skeletons.

heavy heavy heavy heavy

light light light light

All skeletons must be corrected at least once. Then:

MA with fixed temperature fails either at the heavy or light
skeletons.

SA with appropriate cooling schedule will optimize heavy and light
skeletons one after another.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

69/70

Summary and Conclusions

Analysis of RSHs in combinatorial optimization

Starting from toy problems to real problems

Surprising results

Interesting techniques

Analysis of new approaches possible (→ other GECCO tutorials)

Carsten Witt Bioinspired Computation in Combinatorial Optimization

69/70

Summary and Conclusions

Analysis of RSHs in combinatorial optimization

Starting from toy problems to real problems

Surprising results

Interesting techniques

Analysis of new approaches possible (→ other GECCO tutorials)

→ An exciting research direction.

Carsten Witt Bioinspired Computation in Combinatorial Optimization

685

70/70

Suggested Reading

Carsten Witt Bioinspired Computation in Combinatorial Optimization

70/70

Suggested Reading

Thank you!

Carsten Witt Bioinspired Computation in Combinatorial Optimization

686

