

5 of 61 cGA Panmixia versus Decentralization Index Advantages of Decentralized EA's Introduction to cGAs Larger efficiency: numerical and physical **Typical Scenarios** 2 Algorithmic improvements in diversity, convergence, multisolution, dynamic Adjusting the ratio environments, ... Asynchronous cGAs **3** More complex problems can be addressed **Current Research** 4 New models naturally arise **Dynamic Problems** Drawbacks of Decentralized EA's **Multiobjective cGAs** New theoretical background is needed Other cGAs Decentralizing is NOT always better (!) **Applications** 3 Larger complexity of implement, and analysis Resources 08/05/2014

41 of 61 Index Introduction to cGAs **Typical Scenarios** Adjusting the ratio Asynchronous cGAs **Current Research** Dynamic Problems **Multiobjective cGAs** Other cGAs

Applications

Resources

cGA

Dynamic Optimization with cGAs (II)

Many New Algorithms

Diploid\Dominance Multinational GA Stochastic GA Variable Local Search

BIPOP Micro GA Parallel EA Variants **Triggered Hypermutation** Immune System **Random Immigrant Self-Organizing Scouts** Cultural GA

Multiploid Shifting Balance GA

Self-adaptive Mutation

Thermodynamical GA Aging EA Self-adaptive Mutation with update rule

08/05/2014

42 of 61

cGA

Dynamic Optimization with cGAs (III)

Index

Introduction to cGAs

Typical Scenarios

Adjusting the ratio

Asynchronous cGAs

Current Research

Dynamic Problems

Multiobjective cGAs

Other cGAs

Applications

Resources

• In General:

$$f(x,t) = \begin{cases} f_1(x) & \text{si } t \in U_1 \subset T \\ f_2(x) & \text{si } t \in U_2 \subset T \\ \vdots & \vdots \\ f_n(x) & \text{si } t \in U_n \subset T \end{cases} \quad \bigcap_{i=1}^n U_i = \phi$$

- In most cases:
 - n is 2 or 3
 - U_i is a set of intervals with the same length for all *i* (period of change)

08/05/2014

61 of 61

cGA

Index

Introduction to cGAs

Typical Scenarios

Adjusting the ratio

Asynchronous cGAs

Current Research

Dynamic Problems

Multiobjective cGAs

Other cGAs

Applications

Resources

End of Presentation

Málaga (Spain)

http://neo.lcc.uma.es