Artificial Immune Systems for Optimisation

Thomas Jansen Aberystwyth University Aberystwyth SY23 3DB, UK

t.jansen@aber.ac.uk

Christine Zarges University of Birmingham Birmingham B15 2TT, UK c.zarges@cs.bham.ac.uk

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage, and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

Copyright is held by the author/owner(s). GECCO '14, July 12–16, 2014, Vancouver, BC, Canada. ACM 978-1-4503-2881-4/14/07. http://dx.doi.org/10.1145/2598394.2605357

Artificial Immune Systems are...

•0

- a model of the natural immune system if you are interested in the natural immune system
- computational systems inspired by the natural immune system with natural applications in anomaly detection & classification if you are interested in solving a classification problem

Introduction Natural Immune System AIS as Classifiers AIS as Optimisers Analysing AIS Conclusion & References

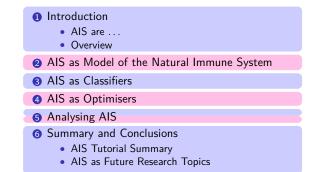
4

- nature-inspired algorithms using the natural immune system as metaphor for problem-solving
 - if you are interested in solving difficult problems
- nature-inspired randomised search heuristics like many others, e.g., evolutionary algorithms, ACO, SA, ... if you are interested in randomised search heuristics
- a fascinating area of research in any case

Good News We cover all these aspects. (\rightsquigarrow structure governed by this)

Introduction O	Natural Immune System	AIS as Classifiers 0000 000	AIS as Optimisers 00000000 0000	Analysing AIS Conclusion & References 000000000000000000000000000000000000

Plans for Today



Introduction 00	Natural Immune System •00000000	AIS as Classifiers 0000 000	AIS as Optimisers 00000000 0000	Analysing AIS 00000000000 00000	Conclusion & References
Biolog	ical Inspiratio	on: The Ir	nmune Sys	stem of	Vertebrates

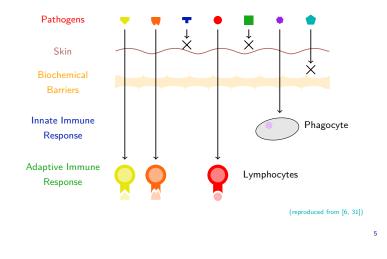
"The immune system recognizes infection and induces protective responses." [27]

Main Tasks

- Immunological recognition
- Immune effector functions
- Immune regulation
- Immunological memory

Introduction Natural Immune System AIS as Classifiers AIS as Optimisers Analysing AIS Conclusion & References 00 000000000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0 0000 0 0000 0</

Multilayer Structure of the Immune System



Introduction Natural Immune System	AIS as Classifiers 0000 000	AIS as Optimisers 00000000 0000	Analysing AIS	Conclusion & References
------------------------------------	-----------------------------------	---------------------------------------	---------------	-------------------------

Adaptive Immunity – Immunological Recognition

- Lymphocytes
 - Naïve: not yet involved in an immune response
 - Become active due to interaction with antigenic stimulus
- Carry antigen receptors of single specificity
- Receptor diversity due to
 - Random recombination of gene fragments from several libraries
 - Somatic hypermutation to increase antigen-antibody affinity
- Recognition based on complementarity between binding region of receptor and epitope of antigen on molecular level
- Antigens may present several epitopes
- Require co-stimulatory signals
- B cell receptor interacts directly while T cell receptor requires preprocessing and presenting by other cells

Introduction	Natural Immune System	AIS as Classifiers	AIS as Optimisers	Analysing AIS	Conclusion & References	
00	000000000	0000	00000000	000000000000000000000000000000000000000	0000	
		000	0000	00000	0	

Innate vs. Adaptive Immunity

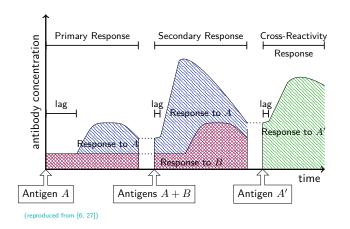
Innate Immunity

- Non-specific response against large number of bacteria
- First line of defense:
 - Controls infection before adaptive immune response kicks in
- Initiates and controls adaptive immune response
- Dendritic cells form bridge between innate/adaptive immunity

Adaptive Immunity

- Specific and preventive immune response
- Mediated by lymphocytes in the lymph nodes
- Two main types: B cells and T cells
- Develops immunological memory
- Described by the Clonal Selection Theory

Immunological Memory and Cross-Reactive Response



Introduction 00	Natural Immune System	AIS as Classifiers 0000 000	AIS as Optimisers 00000000 0000	Analysing AIS	Conclusion & References
Clonal	Selection Th	eory (1)	[2]		
•	Describes basic	properties o	f adaptive im	mune resp	onse
	Only cells recog into effector cell	0	tigen prolifer	ate <mark>and</mark> dif	ferentiate
•	B cells:Subject to see B effector cells				
•	T cells: • Not subject • T effector ce		mphokine		
•	B cell clonal sele	ection simila	r to natural s	election	
•	Learning throug	h increasing	population s	ize and aff	inity
•	Immune reperto	ire evolved f	rom a randor	n base to i	reflection

Clonal Selection Theory (3) [2]

of actual antigenetic environment

- Diversity via somatic hypermutations, receptor editing and newcomer cells
- Non-functional and harmful anti-self specifities are eliminated
- Variants with higher affinity dominate immune response and enter immune memory
- Some low affinity cells enter repertoire to maintain diversity
- Hypermutations
 - Point mutations allow for exploring local regions
 - On average one mutation per cell division
 - Short burst of somatic hypermutation followed by a pause to allow for selection and clonal expansion
 - Regulation of the hypermutation process by selection depending on receptor affinity
- Receptor editing
 - Instead of clonal deletion development of new receptors
 - Allows for larger steps through the landscape

(reproduced from (6, 27)) Huction Natural Immune System AIS as Classifiers AIS as Optimit OCOCO

Immune Network Theory [24]

Natural Immune System

Clonal Selection Theory (2) [2]

Self

Negative Selection Clonal Ignorance

Nonself

00000000000

Self

Self tolerance

AIS as Classifiers AIS as Optimisers Analysing AIS Conclusion & References

Nonself

Clonal Expansion

Selection

Proliferation

Differentiation

10

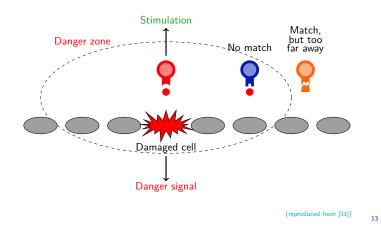
12

Memory Cells

- Network is autonomous, self-regulated and aims at maintaining a specific range of activity
- Immune tolerance, learning and memory as inherent global properties
 Antigen
 Supression

11

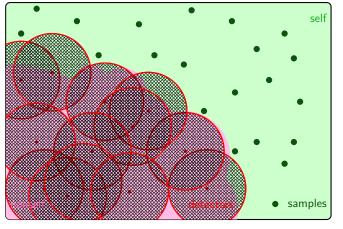
Introduction Natural Immune System AIS as Classifiers AIS as Optimisers Analysing AIS Conclusion & References Danger Theory [26] Idea Immune system rather detects danger than nonself



Introduction 00	Natural Immune System	AIS as Classifiers	AIS as Optimisers 00000000 0000	Analysing AIS Conclusion & References 000000000000000000000000000000000000

Self-Nonself Discrimination

Consider crude, unrealistic, partly misleading example



Introduction 00	Natural Immu 000000000		AIS as Classifiers	AIS as Optimisers	Analysing AIS 00000000000 00000	Conclusion & Reference
Artific	ial Imm	une S	ystems as	Classifier	S	
Ren	nember	inspire → 'pe	rform self-no	ystems immune syst onself discrimi dingly' most	ination	plication
Obs	ervation		onself discrin o-class classi	mination ification prob	lem	
Fac	•		nt AIS for th erent immur			
•	negative receptor	selection density	algorithm (s by self-nonse inspired by T pired by the o	cell signal	lling)

Simple Negative Selection Algorithm

Problem	train Output set	ulation to alphabet Σ , string space Σ^l , ning set $S \subseteq \Sigma^l$ of self strings of detectors D that match only self means of a partial match of length r
Algorithm		vo phases (outline) randomly generate detectors keep those that do not match any $s\in S$
	Detection	mark everything that matches some $d \in D$ as nonself
	(early algo	rithm, see e.g., Forrest et al. (1994) [11])
	,	for different types of detectors) et al. (2004) [30])

16

Introduction Natural Immune Systems	AIS as Classifiers	AIS as Optimisers 00000000 0000	Analysing AIS		
Efficient Negativ	e Selection				
use effic (not cons class (for	ine, main ingree prefix trees as r iently build fini e: no explicit d struction of aut sification works details see Elbe implementation	main data structure te automatom etector set) omaton works in time $O(l)$ erfeld, Textor	to represe s in time C	$O(S \cdot l \cdot r)$	
http://bioinfor	matics.bio.uu	.nl/textor/n	negativese	election.html)	
Lesson Learned	immune metaphor usefu algorithmic implementat may be very far from op immune-ideas can be im using 'classical' algorithm		ul for ideas ation following the IS ptimal nplemented efficiently		

More Modern AIS-Approaches to Classification

0000 000 0000000 0000

self-nonself discrimination Remember based on a simplistic understanding of the immune system can be implemented efficiently using clever algorithms/data structures

- Fact many more AIS-approaches to classification exist based on different aspects of immunology too many to cover all here
- Today two current approaches based on different immunological theories current $\hat{=}$ both considered and further developed in current publications
- **1** based on T cell signalling: receptor density algorithm **2** based on danger theory: dendritic cell algorithm

18

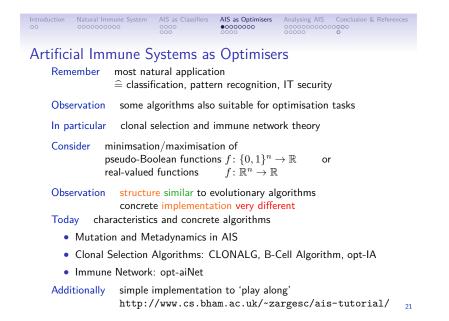
Introduction Natural Immune System AIS as Classifiers AIS as Optimisers Analysing AIS Conclusion & References 0000

Receptor Density Algorithm

- Motivation two-class classification performed by T cells depending on history
- Basis model of T cell receptor called receptor having a state c_i position p_i negative feedback n_i a negative feedback barrier β , length $l > \beta$ reacts to input u by updating the position (adding u, subtracting n), increasing negative feedback for positions above β , decaying negative feedback otherwise combining receptors spatially in form of a grid with a stimulation kernel function yields receptor density algorithm (for details see Owens (2010) [28], Owens et al. (2013) [29], Hilder et al. (2011) [15])

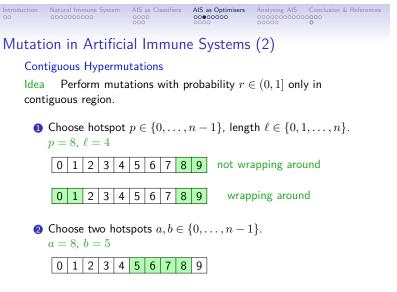
AIS as Classifiers AIS as Optimisers Analysing AIS Conclusion & References 0000 Dendritic Cell Algorithm danger theory specifically dendritic cells Motivation model immune systems responds to danger/safe signals (does not perform self-nonself discrimination) model of dendritic cells being either immature, Basis semi-mature or mature, having a lifespan processing input classified as either danger, safe or PAMP, computes two values: DCM, indicating the amount of processed information, K, indicating the classification as normal or anormal a collection of such cells (with different lifespans) forms dendritic cell algorithm performing classification (for details see Greensmith (2007) [12]) fully formalised, simplified deterministic version

deterministic dendritic cell algorithm available (for details see Gu (2011) [13], Gu et al. (2013) [14])



AIS as Optimisers Analysing AIS Conclusion & References 0000000 Mutation in Artificial Immune Systems (1) Usually Mutations at high rate ~> Hypermutations Inverse Fitness-"Proportional" Hypermutation Idea Apply mutations with lower mutation rate to good search points • Usually Normalised fitness value $\hat{f} \in [0, 1]$ used • Using optimal function value f_{opt} : $\hat{f}(x) = f(x)/f_{opt}$ • Using best known function value f_{best} : $\hat{f}(x) = f(x)/f_{\text{best}}$ • Examples for some parameter $\rho \in \mathbb{R}^+$, maximisation • CLONALG: $p_m = \exp(-\rho \cdot \hat{f})$ • opt-aiNet: $p_m = (1/\rho) \cdot \exp(-\hat{f})$ • Remark In continuous optimisation p_m equals the mutation strength

22



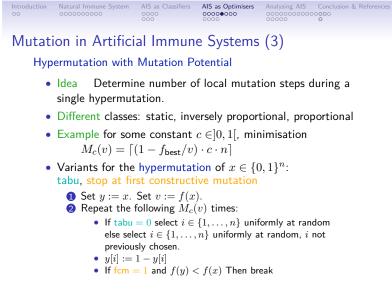
Contiguous Hypermutations in the Tiny AIS Box

Name	Current value	
Objective function	OneMax +	
Optimisation goal	O Maximisation	
Problem size	30	0
Budget per run	0	o
Runs	5	0
Population size	10	-0
Offspring population size	3	0
Hypermutation operator	ortiguous mutation potential inverse fitness-proportional EA mut) ations
Parameter r from (0, 1)	0.95	
CHM variant	O O wrap no wrap two positions	
Crossover	0	
Ageing		

AIS as Optimisers

00000000

http://www.cs.bham.ac.uk/~zargesc/ais-tutorial/



00000000000000000000000000000000000000		Natural Immune System	0000	00000000	00000000000	Conclusion & References	
--	--	-----------------------	------	----------	-------------	-------------------------	--

Metadynamics in Artificial Immune Systems

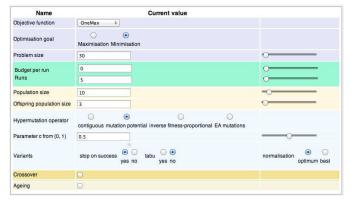
Sometimes worst search points replaced by new random ones.

Popular mechanism: Ageing

- Idea:
 - Increase diversity by removing old and non-improving points
- General implementation:
 - Assign age to each search point
 - Increase age in each round
 - If new search point improves over parent Then assign age 0 to new search point Else inherit age of parent
 - Optional: Fill up population with new random search points
- Variants for some parameter au_{\max}
 - Static Pure Ageing remove search points older than $\tau_{\rm max}$
 - Stochastic Ageing remove each search point with probability $1 2^{-1/\tau_{\rm max}}$

27

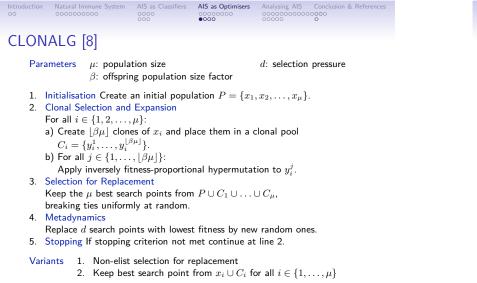
Hypermutation with Mutation Potential in Tiny AIS Box

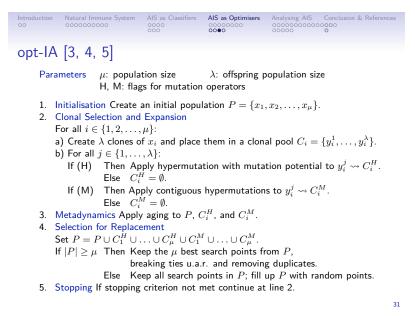


http://www.cs.bham.ac.uk/~zargesc/ais-tutorial/

Ageing in the Tiny AIS Box

Objective function	OneMax +	
Optimisation goal	Maximisation Minimisation	
Problem size	30	0
Budget per run	0	·
Runs	5	<u></u>
Population size	10	
Offspring population size	3	0
Hypermutation operator	O O O Contiguous mutation potential inverse fitness-proportional EA mutations	
Parameter r from (0, 1)	0.95	
CHM variant	O wrap no wrap two positions	
Crossover		
Ageing	3	
Maximal age tau	1000	-0
Ageing variant	o o static pure ageing evolutionary genotypic	
Ageing selection variant	o random most frequent smallest age distance	





00000 The B-Cell Algorithm (BCA) [25] **Parameters** μ : population size λ : offspring population size 1. Initialisation Create an initial population $P = \{x_1, x_2, \dots, x_n\}$. 2. Clonal Selection and Expansion For all $i \in \{1, 2, ..., \mu\}$: a) Create λ clones of x_i and place them in a clonal pool $C_i = \{y_i^1, \dots, y_i^\lambda\}.$ b) Select $j \in \{1, \ldots, \lambda\}$ uniformly at random: Flip each bit of y_i^j with probability p_m . c) For all $j \in \{1, \ldots, \lambda\}$: Apply somatic contiguous hypermutation to y_i^j 3. Selection for Replacement For all $i \in \{1, 2, ..., \mu\}$: If $\min\{f(y_i^1), \ldots, f(y_i^\lambda)\} \le f(x_i)$: Replace x_i by some randomly chosen y_i^j with minimal *f*-value. 4. Stopping If stopping criterion not met continue at line 2.

AIS as Optimisers Analysing AIS Conclusion & References

30

32

Analysing AIS Conclusion & References

opt-aiNet [7] **Parameters** μ : initial population size λ : offspring population size σ : affinity threshold δ : average fitness threshold d : selection pressure 1. Initialisation Create an initial population $P = \{x_1, x_2, \dots, x_u\}$. 2. Clonal Selection and Expansion For all $i \in \{1, 2, ..., \mu\}$: a) Create λ clones of x_i and place them in a clonal pool $C_i = \{y_i^1, \dots, y_i^{\beta\mu}\}$ b) For all $i \in \{1, \dots, \lambda\}$: Apply inversely fitness-proportional mutation to u_i^j c) For all $i \in \{1, 2, ..., \mu\}$: Keep the best search point from $x_i \cup C_i$. 3. Network Dynamics If change of average normalised fitness less than δ Then Calculate pairwise affinity $d(x_i, x_j)$ of all search points. If $d(x_i, x_i) < \sigma$ Then remove worse search point. Update μ . Else continue at line 2 4. Metadynamics Introduce $|d\mu|$ new search points in the network. 5. Stopping If stopping criterion not met continue at line 2. Variants Non-elist selection for replacement Remark Population size not fixed during optimisation

AIS as Optimisers

	atural Immune System 000000000	AIS as Classifiers	AIS as Optimisers	Analysing AIS	Conclusion & References			
Analysin	Analysing Artificial Immune Systems as Optimisers							
Obser	are ra just a partio	andomised se as evolutiona cle swarm op		cs used for , ant colon mulated ar	optimisation y optimisation, mealing,			
Conse	the $\widehat{=}$ a	•			rs			
Fact	runtime analy bio-inspired co	sis of EAs (in omputation complexity a	Carsten nalysis Frank N	Oliveto, Per Witt Neumann, A	Kristian Lehre ndrew Sutton			

Benjamin Doerr, Carola Doerr

33

black-box complexity

(see [9], [22], [23])

Analysing Artificial Immune Systems Why?

Introduction Natural Immune System

Because 'gaining a better understanding'

- of general limitations (black-box complexity)
- of behaviour in typical situations (example functions)
- of impact of specific operators (operators in (1+1)-frame)

AIS as Classifiers AIS as Optimisers

- of parameter settings (simple algorithms with 1 parameter)
- for particular problem classes (classes of functions; combinatorial optimisation problems)

Because 'design of better randomised search heuristics'

- know when **not** to apply
- have an idea of when to apply
- have an idea of 'good' operators
- have an idea of 'good' parameter values
- have an idea of what kind of RSH
- . . .

Introduction Natural Immune System AIS as Classifiers AIS as Optimisers Analysing AIS Conclusion & References 00 0000000000 0000 00000 <

Analysing Randomised Search Heuristics

Artificial Immune Systems? Yet another class of Randomised Search Heurisitcs? Why should I care?

Facts artificial immune systems offer

- useful alternative design paradigm for RSHs
- have different operators with different properties \rightsquigarrow useful in different situations
- can be a simpler and at least equally efficient alternative to crossover-based EAs

Now

- overview of three different types of AIS-specific mutation
- considering ageing as example for a 'meta-dynamic'
- example of a complete AIS in combinatorial optimisation

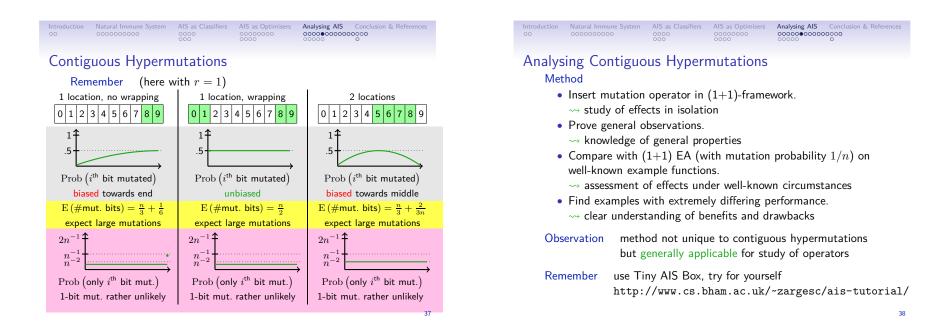
Observation	ndomised Search F most important effici	ency	at?	
counting what	advantage	disadvantage	remark	
computation step	s very precise	very tedious	rarely done (see [21])	
function eval.	often good enough easier to handle	· · · · · · · · · · · · · · · · · · ·	very common	
rounds	convenient	inprecise can be misleading	very common	
Usually co	ant X until optimum fo	ound		
$\hat{=}$	optimisation time (RV	\rightsquigarrow expectation)		
Sometimes count X until good enough solution found $\hat{=}$ approximation time (RV \rightarrow expectation)				
Alternative	analyse solution qualit $\hat{=}$ fixed budged comp		tation)	

35

d Soarch Hauristics

34

Analysing AIS Conclusion & References



Introduction Natural Immune System AIS as Classifiers AIS as Optimisers Analysing AIS Conclusion & Reference 00 000000000 0000 00000000 000000000000000000000000000000000000	s
--	---

Results About Contiguous Hypermutations (Part 1)

General Observation $\forall f$ with unique global optimum:
 $\mathrm{E}\left(T_{\mathsf{CHM}_{1,\mathsf{no}\,\mathsf{w}},f}\right) = \Omega(n)$
 $\mathrm{E}\left(T_{\mathsf{CHM}_{1,\mathsf{w}},f}\right) = \Omega(n^2)$
 $\mathrm{E}\left(T_{\mathsf{CHM}_{2},f}\right) = \Omega(n^2)$
due to probability of final mutation
(all bounds tight)Comparisonfor $\mathrm{ONEMAX}(x) = \sum_{i=1}^{n} x[i]$
 $\mathrm{E}\left(T_{i} = \Omega(x)\right)$

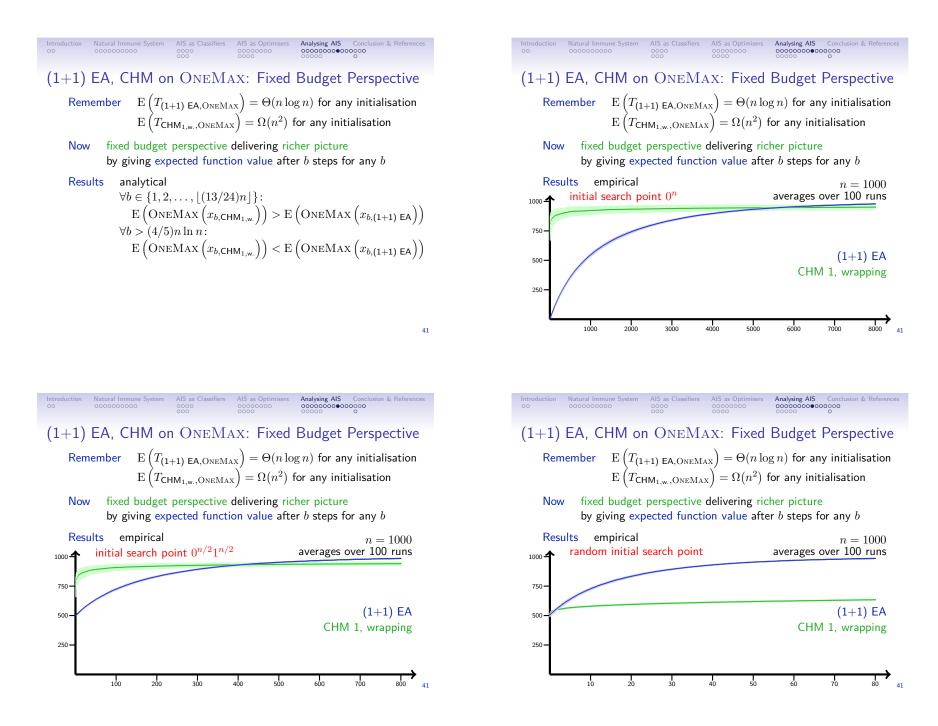
$$\begin{split} & \operatorname{E}\left(T_{(1+1) \text{ EA}, \operatorname{ONEMAX}}\right) = \Theta(n \log n) \\ & \operatorname{E}\left(T_{\mathsf{CHM}_{1, \operatorname{no} w}, \operatorname{ONEMAX}}\right) = O(n^2 \log n) \\ & \operatorname{E}\left(T_{\mathsf{CHM}_{1, w}, \operatorname{ONEMAX}}\right) = \Theta(n^2 \log n) \\ & \operatorname{E}\left(T_{\mathsf{CHM}_2, \operatorname{ONEMAX}}\right) = \Theta(n^2 \log n) \\ & \operatorname{due} \text{ to difficulty of making 1-bit improvements} \end{split}$$

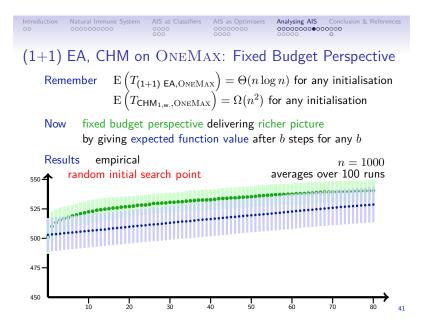
(1+1) EA and CHM on ONEMAX in the Tiny AIS Box

			Name	CL	irrent value
Name	Current v	alue	Objective function	OneMax 0	
Objective function	OneMax =		Optimisation goal	• •	
Optimisation goal	Maximisation Minimisation		Problem size	Maximisation Minimisation	
Problem size	30		Budget per run	0	
Budget per run	0		Runs	5	
Runs	5		Population size	1	
Population size	1		Offspring population size	1	
Offspring population size	1		Hypermutation operator		0 0
Hypermutation operator	Contiguous mutation potential inverse fitne		Parameter r from (0, 1)	contiguous mutation potential inve	rse fitness-proportional EA mutations
Mutation probability from (0, 1)	0.033			0 0 0	
Fix 1/n mutation probability	2		CHM variant	wrap no wrap two positions	
Crossover			Crossover		
Ageing	0		Ageing	0	
Empirical Results		E	Empirical Resu	Its	
Run started on			Run started on		OneMax
Current run 5 (out of 5)			Current run		5 (out of 5)
Current best function value 31 (best is 31)			Current best function value		31 (best is 31)
Number of function evaluations			Number of function evaluat	lons	1905
Average of finished runs Standard deviation of finished ru			Average of finished runs Standard deviation of finish		2516.80 1663.73
		55.34			

http://www.cs.bham.ac.uk/~zargesc/ais-tutorial/

Analysing AIS Conclusion & References





Introduction	Natural Immune System	AIS as Classifiers	AIS as Optimisers	Analysing AIS	Conclusion & References
00	000000000	0000	0000000	00000000000000000000000000000000000000	0000

Summary Contiguous Hypermutations

- difficulties with flipping single bits
 - → bad at locating optima precisely
- \Rightarrow combine with other operators if locating optima precisely matters
- in expectation mutate $\Theta(n)$ bits
 - → advantages when huge mutations are needed
 - \Rightarrow worth a try when hill-climbing not effective
- some variants with strong positional bias
 - → advantages/disadvantages depending on function
- \Rightarrow only use variants with positional bias if known facts about objective function make that appear useful
- all noticeable effects rely on $r \approx 1$
 - \rightsquigarrow even $r = 1 \varepsilon$ ($\varepsilon > 0$ constant) not useful
 - \Rightarrow use r = 1 o(1), e.g., r = 1 1/n

(for details see Jansen/Zarges (2011) [18])

Analysing AIS Conclu Results About Contiguous Hypermutations (Part 2) Demonstrate very large performance difference to demonstrate understanding of benefits and drawbacks $\mathsf{CLOB}_{b,k}(x) = n \cdot \left(\sum_{h=1}^k \sum_{i=1}^{n/(bk)} \prod_{j=1}^{i\cdot b} x \Big[(h-1) \cdot (n/k) + j \Big] \right) - \mathsf{OneMax}(x)$ Example with n = 24, k = 3, b = 210111001100111111011 $x = 1 \ 1 \ 0 \ 1$ + - + $\mathsf{CLOB}_{2,3}(x) = 24 \cdot (1+1+2) - 17 = 79$ Comparison for $\mathsf{CLOB}_{b\,k}$ (with $n/(k \cdot b) \in \mathbb{N}$, l := n/k) $\mathbb{E}\left(T_{(1+1) \text{ EA,CLOB}_{b,k}}\right) = \Theta(k \cdot l^b \cdot (l/b + \log k))$ $E(T_{\mathsf{CHM},\mathsf{CLOB}_{b,k}}) = O(n^2 \log n)$ (all 3 variants) since length of block does not matter 42

Analysing AIS Conclusion & Referen Inverse Fitness-"Proportional" Hypermutations Remember opt $\hat{f}(x) = f(x) / f_{opt} \in [0, 1]$ Normalisation best $\hat{f}(x) = f(x)/f_{\text{current best}} \in [0, 1]$

CLONALG $e^{-\rho \hat{f}(x)}$ Mutation probabilities

opt-aiNet $e^{-\hat{f}(x)}/\rho$

resulting in four variants

- CLONALG_{opt}
- CLONALG_{best}
- opt-aiNet_{opt}
- opt-aiNet_{hext}

Analysing AIS Conclusion Results About Inverse Fitness-"Prop." Hypermut. (Part 1) Results for ONEMAX $E\left(T_{(1+1) \text{ EA}, \text{ONEMAX}}\right) = \Theta(n \log n)$ $E\left(T_{\text{CLONALG}_{opt},OneMax}\right) = 2^{\Omega(n)}$ for $\rho = O(1)$ (even with high prob.) since mutation probability too large $E\left(T_{\mathsf{CLONALG}_{\mathsf{opt}},\mathsf{ONEMAX}}\right) = 2^{\Omega(n)}$ for $\rho = \Omega(n)$ (even with high prob.) since mutation probability too small $\mathrm{E}\left(T_{\mathsf{CLONALG}_{\mathsf{opt}},\mathsf{OneMax}}\right) = 2^{\Omega\left(n^{.5-\varepsilon}\right)}$ for $\rho = \ln n$ (even with high prob.) but $O(n \log n)$ once $ONEMAX(x) = n - O(n/\log n)$ $E(T_{CLONALG_{best},ONEMAX}) = \Theta(\mu n + n \log n)$ for $\rho = \ln n$ using population of size μ $E\left(T_{\text{opt-aiNet}_{opt},ONEMAX}\right) = 2^{\Omega(n)}$ for $\rho = 1$ (even with high prob.) since mutation probability too large $\mathbf{E}\left(T_{\mathsf{opt-aiNet}_{\mathsf{opt}},\mathsf{OneMax}}\right) = \Theta(n\log n) \text{ for } \rho = \Theta(n)$

Summary Inverse Fitness-"Proportional" Hypermutations

- can be very inefficient in simple situations
 - \rightsquigarrow e.g., bad at hill climbing
 - \Rightarrow use only when needed
- using 'current best' appears superior to 'optimal value' for normalisation
 - → populations useful
 - \Rightarrow prefer population-based approaches and 'current best' for normalisation
- CLONALG very sensitive with respect to ρ
- \rightsquigarrow very bad performance easy to achieve
- \Rightarrow prefer opt-aiNet
- $\bullet\,$ only analytical results for ${\rm ONEMAX}$
 - → most points open
 - \Rightarrow investigate more

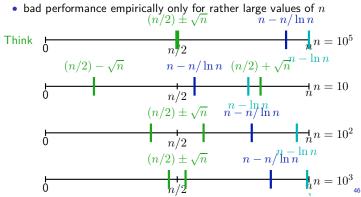
(for details see Zarges (2008), (2009), (2011) [32, 33, 34])

Results About Inverse Fitness-"Prop." Hypermut. (Part 2) Remember CLONALG_{opt} inefficient even with $\rho = \ln n$ How is this possible in practice?

Analysing AIS Conclu

Analysing AIS Conclusion & References

- under-estimating opt improves (see CLONALG_{best})
- OneMax not necessarily realistic



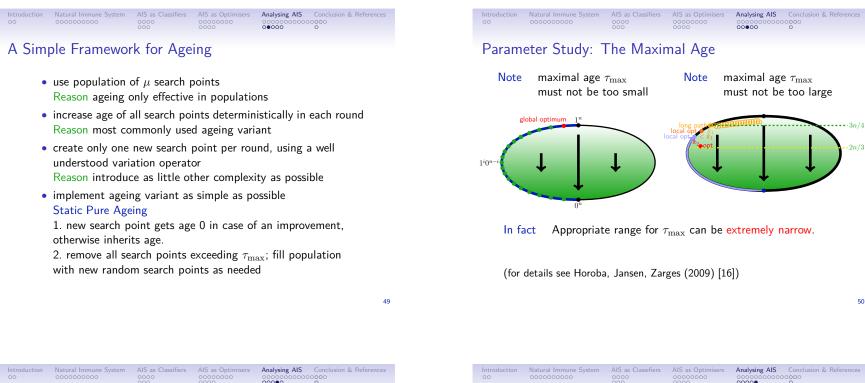
Metadynamics in Artificial Immune Systems

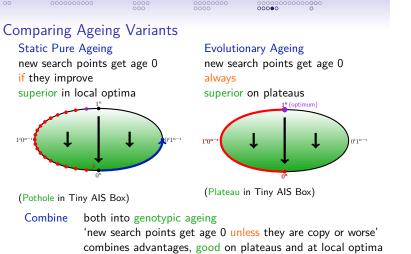
AIS as Classifiers

Remembermetadynamics influence behaviour of algorithm
in a more global way
 \sim more difficult to analyse than an operator
Example ageingRememberageing
has parameter maximal age τ_{max}

comes in different variants (static pure, stochastic, \dots) depends non-trivially on implementation details

- Remember method for analysis/work programme
 - insert in simple algorithmic framework
- prove general observations
- compare with known algorithms on known problems
- find extreme examples to understand benefits and drawbacks





(for details see Jansen, Zarges (2011) [19])

00000 Summary Ageing

- · ageing adds new dynamics and new capabilities
- ~ increased potential at the price of additional parameter \Rightarrow use with care
- ageing very sensitive with respect to maximal age
 - → difficult to set additional parameter
 - \Rightarrow perform careful parameter study
- different ageing variants have different capabilties
 - \rightsquigarrow no 'one size fits all' solution
 - \Rightarrow try different variants
- · ageing very sensitive with respect to implementation details

51

Introduction 00	Natural Immune System	AIS as Classifiers 0000 000	AIS as Optimisers 00000000 0000	Analysing AIS Conclusion &	References
Summ	ary				

We have seen overviews and introductions of

- the natural immune system
- application of AIS as classifiers
- application of AIS as optimisers
- analysis of AIS as optimisers

all as invitation to

- learn more about AIS
- apply AIS
- explore and understand AIS

53

Introduction 00	Natural Immune System	AIS as Classifiers 0000 000	AIS as Optimisers 00000000 0000	Analysing AIS Conclusion & Ref	erences
Refer	ences I				
[1]	J. Brownlee (2011). Clever Algorithms: Nature-In LuLu Enterprises. http://ww				
[2]	F. M. Burnet (1959). The Clonal Selection Theory Cambridge University Press.	of Acquired Immunit	у.		
[3]	V. Cutello, G. Narzisi, G. Nic Clonal selection algorithms: J In C. Jacob, M. L. Pilat, P. J Conference on Artificial Imm Science, pp. 13–28. Springer.	A comparative case s I. Bentley, and J. Tin une Systems (ICARIS	tudy using effective m nmis, editors, Proceed		
[4]					
[5]					
[6]	L. N. de Castro and J. Trimmins (2002). Artificial Immune Systems: A New Computational Intelligence Approach. Springer.				
[7]	L. N. de Castro and J. Timm An artificial immune network	for multimodal func		'CEC 2002), pp. 699–704. IEEE Press.	

Introduction 00	Natural Immune System	AIS as Classifiers 0000 000	AIS as Optimisers 00000000 0000	Analysing AIS 000000000000 00000	Conclusion & References ○●○ ○
Conclu	isions ficial Immune Sy	stems are			
Arti	inclui ininiune oy	Sterns are			
	models of the n		ool for resear	rch in immu	inology

- randomised search heuristics capable of optimisation
 - based on a quite different natural metaphor (compared to EAs)
 - an alternative approach to optimisation, with different characteristics and capabilities
 - an alternative solution if your favourite approach fails
- · randomised search heuristics like many others
 - another field of study, worthy of analysis just like EAs/ACO/PSO/...
- a fascinating area of research

 Introduction
 Natural Immune System
 AIS as Classifiers
 AIS as Optimisers
 Analysing AIS
 Conclusion & References

 References II
 [8]
 L. N. de Castro and F. J. Von Zuben (2002).

- Learning and optimization using the clonal selection principle. IEEE Transactions on Evolutionary Computation, 6(3):239-251. [9] B. Doerr, T. Jansen, C. Witt, and C. Zarges (2013). A method to derive fixed budget results from expected optimisation times. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2013), pp. 1581-1888. [10] M. Elberfeld and J. Textor (2011). Negative selection algorithms on strings with efficient training and linear-time classification. Theoretical Computer Science 412:534-542 [11] S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri (1994). Self-nonself discrimination in a computer. In Proceedings of the 1992 IEEE Symposium on Security and Privacy, pp. 202-212. [12] J. Greensmith (2007) The Dendritic Cell Algorithm. PhD Thesis, University of Nottingham [13] F. Gu (2011). Theoretical and Empirical Extensions of the Dendritic Cell Algorithm. PhD Thesis, University of Nottingh [14] F. Gu, J. Greensmith, and U. Aickeln (2013). Theoretical formulation and analysis of the deterministic dendritic cell algorithm. Biosystems 111(2):127-135.
- [15] J. Hilder, N. Ovens, P. Hickey, S. Cairns, D. Kilgour, J. Timmis, and A. Tyrrel (2011). Parameter optimisation of the receptor density algorithm. In Proceeding of the 10th International Conference on Artificial Immune Systems (ICARIS 2011), pp. 226–239.

Introduction 00	Natural Immune System	AIS as Classifiers 0000 000	AIS as Optimisers 00000000 0000	Analysing AIS Conclusi 000000000000000000000000000000000000	ion & References	
Refer	ences III					
[16]	C. Horoba, T. Jansen, and C Maximal age in randomized s In Proceedings of the Geneti	earch heuristics with		≘ <i>(GECCO 2009)</i> , pp. 803–8	10.	
[17]	T. Jansen and C. Zarges (20 Aging beyond restarts. In Proceedings of the Genetic	·	omputation Conferenc	e (GECCO 2010), pp. 705–7	12.	
[18]	T. Jansen and C. Zarges (20 Analyzing different variants of Theoretical Computer Science	f immune inspired so	matic contiguous hype	ermutations.		
[19]	T. Jansen and C. Zarges (2011). On benefits and drawbacks of aging strategies for randomized search heuristics. Theoretical Computer 5:clance 412(6):543-559.					
[20]	 T. Jansen and C. Zarges (2011). On the role of age diversity for effective aging operators. Evolutionary Intelligence 4(2):99-125. 					
[21]	T. Jansen and C. Zarges (20 Analysis of evolutionary algor In 11th ACM SIGEVO Works	ithms: From comput			ng.	
[22]	T. Jansen and C. Zarges (20 Fixed budget computations: In Proceedings of the Genetic	A different perspectiv			1332.	
[23]	T. Jansen and C. Zarges (20) Performance analysis of rand Theoretical Computer Science	omised search heurist				
					57	

Introduction 00	Natural Immune System	AIS as Classifiers 0000 000	AIS as Optimisers 00000000 0000	Analysing AIS 000000000000 00000	Conclusion & References
Refere	ences IV				
[24]	N. Jerne (1974). Towards a network theory of Annals of Immunology, 125C				
[25]	J. Kelsey and J. Timmis (200 Immune inspired somatic con In <i>Proceedings of the 5th An</i> LNCS 2723, pp. 207–218. Sp)3). tiguous hypermutatio nual Conference on (ECCO 2003),
[26]	P. Matzinger (1994). Tolerance, danger, and the ex Annual Reviews of Immunolo	xtended family.			
[27]	K. Murphy (2012). Janeway's Immunobiology. Garland Science, 8th edition.				
[28]	N. D. L. Owens (2010). From Biology To Algorithms. PhD Thesis, University of Yo				
[29]	N. D. L. Owens, A. Greensted The receptor density algorith Theoretical Computer Science	m.	Tyrrell (2013).		
[30]	T. Stibor, K. M. Bayarou, and An investigation of <i>r</i> -chunk of In <i>Proceedings of the Genetic</i>	d C. Eckert (2004). detector generation o		∘ (GECCO 2004) n	n 299–307
[31]	J. Timmis (2010) Lecture Course on Collaborat			(02000 2004), p	. 255 5011

Introduction 00	Natural Immune System	AIS as Classifiers 0000 000	AIS as Optimisers 00000000 0000	Analysing AIS Conclusion & References
Refere	nces V			

 [32] C. Zarges (2008). Rigorous runtime analysis of inversely fitness proportional mutation rates. In Parallel Problem Solving from Nature (PPSN X). LNCS 5199, pp. 112–122.
 [33] C. Zarges (2009). On the utility of the population size for inversely fitness proportional mutation rates. In Proceedings of the 10th ACM SIGEVO Workshop on Foundations of Genetic Algorithms (FOGA 2009), pp. 39–46.
 [34] C. Zarges (2011).

 [34] C. Zarges (2011).
 Theoretical Foundations of Artificial Immune Systems. PhD Thesis, TU Dortmund.