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1
Optimization by Population-based EC

In EC, a common approach to find the optimum of a function is to

evolve iteratively a population of candidate solutions by applying

different operators which ensures a tradeoff between

◾ exploitation (e.g., selective pressure)

◾ exploration (e.g., variation, genetic diversity)

Many Evolutionary Algorithms (EAs) follow such paradigm, and can

be defined as population-based, among others we have

◾ Genetic Algorithms (GAs)

◾ Ant Colony Optimization (ACO)

◾ Particle Swarm Optimization (PSO)

◾ Evolution Strategies (ES)

◾ . . .
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2
Population-based EC: Genetic Algorithms

Let us introduce some notation

◾ Ω the search space◾ f ∶ Ω→ R the function to be optimized◾ Pt = {x ∈ Ω} a population of individuals at time t◾ P0 the initial (e.g., random) population

The basic iteration of a naïve GA can be described as

Pt selectionÐÐÐÐ→ Ps
t

crossoverÐÐÐÐÐ→ Pc
t

mutationÐÐÐÐ→ Pt+1
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3
A Toy Example with 2 Binary Variables

Example: Ω = {−1,1}2, f(x) = x1 + 2x2 + 3x1x2
P0 f(x)
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Hypercube
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−−
f = 0

++
f = 6

+−
f = −4

GA: Pt truncation selectionÐÐÐÐÐÐÐÐÐÐ→ Ps
t

1-point crossoverÐÐÐÐÐÐÐÐÐ→ Pc
t

mutationÐÐÐÐ→ Pt+1
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4
From Populations to Probability Distributions

A population P can be seen as a sample i. i. d.∼ with respect to some

probability distribution p in the probability simplex ∆

Let N denote the sample size. We have

P estimation // p̂ P p
samplingoo

For unbiased estimators and N →∞ (infinite population size analysis)

P estimation // p

Such approach is at the basis of the theoretical analysis of Vose

(1999) on SGA

We can describe genetic operators as maps from the probability

simplex to the the probability simplex itself, e.g.,

selection ∶∆ ∋ p↦ ps ∈∆
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5
From Hypercubes to Probability Simplices

A run of a population-based EA identifies a sequence of points in ∆

Single run of the
GA:

Pt
selection //

estimation
��

Ps
t

crossover //

��

Pc
t

mutation //

��

Pt+1
��

p̂t p̂st p̂ct p̂t+1
A run can be seen as a realization of the expected behavior of the algorithm

Expected behavior
of the GA:

PtOO
sampling

Ps
tOO Pc

tOO Pt+1OO

pt
selection // pst

crossover // pct
mutation // pt+1

For unbiased estimators and N →∞, the map is one-to-one

Infinite population
size analysis of
the GA:

PtOO

��

selection // Ps
t

crossover //
OO
��

Pc
tOO
��

mutation // Pt+1OO
��

pt
selection // pst

crossover // pct
mutation // pt+1
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A Toy Example with 2 Binary Variables (cont.)

Example: Ω = {−1,1}2, f(x) = x1 + 2x2 + 3x1x2
P0 f(x)
1 -1 -4

-1 1 -2

1 -1 -4

-1 -1 0

1 1 6

-1 1 -2

-1 1 -2

-1 1 6

Hypercube

−+
f = −2

−−
f = 0

++
f = 6

+−
f = −4

Probability simplex

GA: pt
truncation selectionÐÐÐÐÐÐÐÐÐÐ→ pst

1-point crossoverÐÐÐÐÐÐÐÐÐ→ pct
mutationÐÐÐÐ→ pt+1
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Model-Based Optimization

In model-based optimization, the search for the optimum of f is

performed explicitly in the space of probability distributions.

By updating the parameters of a probability distribution, iterative

algorithms generate sequences of distributions.

Candidate solutions for the optimum of f can be obtained by

sampling.

A model-based algorithm is expected to produce converging and

minimizing sequence, however

◾ Which statistical model to choose?

◾ How to generate such sequence?
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8
Examples of Model-based Algorithms

Evolutionary computation

◾ EDAs (Larrañaga and Lozano, 2002), DEUM framework (Shakya et al.,
2005)

Gradient descent

◾ SGD (Robbins and Monro, 1951), CMA-ES (Hansen and Ostermeier,

2001), NES (Wierstra et al., 2008), SNGD (M. et al., FOGA 2011), IGO
(Ollivier et al., 2011),

Boltzmann distribution and Gibbs sampler (Geman and Geman, 1984)

Simulated Annealing and Boltzmann Machines (Aarts and Korst, 1989)

The Cross-Entropy method (Rubinstein, 1997)

LP relaxation in pseudo-Boolean optimization (Boros and Hammer, 2001)

Methods of Moments (Meziat et al., 2001)
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Model-based EC: Estimation of Distribution

In Estimation of Distribution Algorithms (EDAs) a statistical model is

introduced to model interactions among variables of f

Genetic operators (crossover and mutation in GAs) are replaced by

statistical operators such as estimation and sampling

Let us introduce some more notation

◾ p(x, θ) a probability distribution over Ω parametrized by θ◾ M = {p(x, θ) ∶ θ ∈ Θ} a parametric statistical model

The basic iteration of an EDA can be described as

Pt selection // Ps
t

estimation

(model selection)
// pt

sampling // Pt+1 pt ∈M
From a model-based perspective, we have

pt
sampling // Pt+1 selection // Ps

t+1 estimation

(model selection)
// pt+1
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Estimation of Distribution Algorithms

Suppose we choseM to be the independence model for x = (x1, x2)M = {p ∶ p(x) = p1(x1)p2(x2)}
and we parametrize it using marginal probabilities pi(xi) = P(Xi = xi)
Estimation of the parameters given a sample is obtained with a

maximum likelihood estimator, i.e., we count occurrences
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Back to the Toy Example with 2 Binary Variables

Example: Ω = {−1,1}2, f(x) = x1 + 2x2 + 3x1x2, independence model

P0 f(x)
1 -1 -4

-1 1 -2

1 -1 -4

-1 -1 0

1 1 6

-1 1 -2

-1 1 -2

-1 1 6

Hypercube

−+
f = −2

−−
f = 0

++
f = 6

+−
f = −4

Probability simplex

EDA: Pt truncation selectionÐÐÐÐÐÐÐÐÐÐ→ Ps
t

estimationÐÐÐÐÐ→ Pc
t

samplingÐÐÐÐ→ Pt+1
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12
Expected Fitness Landscape

In model-based optimization, the search for the optimum in Ω is

guided by a search in the space of the probability distributions.

A natural choice is to optimize the expected value of f overM,

Ep[f] ∶ M → R

which can be expressed as a function of ξ, given a parameterization

for p(x, ξ) ∈M, i.e.,

ξ ↦ Eξ[f]
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13Equivalent Parameterizations for the

Independence Model p(x) = p1(x1)p2(x2)
Marginal probabilities µ = (µ1, µ2) ∈ [0,1]2
pi(xi) = P(Xi = xi) pi(1) = µi pi(−1) = 1 − µi

pi(xi) = (2µixi − xi + 1) /2
Eµ[f] = ∑

x∈Ωf(x)p1(x1)p2(x2) = −4µ1 − 2µ2 + 12µ1µ2

Natural parameters θ = (θ1, θ2) ∈ R2 of the Exponential Family

p(x) = exp{θ1x1 + θ2x2 − ψ(θ)} ψ(θ) = ln∑
x∈Ω exp{θ1x1 + θ2x2} = lnZ(θ)

pi(xi) = eθixi

eθi + e−θi
Eθ[f] = (−4eθ1−θ2 − 2e−θ1+θ2 + 6eθ1+θ2)/Z(θ)
The mapping between the two parameterizations is one-to-one for p(x) > 0

θi = (ln(µi) − ln(1 − µi)) /2 µi = eθi

eθi + e−θi
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Gradient Flows on the Independence Model

Marginal probabilities µ
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Gradient flows ∇Eξ[f] appear to depend on the parameters and do

not always converge to the expected distribution

[Remark] We supposed the geometry ofM to be Euclidean
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Summary of the Intro

◾ There exists a common geometric framework to describe

population- and model-based EAs

◾ Iterative algorithm generate sequences of distributions which can

be compared to the gradient flow of Ep[f]
◾ The choice of the statistical model and of the parameterization

plays an important role

◾ The Euclidean geometry does not appear to be the proper

geometry forM
We need a more general mathematical framework, able to deal with

non-Euclidean geometries, to define a unifying perspective on

model-based optimization

L. Malagò, T. Glasmachers, GECCO, July 13, 2014

712



16
Outline

Part I

◾ Stochastic relaxation of the fitness functions

◾ Introduction to the Information Geometry of statistical models

◾ Natural Gradient

◾ Fitness landscape and model selection

Part II

◾ Natural Evolution Strategies

◾ Stochastic Natural Gradient Descent

◾ Information Geometric Optimization

◾ Convergence theorems

◾ Practical performance
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Part I
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Stochastic Relaxation of f

Consider the following optimization problem

(P) min
x∈Ω f(x)

We define stochastic relaxation (SR) of f the function

F ∶ p↦ Ep[f]
Given a statistical modelM = {p(x)}, we look for the solution of (P)

by generating minimizing sequences {pt} inM for F (p)
Let ξ be a parameterization forM, i.e.,M = {p(x; ξ) ∶ ξ ∈ Ξ}, the SR

can be expressed as

(SR) min
ξ∈Ξ F (ξ)

We move the search to the space of probability distribution

The parameters ξ ∈ Ξ become the variables of the relaxed problem
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Equivalence of (P) and (SR)

Let us introduce some notation

◾ x∗ ∈ Ω∗ = argmin x∈Ω f(x) the global optima of f◾ p∗ ∈M∗ = argmin p∈MF (ξ) the global optima of F

◾ M the topological closure ofM, i.e.,M together all limit

distributions of sequences {pt} ∈M
Candidate solutions for (P) can be sampled by solutions of the (SR)

Distributions inM∗ have reduced support and for discrete Ω
corresponds to faces of ∆

(P) and (SR) and equivalent if and only if from a solution of (SR) we

can sample points in Ω∗ with P(X = x∗) = 1
A sufficient condition is the inclusion of the Dirac distributions δx∗ inM, i.e., there exists a sequence {pt} ∈M such that

lim
t→∞F (pt) =min

x∈Ω f(x)
L. Malagò, T. Glasmachers, GECCO, July 13, 2014
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20
The Exponential Family

In the following, we consider models in the Exponential Family E
p(x, θ) = exp(m∑

i=1θiTi(x) − ψ(θ))
◾ sufficient statistics T = (T1(x), . . . , Tm(x))◾ natural parameters θ = (θ1, . . . , θm) ∈ Θ◾ log-partition function ψ(θ)

Several statistical models belong to the exponential family, both in the

continuous and discrete case
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Information Geometry

The geometry of statistical models is not Euclidean, and we need

tools from differential geometry to properly describe notions such as

tangent vectors, shortest paths and distances between distributions

Information Geometry (IG), first propose by Amari, consists of the

study of statistical models as manifolds of distributions endowed with

the Fisher information matrix
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Characterization of the Tangent Space of E
A statistical model can be modeled as a manifold of distributions by

introducing an affine chart in p such that any density q is locally

represented w.r.t. to the reference measure p, i.e., q
p − 1

The tangent space at each point p is defined by

Tp = {v ∶ Ep[v] = 0}
Consider a curve p(θ) such that p(0) = p, then

ṗ(θ)
p ∈ Tp

In a moving coordinate system, tangent (velocity) vectors in Tp(θ) to

the curve are given by logarithmic derivatives

ṗ(θ)
p(θ) = d

dθ
log p(θ)
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Characterization of the Tangent Space of E
The one dimensional model

p(θ) = exp{θT − ψ(θ)}
is a curve in the manifold, with tangent vector

T − d

dθ
ψ(θ)

On the other side, given a vector field, at each p we have a vector

U(p) tangent to some curve, we obtain a differential equation

d

dθ
log p(θ) = U(p),

whose solution is a one dimensional model in E

L. Malagò, T. Glasmachers, GECCO, July 13, 2014
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24
Geometry of the Exponential Family

In case of a finite sample space X , we have

p(x; θ) = exp( k∑
i=1 θiTi(x) −ψ(θ)) θ ∈ Rk

and

Tθ = {v ∶ v = k∑
i=1ai(Ti(x) −Eθ[Ti]), ai ∈ R}

Since ∇Eθ[f] = Covθ(f,T ), if f ∈ Tp the steepest direction is given by

f − Eθ[f] otherwise we take the projection of f onto Tp

f̂ = k∑
i=1 âi(Ti(x) − Eθ[Ti]),

and obtain f̂ by solving a system of linear equations
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Geometry of Statistical Models

Since f − f̂ is orthogonal to Tp

Eθ[(f − f̂θ)(T −Eθ[T ])] = Covθ(f − f̂θ, T ) = 0,
from which we obtain, for i = 1, . . . , k,

Covθ(f,Ti) = Covθ(f̂θ, Ti) = k∑
j=1 âj Covθ(Tj , Ti)

As the Hessian matrix of ψ(θ) is invertible, we have

â = [Covθ(Ti, Tj)]−1Covθ(f,T ) = I(θ)−1∇F (θ)
In case f ∈ Span{T1, . . . , Tk}, then f̂θ = f
By taking projection to Tp, we obtained the natural gradient ∇̃F , i.e.,

the gradient evaluated w.r.t. the Fisher information metric
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Vanilla Gradient vs Natural Gradient

Expectation parameters η (λ = 0.075)
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Vanilla Gradient vs Natural Gradient

Expectation parameters η
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Vanilla gradient ∇F vs Natural gradient ∇̃F
There exist two basins of attraction, however natural gradient

converges to δx∗ for distributions close enough to the optimum
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28The Gibbs Distribution

(Hwang, 1980; Geman and Geman, 1984)

◾ The Gibbs or Boltzmann distribution is the following one

dimensional exponential family

p(x;β) = qe−βf
Eq[e−βf ] , β > 0

◾ The set of distributions is not weakly closed

lim
β→0

p(x;β) = q
lim
β→∞p(x;β) = pδ

◾ The limit pδ is the uniform distribution over the minima of f and

since ∇Eβ[f] = −Varβ(f) < 0, Eβ[f] decreases monotonically

Evaluating the partition function is computationally infeasible
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The Big Picture

If f ∉ Tp, the projection f̂ may vanish, and local minima may appear
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30
Choice ofM
The choice of the statistical modelM determines the landscape of F

Independence model, θ = (θ1, θ2,0)
p(x) = exp{θ1x1 + θ2x2 −ψ(θ)}
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Exponential family, θ = (0, θ2, θ12)
p(x) = exp{θ2x2 + θ12x1x2 −ψ(θ)}
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Vanilla gradient ∇F vs Natural gradient ∇̃F
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Generating minimizing sequences {pt}
In model-based optimization, the relaxed problem (SR) can be

approached with different techniques, among the other we have

◾ Estimation of distribution EDAs, see (Larrañaga and Lozano,

2002) for a review

◾ Covariance Matrix Adaptation CMA-ES (Hansen and

Ostermeier, 2001)

◾ Fitness modelling DEUM framework (Shakya et al., 2005)

◾ Gradient descent NES (Wierstra et al., 2008), SNGD (M. et al.,

FOGA 2011), IGO (Arnold et al., 2011)

In the following we will show how a geometrical framework based on

Information Geometry can be exploited to relate these different

approaches
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Part II
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A General Framework for Algorithms

◾ In the first part we have seen natural gradients on distributions.

◾ Now we will derive concrete algorithms from this general

framework.

◾ Design choices:

◾ search space: discrete or continuous, structure?◾ statistical model?◾ stochastic relaxation?◾ efficient computation/estimation of ∇̃Wf (ξ)?
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The Log-Likelihood Trick

Assume the form Wf(ξ) = Ex∼Pξ
[w(f(x))].

∇ξWf(ξ) = ∇ξEx∼Pξ
[w(f(x))]

= ∇ξ ∫
Ω
w(f(x))p(x∣ξ)dx

= ∫
Ω
w(f(x)) ⋅ ∇ξp(x∣ξ)dx

= ∫
Ω
w(f(x)) ⋅ ∇ξp(x∣ξ) ⋅ p(x∣ξ)

p(x∣ξ) dx

= ∫
Ω
w(f(x)) ⋅ ∇ξp(x∣ξ)

p(x∣ξ) ⋅ p(x∣ξ)dx= Ex∼Pξ
[w(f(x)) ⋅ ∇ξ log (p(x∣ξ))]

The gradient of the expectation can be written as the expectation of a

weighted gradient of the log likelihood.
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The Log-Likelihood Trick

∇ξWf(ξ) = Ex∼Pξ
[w(f(x)) ⋅ ∇ξ log (p(x∣ξ))]

◾ The expected value can be estimated efficiently.

◾ Its Monte Carlo estimate reads:

∇ξWf(ξ) ≈ 1

N
∑

x1,...,xN∼Pξ

w(f(xi)) ⋅ ∇ξ log (p(xi∣ξ))
◾ Note: neither the gradient of Wf nor its approximation require the

gradient of f .

L. Malagò, T. Glasmachers, GECCO, July 13, 2014
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Stochastic Gradient Descent (SGD)

◾ A simple way to optimize based on a gradient is

gradient descent (GD):

ξ ← ξ + γ ⋅ ∇ξWf(ξ) .
◾ The parameter γ > 0 is called learning rate.

◾ Following an unbiased gradient estimate G(ξ)
(with E[G(ξ)] = ∇ξWf(ξ)) is known as

stochastic gradient descent (SGD):

ξ ← ξ + γ ⋅G(ξ) .
◾ This is a well-established algorithm, e.g., in machine learning.

◾ Using ∇̃Wf(ξ) instead of ∇Wf(ξ) we have even stochastic

natural gradient descent (SNGD).

◾ This approach gives a concrete scheme for iterative optimization

of Wf(ξ).
L. Malagò, T. Glasmachers, GECCO, July 13, 2014
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Continuous Optimization with NES

◾ In the context of evolution strategies such a scheme was first

proposed by Wierstra et al. in 2008.

◾ Original Natural Evolution Strategies (NES) approach: apply

SNGD to optimize expected fitness Wf(ξ) = Ex∼Pξ
[f(x)] with

multi-variate Gaussian search distributions N (m,C).
◾ SNGD with Gaussians is rather easy since the Fisher matrix is a

closed form term:

Ii,j = ∂mT

∂ξi
C−1∂m

∂ξj
+ 1

2
tr(C−1∂C

∂ξi
C−1 ∂C

∂ξj
)

◾ Practical versions of NES apply many performance enhancing

techniques like rank-based utilities and non-uniform learning

rates that complement the SNGD approach.
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Natural Gradients for Gaussian Distributions

◾ In Rd we start with the Gaussian density

p(x∣ξ) = 1√(2π)d det(C) exp (−
1

2
(x −m)TC−1(x −m)) .

Its natural logarithm is

log (p(x∣ξ)) = −d
2
log(2π) − 1

2
tr(log(C)) − 1

2
(x −m)TC−1(x −m) .

◾ It is often beneficial to represent the covariance matrix with a

factor: C = AAT . For x ∼N (m,C) we introduce the transformed

sample z = A−1(x −m) ∼N (0, I).
◾ In tailored coordinates

(m′,A′) = (m +Aδ,A(I + 1

2
M))

centered to the current distribution (m,A) the Fisher matrix w.r.t.

the local parameters ξ = (δ,M) becomes the identity.
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Natural Gradients for Gaussian Distributions

◾ The (natural) gradient of the log density at (δ,M) = 0 is

∇̃δ log(p(x∣ξ)) = A−1(x −m) = z
∇̃M log(p(x∣ξ)) = 1

2
(A(x −m)(x −m)TA − I) = 1

2
(zzT − I)

◾ The stochastic (natural) gradient of Wf becomes

Gδ(ξ) = 1

N

N∑
i=1 f(xi) ⋅ zi

GM (ξ) = 1

2N

N∑
i=1f(xi) ⋅ (zizTi − I)

◾ Tricks of the trade: replace “raw fitness” with “rank-based utility

weights”

f(x1) ≤ ⋅ ⋅ ⋅ ≤ f(xN) → u1 ≥ ⋅ ⋅ ⋅ ≥ uN
to achieve better invariance and faster convergence.

L. Malagò, T. Glasmachers, GECCO, July 13, 2014
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Natural Evolution Strategies (NES)

Canonical NES algorithm with Gaussians N (m,C = AAT )
while stopping criterion not met do

// sample offspring
for i ∈ {1, . . . ,N} do
zi ←N (0, I)
xi ←m +A ⋅ zi

sort {(zi, xi)} w.r.t. f(xi)
// compute stochastic natural gradient
Gδ ← 1

N ∑N
i=1 ui ⋅ zi

GM ← 1
2N ∑N

i=1 ui ⋅ (zizTi − I)
// apply update
m ←m + γm ⋅A ⋅Gδ

A ← A ⋅ (I + γA ⋅GM)
loop

L. Malagò, T. Glasmachers, GECCO, July 13, 2014
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Natural Evolution Strategies (NES)

◾ NES is a CMA-ES-like algorithm from “first principles”. It

“explains” three aspects of ES from a single principle:

◾ optimization – update of m◾ step size control – update of σ = d
√
det(A)◾ shape control (CMA) – update of A (or of A/σ)

◾ However, it does not incorporate everything:

◾ noise-countering techniques such as cumulation

◾ Moreover, “dirty tricks” are needed to make it fly:

◾ rank-based utilities replace fitness values◾ different learning rates for mean and covariance◾ other techniques are subtraction of a fitness baseline and

importance mixing to incorporate older samples
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SNGD with Exponential Family

◾ Consider an exponential family

p(x∣θ) = exp( k∑
i=1 θiTi(x) −ψ(θ)) .

with sufficient statistics Ti.

◾ The derivative of the log density is simply

∂ log(p(x∣θ))
∂θi

= Ti(x) − E[Ti(x)] .
◾ Hence also the gradient has a simple form:

Cov
x∼Pθ

(T (x),Wf(x)) .
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SNGD with Exponential Family

◾ The Fisher matrix has entries

Iij(ξ) = Cov
x∼Pθ

(Ti(x), Tj(x)) .
◾ The natural gradient flow can be expressed solely in terms of

covariances, between sufficient statistics and with the objective:

∇Wf(θ) = Cov
x∼Pθ

(T (x), T (x))−1Cov
x∼Pθ

(T (x),Wf) .
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SNGD with Exponential Family

◾ Now assume bitstrings Ω = {0,1}n.

◾ Then the probability simplex ∆ and hence the statistical manifold

Θ is finite dimensional.

◾ The sufficient statistics Ti(x) are (square free) monomials.

◾ Each monomial characterizes a subset of bits the dependencies

of which can be modeled.

◾ If the chosen model contains all interactions of variables in f
then there is only one (global) optimum of Wf . The natural

gradient will lead us there.
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Information Geometric Optimization (IGO)

The Information Geometric Optimization (IGO) approach by

Ollivier et al. introduces a unifying perspective:

◾ it emphasizes invariance properties as a means to reduce the

number of arbitrary design choices,

◾ with a specific choice of Wf it explains the utility weights of NES

from within the framework,

◾ it highlights the role of the gradient flow as the “pure form” of the

EA, with the SNGD update being an approximation.
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Dynamic Stochastic Relaxation

◾ Expected fitness Wf(ξ) = Ex∼Pξ
[f(x)] is only one possible

stochastic relaxation of f .

◾ We have already seen the generalization

Wf(ξ) = Ex∼Pξ
[w(f(x))] with a transformation w.

◾ In IGO the weight function depends on the f -quantile under the

current distribution Pξ0 : w(f(x)) = w̃(q−1ξ0 (f(x))), where

qξ0 ∶ [0,1] → R encodes the quantiles of the distribution of f(x),
x ∼ Pξ0 .

◾ E.g., qξ0(1/2) is the median of f -values, and w̃(q) = 1 for q < 1/2
and w̃(q) = 0 for q ≥ 1/2 encodes truncation (selection): only the

better half of the distribution enters the update equation.

◾ The dynamic choice of w = w(ξ0) rescales f to a locally relevant

range. It emphasizes local improvements relative to the current f
distribution.
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Dynamic Stochastic Relaxation

◾ Benefit 1: Wf becomes invariant under rank-preserving

transformations of fitness values.

◾ Benefit 2: the rank-based utility weights of NES are obtained

automatically in a principled manner.

◾ Drawback: the objective function W ξ0
f (ξ) becomes dependent on

the current distribution ξ = ξ0
◾ This means that the following situation may exist in principle:

W ξ1
f (ξ2) >W ξ1

f (ξ1)
W ξ2

f (ξ3) >W ξ2
f (ξ2)

W ξ3
f (ξ1) >W ξ3

f (ξ3)
and the “optimization” turns around in circles...

◾ Provably, in important special cases this does not happen.
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Vector Field, ODE, and Flow

◾ Algorithmic and hence discrete time optimization is only one

possibility.

◾ The natural gradient ∇̃Wf(ξ) defines the vector field V ∶ Ξ→ TΞ
via V (ξ) = ∇̃Wf(ξ).

◾ This vector field is naturally associated with the differential

equation γ̇(t) = V (γ(t)) with solution curves γ ∶ R→ Ξ.

◾ The solution curves are collected in the flow ϕ(ξ, t).
◾ Note 1: just like the natural gradient itself this flow is

deterministic. This is achieved in the limit of infinite samples in

the MC approximation, corresponding to infinite population size.

◾ Note 2: in each point the flow moves tangential to the vector

field. This corresponds to re-evaluating the gradient after an

infinitesimal step, or to an infinitesimal leaning rate in the

gradient descent procedure.
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SGD Algorithms

◾ An SGD algorithm is a two-fold approximation of the flow:

◾ it discretizes time and performs Euler steps,◾ it relies on a stochastic gradient based on sampling.

◾ If the IGO objective is in use then such algorithms have been

termed IGO algorithms.

◾ NES is a rather pure example of an IGO algorithm.

◾ Surprisingly many established algorithm fall into this category or

have a close connection to SGD (or IGO) algorithms

◾ This derivation of randomized direct search algorithms opens a

new perspective: the EA is an approximation of a much more

simple and beautiful mathematical object, namely the

deterministic, time continuous gradient flow, thought of as an

idealized EA.
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Connection to CMA-ES

◾ Modern CMA-ES is a versatile algorithm that comes in many

variants, e.g., with mirrored sampling, a restart strategy, a noise

handling mechanism, an elitist variant, constraint handling, ...

◾ Even the basic reference algorithm is rather complex.

◾ It updates the distribution mean with global weighted

recombination:

m← µ∑
i=1wi ⋅ xi .

◾ For the purpose of simplified analysis we drop cumulative step

size adaptation and consider only the so-called rank-µ update

C ← (1 − γC) ⋅C + γC ⋅ µ∑
i=1wi ⋅ (xi −m)(xi −m)T .
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Connection to CMA-ES

◾ Both equations can be written as updates

m←m + γm ⋅ N∑
i=1wi ⋅ (xi −m)

C ← C + γC ⋅ N∑
i=1wi ⋅ ((xi −m)(xi −m)T −C)

with fixed learning rate γm = 1 and wi = 0 for i > µ.

◾ The change of coordinates C = AAT , x = Az +m reveals:

m ←m + γm ⋅A ⋅ N∑
i=1wi ⋅ zi

C ← C + γC ⋅A ⋅ ( N∑
i=1wi ⋅ (zizTi − I)) ⋅AT

◾ This is essentially the IGO/NES SGD update (see Akimoto

2010).
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Connection to Maximum Likelihood Estimation

◾ The CMA-ES update equations can be written as

m← (1 − γm) ⋅m + γm ⋅ m̂ML ,

C ← (1 − γC) ⋅C + γC ⋅ ĈML .

◾ Here m̂ML = ∑N
i=1wi ⋅ xi is the weighted Maximum Likelihood (ML)

estimator of m.

◾ The term

ĈML = µ∑
i=1wi(xi −m)(xi −m)T

is the weighted ML estimator of C, provided that m remains fixed.

◾ For a learning rate of γm = γC = 1 we obtain m ← m̂ML and

C ← ĈML.

◾ Due to the large learning rate this works in practice only for a

large enough sample size µ.
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Convergence Results

◾ Convergence of optimization algorithms to the optimum is more

than “nice to have”.

◾ Example: consider a convex problem with minimum f∗.
Convergence means that for any ε > 0 the algorithm with

stopping criterion f(x) < f∗ + ε halts.

◾ Hence convergence guarantees let people sleep better.

◾ Convergence rates (O and also the actual constants) are equally

important.

◾ This is because the fact that the optimization will stop at all is

meaningless in practice; instead we need to know (roughly) how

long it takes.
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Convergence Results

◾ Convergence has been analyzed for many optimization

algorithms. For most realistic evolutionary algorithm this is a

hard task.

◾ One of the benefits of the gradient flow (as an idealization of

actual algorithms) is that it is much easier to analyze.

◾ Question: Do all trajectories converge to the optimum?

◾ More formally, let δx∗ denote the Dirac peak over an (isolated)

optimum x∗ ∈ Ω. Does it hold limt→∞Pφ(ξ,t) = δx∗ for all initial

conditions ξ?

◾ Other notions of convergence are possible, e.g., convergence of

expected fitness.

◾ Note: convergence of the flow does not directly imply

convergence of stochastic approximate algorithms!
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Representability: The Marginal Polytope

◾ Convergence of the gradient flow to the optimum has a hidden

prerequisite:

◾ The statistical model must be sufficiently rich to focus the

probability mass on an optimum, or more exactly, on a subset of

the optimal set Ω∗ ⊂ Ω.

◾ In general this property is a non-trivial prerequisite for

optimization with a stochastic relaxation.

◾ As such it is not a prerequisite for convergence of the flow to an

optimal distribution within (the closure of) the statistical model.

◾ However, it is a prerequisite for convergence to an optimal

distribution, possibly outside the family, and hence to an optimum

of the original problem minx∈Ω f(x).
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Representability: The Marginal Polytope

◾ Assume an exponential family

p(x∣ξ) = exp( k∑
i=1 ξiTi(x) − ψ(ξ))

of distributions. Then this property has a geometric interpretation

in distribution space.

◾ Distribution are restricted to the marginal polytope, which is the

convex hull of the canonical statistics Ti(x).
◾ For discrete search spaces Ω it is a sub-polytope of the

probability simplex.

◾ The optimum of the stochastically relaxed problem describes an

optimum of f ∶ Ω→ R iff a subset of S ⊂ Ω∗ corresponds to an

exposed face Wf of the marginal polytope, i.e., if

S = T −1(Wf) ⊂ Ω∗.
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Representability: The Marginal Polytope

◾ Consider the family of Gaussian distributions N (m,σ2) with

adaptive mean m and step size σ.

◾ The Dirac distribution δx of a point x ∈ Rd is obtained in the limit

δx = lim
σ→0
N (x,σ2) .

◾ Hence the probability mass can be focused to an arbitrarily small

neighborhood of an optimal point x∗ ∈ Ω∗ ⊂ Rd.

◾ As a consequence convergence is possible also for all supersets

of distributions, i.e., multi-variate Gaussians.
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Convergence Results

Theorem (Akimoto et al. 2012, Glasmachers 2012)

Let f ∶ Rn → R be a strictly convex quadratic function with minimum x∗. Consider the

class N (m,σ2) of isotropic Gaussian search distributions. Then all trajectories of the

IGO flow converge to the boundary point m = x∗ and σ2 = 0 (corresponding to δx∗ ).

Corollary (Akimoto et al. 2012)

The same holds for monotonically transformed functions.

Corollary (Akimoto et al. 2012)

The same holds in the vicinity of any twice continuously differentiable local optimum.
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Convergence Results with CMA

The following theorem was proven for IGO with weighted quantiles of

a fixed (non-adaptive) reference distribution:

Theorem (Akimoto 2012)

Consider f(x) = xTQx with strictly positive definite matrix Q and multivariate

Gaussian search distributionsN (m,C). Then it holds

m → 0 C → Q−1 .
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Convergence Results with CMA

The following result is for the IGO flow with expected fitness:

Lemma (Beyer 2013)

For multivariate Gaussians N (m,C) on a convex quadratic objective f(x) = xTQx
the gradient flow is defined by the differential equation

dm(t)
dt

= −2C(t)Qm(t)
dC(t)

dt
= −2C(t)QC(t)

A similar result was found by Akimoto for the IGO flow with fixed

reference distribution.
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Convergence Results with CMA

Theorem (Beyer 2013)

The non-linear ordinary differential equation (ODE) system

dC(t)
dt

= −2C(t)QC(t)
with initial condition C(0) = C0 has the solution

C(t) = (C−10 + 2tQ)−1 .

⇒ C(t)→ Q−1
⇒ ∥C(t)Q−1∥ ∈ O(1/t)

Beyer also obtains ∥m(t)∥ ∈ O(1/t).
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Convergence Results with CMA

Theorem (Beyer 2013)

Under the assumption of (approximate) normality of fitness values the dynamics of

IGO (with quantile-based objective) are

m(t) ≈ α ⋅ exp (−√2/d ⋅ t) ⋅Q−1C−10 m0 ,

C(t) ≈ α ⋅ exp (−√2/d ⋅ t) ⋅Q−1 .

◾ Normality of fitness values is exact for linear functions.

◾ It holds approximately for quadratic functions for large d≫ 1.

◾ The flow convergences at a linear rate, which is what we’d

expect for an evolution strategy.

◾ The dependence on the dimension is surprisingly good; the

square root is not achieved by SGD algorithms.
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Convergence Results

Summary: convergence of the flow for continuous search spaces

◾ Proofs for isotropic and general multi-variate Gaussians.

◾ Results are restricted to (monotonically transformed) quadratic

functions. This models convergence to twice differentiable local

optima well.

◾ There are no results for more general problem classes such as

all convex problems.

◾ Note once more: convergence results for the gradient flow do not

imply convergence of the EA.

◾ The deviations of the algorithm from the flow due of stochasticity

(finite populations) and finite step sizes (discrete time) are yet to

be understood.
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Practical Performance

But honestly – does it really work?

◾ This question is not well posed.

◾ Many EAs apply update equations that can be explained from

information geometry.

◾ Statistical models and stochastic relaxations do not and will

probably never cover all aspects of EAs.

◾ Realistic EAs can be built from two types of components:

◾ update equations derived from information geometry,◾ classic tools for handling stochasticity.

◾ Each component must do its job.

◾ Information geometrical updates generally do a great job at

improving the search distribution, provided that stochastic effects

are sufficiently well controlled.
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Practical Performance

But honestly – does it really work?

As far as the above outlined role of information geometry in EAs is

concerned the clear answer is:

Yes, it works great!
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Practical Performance

Case study: search for collision free robot arm trajectories
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Practical Performance: BBOB 2013

source: N. Hansen, A few overview results from the GECCO BBOB workshops
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68
Summary

◾ Information geometry provides update equations for optimization

from first principles.

◾ This often amounts to stochastic natural gradient descent

applied to a stochastically relaxed problem.

◾ This is an approximation to an optimization flow.

◾ It can help the analysis of existing algorithms like CMA-ES.

◾ It is a generic design principle for optimization algorithms on any

search space and any family of search distributions.

◾ Dedicated algorithms such as NES were built on this principle.

◾ Algorithms respecting the information geometry of their search

distributions are among the top performers.
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Summary

◾ However, randomized algorithms deviate widely from the

idealized, deterministic gradient flow. These stochastic effects

are outside the framework, they must be controlled by other

means.

◾ Information geometric tools must be augmented with

“orthogonal” tools for control of stochastic effects—together they

provide a modern perspective on EA research.

◾ The same problem decomposition is a promising route for

theoretical analysis: the gradient flow is becoming a

well-investigated object, while more traditional tools (Markov

chain analysis, etc.) may be necessary to connect it to real EAs.
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