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Overview

• Design and optimization
• Metaheuristics (MHs)
• MHs and image analysis: Evolutionary Computation

and Swarm Intelligence
• MHs as general optimization tool

• Examples
• GPU-based parallel implementations
• MHs for model-based object detection and tracking

• Examples
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A short history of design - I

Problem

Solution!
Genius

(Leonardo
da Vinci, ...)
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A short history of design - II

Problem

Solution!

f(x,y) = x2 * sin(y)

Scientist
(Galileo, ...)
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A short history of design - III

Problem Solution!

f(x,y) = x2 * sin(y)

Engineer
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A short history of design - IV

Problem Solution!

Computer
scientist
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A short history of design - V

Problem Solution!
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A short history of design – next step?

Problem Solution!

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

• Most real-world problems can be formulated as
optimization problems.

• Designers know what they want to obtain (output),
and can measure success quantitatively.

• The available degrees of freedom (inputs,
independent parameters, etc.) are also known.

• The I/O mapping is only partially known.

• Approximate models may be available.

Design = Optimization

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

Typical optimization scenario

Problem Optimized
Solution

Parametric solution
S(p1…pn)

Quality/cost function
f(S(p1…pn))

Optimization method

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

The quality function to be optimized typically:

• relies on an ideal model of a practical problem, of
which a parametric solution is given

• is typically optimized based on the performance
achieved on a set of real samples of the problem
at hand

An optimization technique is finally used to find the
best parameters for the solution (which maximize the
quality function on the real data)

Design by optimization

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma
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We are currently in phase V.
Design often shifts from
• defining exact solutions, justified by an underlying

theory
to
• searching solutions which work well, by:

• defining a quality criterion that measures the
effectiveness (cost) of possible solutions

• choosing a method that maximizes/minimizes it.

A shifted view upon design

GECCO 2014
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Next step, or final goal for computer research would
be to switch the engineer’s attention from

• tuning the parameters of a specific solution to a
problem using knowledge about the problem

to

• tuning the parameters of a general optimization
method using knowledge about the method or,
even better, letting the computer adapt them itself

A shifted view upon design

GECCO 2014
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• No direct solution is available

• Problem specifications provided only qualitatively or
through examples

• Behaviors or phenomena described or measured with
little precision (e.g., noisy signals)

• Little a priori knowledge (none ?) on the problem

• Integration of heterogeneous modules to which any of
the previous conditions applies

When would this be necessary ?

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

In general:

• the less knowledge is available about the
problem (i.e., the more one deals with black-
box optimization problems)

• the more general and stochastic the algorithm
used to solve them

When would this be necessary ?

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma
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Optimization methods which iteratively improve a (set
of) candidate solution(s) with respect to a given
measure of quality.

MHs make few or no assumptions about the problem
being optimized and can search very large spaces of
candidate solutions.

No optimal solution is guaranteed to be found.

Many, such as Evolutionary Computation and Swarm
Intelligence techniques, are inspired by nature.

Metaheuristics (MHs)

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

MH-based applications taxonomy

According to the abstraction level of the
application

 Low-level approaches (e.g., design of filters)
 Mid-level approaches (design of classifiers)
 High-level approaches (model-based object

detection)

The solution is usually designed first.
Then a MH is used to optimize/generate a part of it.

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

According to the MH used

 Optimization of parameters of pre-defined problem-
specific objective functions
Related with a well-defined task or for a whole
system.

 Generation of solutions from scratch, based on pre-
defined operands or building blocks.
No predefined structure for the solution. Problem-
specific objective functions.

Again, MHs are ‘external tools’
GECCO 2014

Vancouver, July 2014 IBIS Lab, University of Parma

MH-based applications taxonomy MH-based applications taxonomy
According to the role of MHs
 MH as external optimization tools
 Interactive generation of solutions
 Generation of emergent collective solutions

Achievement of higher-level tasks by complex
behaviors emerging from collective use of trivial, local,
hard-wired ones: complete solutions embedding MHs

MHs are no more seen as parameter optimizers or
‘external’ tools but as (part of) THE solution!

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma
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APPLICATIONS TO SIGNAL/IMAGE
PROCESSING AND PATTERN
RECOGNITION

 Optimization of filter/detector AND algorithm
parameters for event detection in 1D signals and
for 3D image segmentation

 SI-based object detection and tracking

 Model-based object detection and segmentation

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

SIGNAL PROCESSING
 Signal Enhancement (filtering) and Event Detection

(thresholding)

GECCO 2014
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QRS complex
ECG signal

Enhanced ECG

EVOLUTIONARY DESIGN OF QRS
DETECTORS
Given:
 Filter/detector layout
 Training set
 Fitness function

Optimize (using a GA):
 Filter coefficients
 Detector threshold
 Other parameters regulating the adaptive

behavior of the detector

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

FILTER LAYOUT
 Linear:

 Linear with selected samples:

 Quadratic with selected samples:

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma
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OTHER PARAMETERS

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

EXPERIMENTAL SETUP

TRAINING SET
10 10-second tracts of the ECG from each of the
48 30-minute records of the MIT-BIH Arrhythmia
Database (5981 beats out of about 110,000).

FITNESS FUNCTION
f = fmax - (FP2 + FN2) , fmax such that f>0

FP = False Positives, FN = False Negatives

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

RESULTS

 99.5% average sensitivity (100% on most “normal”
recordings)

 Much faster detection with respect to published
algorithms yielding comparable results or better
results with comparable computational effort

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

APPLICATIONS TO SIGNAL/IMAGE
PROCESSING AND PATTERN
RECOGNITION

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

 Optimization of filter/detector AND algorithm
parameters for event detection in 1D signals and
for 3D image segmentation

 SI-based object detection and tracking

 Model-based object detection and segmentation
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Tracking of anatomical structures

Tomographic images

Extraction of the same structure in consecutive
sections to recover the whole 3D structure

Exploitation of the correlation between consecutive
sections

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

APPLICATIONS TO SIGNAL/IMAGE
PROCESSING AND PATTERN
RECOGNITION

Optimization of filter/detector AND algorithm
parameters for 3D image segmentation

 Adaptive filtering: filter coefficients are learnt based on the
‘observation’ of manual segmentations

 Relevant points are detected

 The structure’s shape is recovered using a deformable
model

 The process is iterated over the whole image stack

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

RATIONALE

Pre-defined parameter sets hardly work in the presence of
high variability, as in biology/anatomy

GA optimization of a specific structure segmentation
algorithm

 interactive specification of a few training contours,
followed by

extraction of the contours of the structure of interest from
the whole data set

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

CONTOUR EXTRACTION

The problem can be
reformulated as
‘multiple 1D-edge
detection and tracking’.

An extension of the 1D
detector

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma
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SEGMENTATION

 Definition of a starting contour

 Iterate:
 Application of the GA-designed filter to the

next contour (extraction of matching edge
points)

 Elastic contour model-based interpolation
(also optimized by the GA) of the edge
points extracted by the filter

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

TRAINING SET
One slice following the one which is used to seed the
iterative segmentation process

FITNESS FUNCTION

dyk = distance, along scan line Lh, between the actual
edge point and the one detected,  K = constant

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

RESULTS

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

APPLICATIONS TO SIGNAL/IMAGE
PROCESSING AND PATTERN
RECOGNITION

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

 Optimization of filter/detector AND algorithm
parameters for event detection in 1D signals and
for 3D image segmentation

 SI-based object detection and tracking

 Model-based object detection and segmentation
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SWARM INTELLIGENCE FOR IMAGE
ANALYSIS

 Particle Swarm Optimization

 An application: license plate detection

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

• Easy to implement

• Very well parallelizable (very few dependencies)

• Fast convergence to a good basin of attraction
(usually less effective at refining the search)

• Exploration driven by easy physical laws

• Intrinsic capacity of tracking solutions in a time-
varying environment

Why PSO ?

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

PSO and Image Analysis

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

• Multi-objective optimization: the goal is to
identify (segment out) one or more regions of
interest (ROIs) in the search space (the image),
not a single optimum.

- k-mean clustering PSO (Passaro and Starita 2006):
the swarm reorganizes itself in multiple sub-swarms:
each sub-swarm may then ‘address’ a different target.

• The swarm must then cover the region as
uniformly as possible

PSO-based License Plate Detection

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

• Plates feature high density
of pixels with high
horizontal gradient values
due to the contrast between
letters (black) and plate
background (white)

• The horizontal gradient can
be easily and efficiently
approximated using
differences
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Search stages :

• Global search: the most ‘promising’ areas
within the whole image are grossly detected

• Local  search: attention is focused on the
ROIs defined in the previous stage to detect
good plate candidates

PSO-based License Plate Detection

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

• A repulsion term is added to let the swarm spread all over
the target:

vP*(t) = vP(t) + repulsionp

• Repulsion between two particles is computed, separately
along each axis, as

repulsion(i, j) = REPULSION_RANGE - |Xi-Xj|
REPULSION_RANGE being the maximum distance within which
interaction between particles occurs.

• The global repulsion term for P is the average of all
repulsion terms with particles interacting with it:

repulsionp = j repulsion(p,j) / n

PSO-based License Plate Detection

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

• The goal is to find regions featuring high
density of high-gradient pixels

• To prevent  swarms from converging towards
ISOLATED pixels, fitness has two terms:

• punctual fitness, depending on visual
features

• local fitness, proportional to the number of
neighbors

PSO-based License Plate Detection

GECCO 2014
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• The swarm explores a gray-scale image

fitness(x,y) = punctual fitness(x,y) + local fitness(x,y)
if ( |r(x,y)-g(x,y)|< K0 && |r(x,y)-b(x,y)|<K0 && |g(x,y)-b(x,y)| <K0 )

punctual_fitness = max(right_gradient,left_gradient);

else punctual_fitness = 0;

where right_gradient = |grayscale(x,y)-grayscale(x+1,y)|;

left_gradient = |grayscale(x,y)-grayscale(x-1,y)|;

local fitness = K1 * neighbor_number

PSO-based License Plate Detection

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma
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• The standard equation has been further modified,
to increase stability of sub-swarms.

• If a particle with high punctual fitness lies within a
region with high density of particles, then it has a
probability, which is linearly dependent on such a
density, of staying there:

Prob { Xt-1=Xt }  =  number of particles in the
neighborhood  / total number of particles in the
swarm

PSO-based License Plate Detection

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

GLOBAL SEARCH RESULTS

PSO-based License Plate Detection

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

Two ‘promising’ areas are detected (sub-swarms with
Nparticles > T): the larger one will be explored first

PSO-based License Plate Detection

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

The whole swarm is re-initialized near the selected area and
a local search is performed, using the previous algorithm.

PSO-based License Plate Detection

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

806



13

PSO-based License Plate Detection

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

A bounding box is computed enclosing all particles with
high punctual fitness. If this box has a w:h ratio = 5:1, we

can assert we found the plate.

PSO-based License Plate Detection

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

Otherwise the box is expanded, letting some agent move
up and down (or left and right), in order to reach the given

ratio. On failure, the next region is explored.

Final result

PSO-based License Plate Detection

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

WHAT ABOUT GOING REAL-TIME
(OR INCREASING TASK
COMPLEXITY) ?

 GPU-based implementation of EC/SI
algorithms

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma
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GPU

 Massively parallel architecture
 Hundreds or thousands of

simple cores
 Simple instruction set
 Synchronization

primitives

 Deep memory hierarchy
 Private, local, global,

constant memory
 Each one has a different

role
GECCO 2014

Vancouver, July 2014 IBIS Lab, University of Parma

GPU-based PSO implementations

 Three-kernel synchronous (Information Sciences,
2011)

 Any topology allowed
 Any problem size
 Large overhead (three memory swaps)

 Single-kernel asynchronous (GECCO 2011)

 Ring topology, radius = 1
 Limited number of particles
 Fastest possible (no swaps)

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

Single-kernel vs. Multi-kernel
• Synchronous multi-kernel PSO

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

Asynchronous single-kernel PSO
(ring topology, radius=1)

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

Single-kernel vs. Multi-kernel
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 Single-kernel (all computations in local memory)
 No (limited) need for synchronization

No data exchange between GPU and CPU
− Limited local resources

Small maximum number of particles in a swarm

 Multi-kernel (need for 3 data swaps)
 Virtually no resource-related limitation

Any swarm size possible (up to several hundreds)
− Large memory overhead due to the need for

synchronization after each kernel is run

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

Single-kernel vs. Multi-kernel More general implementation

 Single kernel
 Synchronization at the end of each cycle
 One can schedule as many threads as

necessary
 Suitable for both CPUs & GPUs
 Virtually no limits to

the number of particles
 Smaller memory

overhead wrt the
multi-kernel version

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma
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APPLICATIONS TO SIGNAL/IMAGE
PROCESSING AND PATTERN
RECOGNITION

 Optimization of filter/detector AND algorithm
parameters for event detection in 1D signals
(background)

 Optimization of filter/detector AND algorithm
parameters for 3D image segmentation

 Model-based object detection and segmentation

Model-based detection

 Traditional Image Analysis Approach: from
image to object

 The image is exhaustively and mechanically
scanned using a moving window until something
interesting is found

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma
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Model-based detection

 Model-based approach: from object (model)
to image:

 A parametric model describing the possible
variations of the object is defined along with its
projection on the image plane

 An optimization method finds the set of
parameters which maximizes a similarity
measure with the actual image content

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

Road Sign Recognition

 Usually divided into:
 Sign Detection

(color-based or shape-based approaches)
 Sign Classification

(usually based on Artificial Neural Networks)

We propose an inverse approach to sign detection
 3D model based estimation

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

Classical Road Sign Detection

 Exhaustive window scan, with different box sizes
 Classifier-based detection

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

Our Approach - 1

 Detecting signs and estimating poses at the same time
 Hypothesizing a sign pose with respect to a calibrated

camera, a sign model can be projected onto the image
and matched to the actual image content

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma
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Our Approach - 2

 Making assumptions on the sign pose can help discard
visible signs which can be ignored by the driver

 For example, these signs must be considered only by
those who take the right exit

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

How to find a good estimation quickly?

 Particle/Kalman Filtering is usually too slow
to achieve real-time performances...

 We propose an approach based on a bio-
inspired metaheuristic called Particle Swarm
Optimization (PSO)

 PSO searches for function extrema
mimicking the behaviour of a flock of birds in
search of food

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

PSO for Road Sign Detection

 Search domain = space of the roto-
translation matrices

 Fitness function proportional to the
presence of local features which characterize
the model of our target in the image region
onto which the model is projected

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

PSO for Road Sign Detection

 6 parameters: sign roto-translation wrt the camera
 The parameters can be reduced to 4 (x, y, z and yaw)
 Image is accessed (sampled) only locally during

fitness evaluation: no need for an exhaustive scan

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma
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•Roto-
translation

and
projection

PSO for Road Sign Detection

 6 parameters: sign roto-translation wrt the camera
 The parameters can be reduced to 4 (x, y, z and yaw)
 Image is accessed (sampled) only locally during

fitness evaluation: no need for an exhaustive scan

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

PSO for Road Sign Detection

 Model: Three different sets of 3D points, describing
the sign shape and regions: border, inside, outside

 The likelihood of detection is computed by matching
color histograms

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

PSO for RSD - Fitness Function

 The fitness function is based on the Bhattacharyya
Similarity between reference (model) histograms and
the histograms of the image region onto which the
model is projected

GECCO 2014
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•Bhattacharyya
Similarity

PSO for RSD - Fitness Function

To detect warning (triangular)  and regulatory (round)
signs we maximize:

1. difference between the red border and background
2. the difference between the white inside and the red

border
3. similarity between red band and a reference red color

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

1 2 3
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Road Sign Detection within CUDA
<initialize positions/velocities of all particles>
<perform a first evaluation of the fitness functions>
<set initial personal/global bests>

for(int i = 0; i < generationsNumber; i++){
<update the position of all particles>
<re−evaluate the fitness of all particles>
<update all personal/global bests>

}

<retrieve global best information to be returned as final
result>

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

•Point-projection operations and histogram
computation/comparison could also be parallelized

Hippocampus Localization

 Allen Mouse Brain Atlas
 Public database of high-resolution brain

images
 Expression patterns of about 20,000 genes in the

adult mouse brain
 Spatial map of the expression patterns of almost

every mouse gene

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

NISSL REFERENCE

Hippocampus Localization

 Allen Mouse Brain Atlas
 Public database of high resolution brain

images
 Expression patterns of about 20,000 genes in the

adult mouse brain
 Spatial map of the expression patterns of almost

every mouse gene

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

21 SAGITTAL 132 CORONAL

Hippocampus Localization
 Final Goal
 Extract a feature vector for each gene which

allows one to cluster genes into similar
subsets
Hypothesis: genes with similar expression patterns are
also functionally correlated

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

Best Reference
Slice Selection

Structure
Localization Segmentation Texture

Analysis

Vector of
gene

features

Target References
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Hippocampus Localization

 Automatic localization of brain structures in
tomographic images
 Allen Brain Atlas (mouse brain histological

images)

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

Hippocampus Localization
 Automatic localization of brain structures in

tomographic images
 Allen Brain Atlas (mouse brain histological

images)
 Hippocampus (important role in learning and

memory)

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

Hippocampus Localization

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

SG

Hippocampus Localization

 Hippocampus variability

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

Best Reference Slice Selection
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Hippocampus Localization

 We want to precisely localize the
hippocampus
 Shape is the most invariant feature
 Usually in similar position

 The tool should be completely automatic
 No human intervention
 Applicable to a massive number of images

 We have to deal with “difficult” images

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

Deformable Models

 Curves or surfaces defined within an image
domain, that move under the influence of
 “internal forces” - related with the curve features
 “external forces” – related with the surrounding image

 Active Shape Models (ASM):
 Way of adding prior knowledge to Deformable Models
 The model considers the average position of the points,

and the main modes of variation found in a training set

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

Modified PSO
 Bio-inspired optimization algorithm developed by

Kennedy and Eberhart (1995)
 Modifications:

 Instead of using a static inertia factor w, its value is adapted to
the fitness function of each particle [Liu et al. 2005]

 Re-initialization of a particle in case of stagnation

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

Best Reference Slice Selection

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

TARGET IMAGE REF. ATLAS REFERENCE ROI

GLOBAL
REGISTRATION

LOCAL
REGISTRATION

g
l

TARGET ROI

α
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Localization

Localization is achieved by deforming a statistically
derived model of the hippocampus to let it overlap with
the corresponding structure in the brain image.

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

COORDINATES
ROI

STANDARD
MODEL

Localization

Two templates: SP and SG

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

Each template has an inner model (red) and an
outer model (black)

SP has 8 points and SG 7 points.

The limits for the deformation are statistically
determined (light blue dashed line).

Localization

 Multimodal global continuous optimization
problem

 Target function to maximize:
 F = E – (I + C)
 E External Forces (minimize the intensity of pixels in

the inner set and maximize the intensity of pixels in the
outer set)

 I Internal Forces (the higher the value, the less the
deformation)

 C Contraction Factor

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

Localization

 External Forces: E = γp∙ PE + γc∙ CE

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

Punctual Energy
Continuous

Energy
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Localization

 Internal Forces:
 aimed at keeping the model smooth (similar to

the standard model) during deformation

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

High values of Internal Energy Low values of Internal Energy

Euclidean distance
between the

deformed model and
the standard one

Localization

Contraction Factor (avoids unfeaseable situations)

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

C = ξc ∙ ||In - I₁||

ξc = 0 ξc = 0.12 (SP) ξc = -0.07 (SG)

Experimental Results (I)

120 images | 4 methods | 50 tests/image | 250
iterations

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

GENETIC ALGORITHM Pc = 0.6 | Pm = 0.09 | Pop = 80

SCATTER SEARCH Local Search: Simulated Annealing
|B|=7  |D|=8

ORIGINAL PSO Swarm=80 particles
Inertia weight = linearly
decreasing*

MODIFIED PSO wmin = 0.2 | wmax = 1.0 |
c1 = c2 = 2.05 | Swarm = 80
particles

* Y. Shi and R. Eberhart. Empirical study of Particle Swarm Optimization. 1999.

Experimental Results (II)

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

Localization of SP

Localization of SG

Null Hypothesis (α= 0.05): there are no
differences between the modified PSO and the
other methods
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Experimental Results (and III)

 Results
 Perfect or good localization in 89.2% of cases (120

genes/images)
 Noise tolerance

 Running time for one image (non-optimized
MATLAB)
 Avg: 60.31 s
 Std Dev: 9.01 s

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

Conclusions

 Metaheuristics can be used as effective tools for designing
image analysis algorithms or as part of the algorithms
themselves

 PSO (and Differential Evolution) are easy-implementable
and efficient metaheuristics (if one does not aim at
perfection..) Their ‘smart search’ capabilities and its intrinsic
tracking ability allows it to be used in real-time applications,
even more because of their intrinsic parallelism which can
be “explicited” by implementing it on GPUs or multi-core
processors.

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

BIBLIOGRAPHY
 Poli R., Cagnoni S., Valli G. (1995) ``Genetic design of optimum linear

and non-linear QRS detectors'', IEEE Transactions on Biomedical
Engineering, 42(11):1137-41.

 Cagnoni S., Dobrzeniecki A.B., Poli R., Yanch J.C. (1999) ``Genetic-
algorithm-based interactive segmentation of 3D medical images'', Image
and Vision Computing Journal, 17(12):881-896.

 Cagnoni S., Mordonini M., Sartori J. (2007) “Particle Swarm
Optimization for Image Segmentation and Object Detection”, Proc.
EvoWorkshops 2007, pp. 238-247.

 L. Mussi, F. Daolio, S. Cagnoni (2011). Evaluation of Parallel Particle
Swarm Optimization Algorithms within the CUDA
Architecture. INFORMATION SCIENCES. 181:4642- 4657.

 Nashed, Y., Ugolotti, R., Mesejo, P., Cagnoni, S. (2012)
“libCudaOptimize: an Open Source Library of GPU-based
Metaheuristics”, 1st GECCO Workshop on Evolutionary Computation
Software Systems, Philadelphia.

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

BIBLIOGRAPHY
 R. Ugolotti, P. Mesejo, S. Cagnoni, M. Giacobini, F. Di Cunto

(2011) Automatic hippocampus localization in histological images using
PSO-based deformable models. ACM, 487- 494. In:Genetic and
Evolutionary Computation Conference (GECCO  2011).

 L. Mussi, Y. S. G. Nashed, S. Cagnoni (2011) GPU-based
asynchronous particle swarm optimization. ACM, 1555- 1562,
ISBN:9781450305570 . In:Genetic and Evolutionary Computation
Conference (GECCO 2011).

 Roberto Ugolotti, Youssef S.G. Nashed, Pablo Mesejo, Špela Ivekovič,
Luca Mussi, Stefano Cagnoni (2013) “Particle Swarm Optimization and
Differential Evolution for Model-based Object Detection”, Applied Soft
Computing Journal, Vol: 13, Pag: 3092-3105.

 P. Mesejo, R. Ugolotti, F. Di Cunto, M. Giacobini, S. Cagnoni (2013)
“Automatic Hippocampus Localization in Histological Images using
Differential Evolution-Based Deformable Models” Pattern Recognition
Letters, Vol: 34, Pag: 299–307.

GECCO 2014
Vancouver, July 2014 IBIS Lab, University of Parma

818



 
 
    
   HistoryItem_V1
   AddMaskingTape
        
     Range: all pages
     Mask co-ordinates: Horizontal, vertical offset 751.44, -6.73 Width 43.95 Height 42.26 points
     Origin: bottom left
      

        
     1
     0
     BL
    
            
                
         6
         AllDoc
         7
              

       CurrentAVDoc
          

     751.4414 -6.7347 43.9539 42.2633 
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     0
     24
     23
     24
      

   1
  

 HistoryList_V1
 qi2base





