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Large Scale Global Optimization Large Scale Global Optimization

@ Existing meta-heuristic methods are ill-equipped in dealing with
LSGO problems, though they may be effective in solving small to

LSGO problem medium sized problems.
min £(X) (1) @ LSGO problems can be found in many application areas, eg.,
XeR? engineering, computational genetics, natural language
processing.

where f : R" — R a real-valued objective function, and n (the number
of variables) is large, eg., from several hundreds to thousands.
Equation (1) assumes minimization.

@ In this research, we focus on single objective, continuous,
unconstrained, and black-box LSGO problems.

’ @ For LSGO problems with constraints, Augmented Lagrangian
methods can be used to transform the original problem into its
Lagrangian dual, which is unconstrained.

5175 6175
EAs for LSGO Outline
@ Many Evolutionary Algorithms have been developed for global @ Cooperative Coevolution
optimization.

@ Curse of dimensionality - The search space grows exponentially.
The performance of EAs deteriorates as the number of variables
(dimensions) increases.

@ Traditional EAs do not scale well as the dimensionality of the
problem increases.

@ New techniques are required with better scalability to higher

dimensions.
Xiaodong Li (RMIT University) Decomposition and CC for LSGO 7175 Xiaodong Li (RMIT University) Decomposition and CC for LSGO 8/75
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Cooperative coevolutionary framework

@ First Cooperative Coevolutinary (CC) model was proposed by
[Potter and De Jong 1994].

@ A “divide-and-conquer” method to decompose a problem into
several smaller subcomponents, each of which is evolved using a
separate EA.

@ Specificall , a n-dimensional decision vector is divided into n
1-dimensional subcomponents each of which is optimized using a
separate GA in a round-robin fashion.

@ CC has been used with various EAs, eg., Evolutionary
Programming, Evolutionary Strategies, Particle Swarm
Optimization, and Differential Evolution.

Xiaodong Li (RMIT University) Decomposition and CC for LSGO 9/75

Cooperative Coevolutionary framework

n dimensions

1 dim

CCGA [Potter and De Jong 1994]

Individual x4 is assigned with a fithes value by evaluating an n-dim
vector (X1¢, X2p, - - -, Xnp ), Which consists of x4, and the best-fi
individuals from all the remaining subcomponents.

Xiaodong Li (RMIT University) Decomposition and CC for LSGO 11/75

Divide-and-conquer

AND

@ A large problem can be subdivided into smaller and simpler problems.
@ Dates back to René Descartes (Discourse on Method).

@ Has been widely used in many areas:
» Computer Science: Sorting algorithms (quick sort, merge sort)
» Engineering: Discrete Fourier transform (FFTs)
> Optimization: Large-scale linear programs (Dantzig)
> Politics: Divide and rule (In Perpetual Peace by Immanuel Kant: Divide et impera is
the third political maxims.)

Acknowledgement: the above image is obtained from: http: //draininbrain.blogspot.com.au/
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Cooperative coevolutionary framework

CC evolutionary algorithms’ performance degrades when applied to
non-separable problems. In an ideal setting the interacting variables
should be grouped in one subcomponent in order to enhance the
performance.

Questions:

@ How to group interacting variables into the same subcomponents,
so that the inter-dependency between subcomponents is kept at
minimum? Can this be learnt?

@ How to determine the suitable subcomponent sizes (which may be
unequal)?

@ What would be a good and competent optimizer for a
subcomponent?

Xiaodong Li (RMIT University) Decomposition and CC for LSGO 12/75
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Separability and non-separability

Def nition

A function f(x1,...,Xn) is separable iff:

arg minf(xy,...,Xp) = (arg minf(xq,...),...,arg minf(... ,x,,)), (2)

(X1,5---sXn) X4 Xn

and non-separable otherwise (assuming minimization).

In other words, if it is possible to fin the global optimum of a function
by optimizing one dimension at a time independently from other
dimensions, then the function is said to be separable (otherwise
non-separable) [Auger, et al. 2007].

Xiaodong Li (RMIT University) Decomposition and CC for LSGO 13/75

Rotated Quadratic function

Improvement Interval

Improvement Interval

Improvement Interval Improvement Interval xl

Observation

The fitnes landscape of a separable function can be rotated to
produce a non-separable function, with only the orientation of the
landscape being changed.

Xiaodong Li (RMIT University) Decomposition and CC for LSGO 15/75

Non-separability (epistasis)

@ Non-separability means variable interaction (or linkage, epistasis).

> f(x,y) = x? + \y?
> g(x,¥) = X2+ My? + daxy
@ An optimization algorithm may perform poorly because the
inter-dependencies among different variables could not be
captured well enough by the algorithm.

Partially (or additively) Separable Functions
m
F(X) = 3 (%) 3)
i=1
where X; are mutually exclusive decision vectors of f;, and
X = (Xq,...,Xp) is the global decision vector of n dimensions and m is

the number of independent subcomponents in the global objective
function f. This information can be exploited.

Xiaodong Li (RMIT University) Decomposition and CC for LSGO 14175

Identifying Interacting Variables

@ Binary-Coded EAs:

» LLGA (Linkage Learning GA) [Harik et. al. 1996];

» LINC (Linkage Identif cation by Nonlinearity Check)
[Munetomo and Goldberg 1999];

» BOA (Bayesian Optimization Algorithm) [Pelikan et. al. 1999];

>

@ Real-coded EAs:

» LINC-R(Linkage Identif cation by Nonlinearity Check for
Real-Coded GAs) [Tezuka, et al. 2004].
» Used for LSGO:

FEPCC - Fast Evolutionary Programming with CC [Liu, et al. 2001];
Random grouping [Yang, et al. 2008];

Delta grouping [Omidvar, et al. 2010al;

CC Variable Interaction Learning [Chen, et al. 2010].

*

* % %

Xiaodong Li (RMIT University) Decomposition and CC for LSGO 16/75
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Outline

9 Decomposition Methods with CC
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Fixed grouping - CPSO

@ Unlike CCEA by [Potter and De Jong 1994], in Cooperative
Particle Swarm Optimization (CPSO)

[Van den Bergh and Engelbrecht 2004] a n-dimensional problem
is decomposed into m s-dimensional subcomponents, where s is
the number of variables in a subcomponent.

@ Once the decomposition of variables is decided at the beginning,
this grouping remains fi ed, which means that the arrangement of
variables is not changed during the optimization.

@ Interacting variables that happen to be placed in different
subcomponents will remain so. This is against the idea to keep
the interdependency between subcomponents to minimum.

Xiaodong Li (RMIT University) Decomposition and CC for LSGO 19/75

Classes of variable grouping methods

Fixed grouping

Variable grouping is fi ed throughout the optimization run, including
methods such as the original CC method [Potter and De Jong 1994],

FEPCC [Liu, et al. 2001], Splitting-in-Half method [Shi, et al. 2005];
and CPSO [Van den Bergh and Engelbrecht 2004].

Random grouping

Variable grouping is changed during the optimization run, e.g., random
grouping [Yang, et al. 2008], and CCPSO2 [Li and Yao 2012].

Learnt Grouping

Variable grouping is learnt either before or during the optimization run,
e.g., the CC technique for identifying interacting variables

[Weicker and Weicker 1999], Delta Grouping [Omidvar, et al. 2010a],
CCVIL [Chen, et al. 2010], and Differential Grouping

[Omidvar, et al. 2013].

Xiaodong Li (RMIT University) Decomposition and CC for LSGO 18175

Cooperative PSO

n dimensions

Py Py

s dims

Figure : Concatenation of all the personal bests (from swarm P; to Px)
P1.y,P,.y, ..., Px.y constitutes the context vector y.

Xiaodong Li (RMIT University) Decomposition and CC for LSGO 20/75




Cooperative PSO

Algorithm 1: The pseudocode of the CPSO algorithm.

Create and initialize K swarms, each with s dimensions (where
n = K x s); The j-th swarm is denoted as P;,j € [1..K];
repeat
for each swarm j € [1..K] do
for each particle i € [1..swarmSize] do
if f(b(j, P;.x;)) < f(b(j, P;.y;)) then P,.y; + P;.x;;
if f(b(j, P;.yi)) < f(b(j,P;.y)) then P;.y < P,.y;;
end
Perform velocity and position updates for each particle in P;;

end
until termination criterion is met;

Xiaodong Li (RMIT University) Decomposition and CC for LSGO 21/75

Random Grouping

Theorem

Given N cycles, the probability of assigning v interacting variables
X1, X2, ..., Xy into one subcomponent for at least k cycles is:

N

oo 50 () ()

r=k
where N is the number of cycles, v is the total number of interacting
variables, m is the number of subcomponents, and the random

variable X is the number of times that v interacting variables are
grouped in one subcomponent.

Xiaodong Li (RMIT University) Decomposition and CC for LSGO 23/75
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Random Grouping

Motivation

@ Instead of using a fi ed grouping for variables, it is possible to
dynamically regroup the variables iteratively by randomly
decomposing variables into different subcomponents.

@ One such method is Random Grouping by
[Yang, et al. 2008, Omidvar, et al. 2010b, Li and Yao 2012], where
decision variables are shuffle in each co-evolutionary cycle so

that the probability of two interacting variables being placed in the
same subcomponent is increased;

Xiaodong Li (RMIT University) Decomposition and CC for LSGO 22/75

Random Grouping

Lemma

A variable can be assigned to a subcomponent in m different ways,
and since there are v interacting variables, the probability of assigning
all of the interacting variables into one subcomponent would be:

1 1 1
= — X .. X —=—
Psub m m mv
—_—————
v times

Since there are m different subcomponents, the probability of
assigning all v variables to any of the subcomponents would be:

m 1
P:mxpsubzmzmv,1

Xiaodong Li (RMIT University) Decomposition and CC for LSGO 24 /75



Random Grouping

Proof.

There are a total of N independent random decompositions of
variables into m subcomponents, so using a binomial distribution the
probability of assigning v interacting variables into one subcomponent
for exactly r times would be:

(I;I)prm —p)NT
- (=) (=)

9
<
I

>
I

Thus,
N r N—r
N 1 1
PX>k)=>Y" 1— ——
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Figure : Increasing v, the number of interacting variables will signif cantly
decrease the probability of grouping them in one subcomponent, given
n = 1000 and m = 10.

Random Grouping

Example
Given n = 1000, m = 10, N = 50 and v = 4, we have:

50
P(X21):1—P(X:O):1—(1—11ﬁ) = 0.0488

which means that over 50 cycles, the probability of assigning 10
interacting variables into one subcomponent for at least 1 cycle is only
0.0488. As we can see this probability is very small, and it will be even
less if there are more interacting variables.

Xiaodong Li (RMIT University) Decomposition and CC for LSGO 26/75

Increasing the number of cycles N
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Figure : Increasing N, the number of cycle increases the probability of
grouping v number of interacting variables in one subcomponent.

28/75
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Random grouping - summary

Our results in [Omidvar, et al. 2010a] suggested that:

@ More frequent random grouping result in faster convergence
without sacrificin  solution quality, due to increased probability in
grouping interacting variables in a subcomponent.

@ More frequent random grouping also increases the efficienc in
dealing with problems with two interacting variables, but as the
number of interacting variables increases (eg., 6 or 7), the
probability of these interacting variables being placed in the same
subcomponent drops very rapidly.

@ For problems with a large number of interacting variables, random
grouping will not be very helpful.

Question: Can we do better than just random grouping, which
relies on shuff ing variables in order to increase the probability of
placing interacting variables together? Can this be learnt?

Xiaodong Li (RMIT University) Decomposition and CC for LSGO 29/75

CC Variable Interaction Learning
CCVIL

3X, X[, X (5)

/
F(X5 s Xiy ooy Xjy ooy X)) < F(X45 000 X ooy Xy oy X)) A
F(XT5 w0y Xis ey Xy ooy Xn) > F(X4, 0 X[y s XG5 o0y X))
where X is a candidate decision vector and x;, x/ are two values to be

replaced by the ith and jth decision variables respectively.

Learning stage:

In the variable interaction learning stage, initially each variable is
placed in a separate subcomponent. Then, with repeated applications
of the above equation to any two dimensions i and j, the interacting
dimensions are merged until the termination criteria is met. CCVIL is
still based on a cooperative coevolutionary (CC) framework.

Xiaodong Li (RMIT University) Decomposition and CC for LSGO 31/75

CC Variable Interaction Learning

Key ideas
@ [Chen, et al. 2010] improved the technique by
[Weicker and Weicker 1999] and proposed CC variable interaction
learning (CCVIL) and applied it to LSGO.

@ CCVIL exploits the knowledge about partially (or additively)
separable functions.

@ If a function f is separable, then its global optimum can be
reached by successive line search along the axes. If f is not
separable, then there must be interactions between at least two
variables in the decision vector.

30/75
Outline

e Contribution Based Cooperative Co-evolution (CBCC)

Xiaodong Li (RMIT University) Decomposition and CC for LSGO 32/75
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Contribution Based Cooperative Co-evolution

Motivation
@ When dealing with non-separable problems, there is usually an
imbalance between the contribution of various subcomponents to
the global fithess

@ In cooperative coevolution, a round-robin method is employed to
optimize all of the subcomponents in an iterative manner. This
switching strategy splits the computational budget equally
between all subcomponents.

@ In the presence of imbalance between subcomponents, the
round-robin method is not computationally efficient

@ More computational budget should be spent on the
subcomponents with the greatest contribution to the improvement

of global fitnes .

Xiaodong Li (RMIT University) Decomposition and CC for LSGO 33/75

CEC’2010 - f14 : How Realistic It Is?

CEC’2010 fi4

b

m
fia = fotiptic(RkXx), Xk € R™
k=1

A more realistic situation
m
F=" wxfi(%) 6)
i=1

where X; are mutually exclusive decision vectors of functions f;, and m
is the number independent subcomponents in the global fitnes

function f. w; is the coefficient

Xiaodong Li (RMIT University) Decomposition and CC for LSGO 35/75

The Imbalanced Problems

CEC’2010 1
fa(X) = 108 x foppric(R[X Xom] ) +
4 - elliptic P15 s APm
T

felliptic([xpmHa 009%) Xpn] ) )
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1e+14
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16+10 |\
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1e+08 |

. ‘X\“x“ﬂx.
1e+06 ynk)(“"*“‘**—-x‘
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How to achieve CBCC?

@ Firstly, subcomponents with minimum interdependency are
identified This requires an effective variable grouping method.

@ Secondly, contributions to the global fitnes from different
subcomponents need to be properly measured. Note that in a
real-world scenario we often do not have prior knowledge to the
fitnes of subcomponents. The global fitnes is all we have.

Method

Given an ideal decomposition of decision variables, if we optimize one
subcomponent at a time, the changes in the global fitnes function is
the reflectio of changes in the subcomponent that undergoes
optimization.
@ The changes in the global fitnes function under a near optimum
decomposition could be served as measure for the contribution of
various subcomponents.
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The CBCC Algorithm Outline

Algorithm 2: CBCC(FEs)

1. pop[1 : Npopsize» 1 : ] < random population
. evaluate the pop using an EA
3. initialize prev_best, cur_best

. AF <« zeros(1, num_groups)
5. while termination criteria is not reached do
6. for i < 1 to num_groups do
7
8
9

2
4

optimize and evaluate the ith subpopulation using an EA
update prev_best, cur_best
AFJi] < AF[i] + |prev_best — cur_best|
10 end for
11 51
12 while § # 0 do . . .
13. optimize the subpopulation with the highest contribution using an EA e D|fferent|a| Group|ng
14. update prev_best, cur_best
15 & < |prev_best — cur_best|
16 AF[max_contrib] < AF[max_contrib] + &
17 end while
18. end while

Further information on CBCC can be found from [Omidvar, et al. 2011].

37175 38175
Differential Grouping Additively or partially separable functions
Motivation Def nition

@ The structure of a problem is not always known in advance, hence
manual decomposition is not always straightforward;

@ New systematic procedures are needed to learn the underlying
structure of the problem.

A function is said to be additively or partially separable if it has the
following general form:

@ Differential Grouping is developed to discover interacting variables
so that they can be placed in the same subcomponents.

@ This facilitates automatic decomposition (or grouping) of decision

f(X)=>_fi(x), (7)
i=1

where X; are mutually exclusive decision vectors of f;, and

) i > X = (x4,...,Xpn) is the global decision vector of n dimensions and m is
varlables,. S_O that the interdependency between subproblems is the number of independent subcomponents in the global objective
kept at minimum. e

Xiaodong Li (RMIT University) Decomposition and CC for LSGO 39/75
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Differential Grouping Differential Grouping

Theorem Illustration
Let f(X) be an additively separable function. Va, by # by,6 € R,§ # 0, D) B e Loy 1] BLED i iy ielloilng) ey
if the following condition holds Al = (... @i +0,bj,...) — (... aibj,...) .
D [1(X) Ixy=axq=by 7 Do [f1(X) [xp=a,x0=b5 (8)

Ale[f] :f(...,a,-+5,c,-7...)—f(...,a,-7c,-,...) .

then xp and xq are non-separable, where
where a; is an arbitrarily chosen value for the i-th variable, and b; and
Dsx [FI(X) =F(...xp+6,...) —F(...., Xp,...), 9) ¢; are two arbitrarily chosen different values for the j-th variable. If
' . . . A1, [f] = A24[f], then it can be said that i-th and j-th variables are

refers to the forward difference of f with respect to variable x, with independent with each other. Otherwise, they are interacting with each
interval §. ) other.

Xiaodong Li (RMIT University) Decomposition and CC for LSGO 42175

Separability = Ay = A Differential Grouping

Assuming:

F(X) = 3 (%)
i=1

Detecting Non-separable Variables
We prove that:

Separability = A = Ay |A1 — Ay| > € = non-separability

Detecting Separable Variables
By contraposition (P = Q = —-Q = —P):

|A1 — Ay| < e = Separability (more plausible)
A4 # Ay = non-separability g

or
|Aq — Ay| > e = non-separability

Xiaodong Li (RMIT University) Decomposition and CC for LSGO 43/75 Xiaodong Li (RMIT University) Decomposition and CC for LSGO 44 /75
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Differential Grouping

Example (Partially Separable Function)

Given an objective function f(x,y) = x? + y?, we have:

of(x,y)
o 2X.

This clearly shows that the changes in the global objective function
caused by modification to x are independent of y. Now by applying
Equation (9) we have:

Ax[f] = [(x +8)% + y?] — [x? 4 y?] = 62 + 26x.

It can be seen that A,[f] does not depend on y. Therefore, we
conclude that x and y are independent.

Xiaodong Li (RMIT University) Decomposition and CC for LSGO
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Algorithm 3: allgroups «—differential_grouping(func, Ibounds, ubounds, n)

1. dims «+ {1,2,...,n}

2. seps « {}

3. allgroups + {} // contains a set of all identifi d groups.
4. fori € dims do

58 group + {i}

6. forj € dims Ai #j do

7. Py + Ibound x ones(1, n)
8. P2 + P1

9. Pa(i) « ubound

10. Ay + func(py) — func(py)
11. B1() < 0

12. Pa(j) « 0

13. Ay « func(py) — func(py)
14. if |[A1 — Ap| > ethen
15. group + group U j
16. end if

17. end for

18. dims < dims — group

19. if length(group) = 1 then

20. seps < seps U group

21.  else

22. allgroups < allgroups U {group}
23.  endif

24. end for

25. allgroups « allgroups U {seps}

Xiaodong Li (RMIT University) Decomposition and CC for LSGO
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Differential Grouping

Example (Non-separable Function)
Given an objective function f(x,y) = x2 + A\xy + y?, A # 0, we have:

of(x,y)
ox

The changes in the global objective function is a function of x and y.
Now by applying Equation (9) we have:

=2X + \y.

Axlf] = [(x +8)% + Mx +8)y + 2] = [x2 + Axy + y?]
= 6%+ 20X + \y§.
A[f] depends on both x and y, and evaluating the difference equation

for two different values of y does not give the same answer. Hence we
conclude that x and y are interacting with each other.

Xiaodong Li (RMIT University) Decomposition and CC for LSGO 46175

Time Complexity Analysis

S:(n—1)+(n—m—1)+--~+(n—(%—1>m—1)
= (=) +(—m=1) 4+ (m=1)
n
=%(f7+m—2)- (10)

O(FE)=O<2(8+;:7)) :O<7§)' (11)

47175
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CC framework with DG

Algorithm 4: CC(func, Ibounds, ubounds, n)

1. groups «+ grouping(func, Ibounds, ubounds, n)  //grouping stage.
2. pop < rand(popsize, n) //optimization stage.

&, (best, best_val) < min(func(pop))

4. fori « 1 to cycles do

5 for j + 1 to size(groups) do

6. indicies « groupsj]

7. subpop < pop]:, indicies]
8
9

subpop < optimizer(best, subpop, FESs)
popl:, indicies] <+ subpop
10. (best, best_val) < min(func(pop))
1. end for
12.

end for

Two separate stages:
@ Grouping stage: it can be any off-line grouping procedure, eg.,
differential grouping.
@ Optimization stage: The identifie subcomponents are optimized

in a round-robin fashion as in CC. The subcomponent optimizer
can be any optimization method.

Xiaodong Li (RMIT University) Decomposition and CC for LSGO 48175

Differential Grouping vs CCVIL
Referring to the figu e in the previous slide.

o Differential grouping and CCVIL behave differently depending on
the positions of the chosen sample points, three regions (A, B,
and C) are marked on a two-dimensional version of the Schwefel’s
Problem 1.2, where both variables are interacting with each other.

@ The condition given in Equation (5) which is used in CCVIL is only
satisfie in region A, but not for points in regions B or C. CCVIL
will need to continue its search with more effort.

@ Unlike CCVIL, which directly compares the fithes of the sample
points, differential grouping compares the difference between the
elevation of the two points connected in a dashed line (as shown
in the Figure), (|f(x1,X2) — f(x1 + 4, X2)| and
|f(x1,x5) — f(xq + 6, x5)|). If this difference in elevation of the two
pairs is different, it is inferred that the corresponding dimensions
are non-separable.

Xiaodong Li (RMIT University) Decomposition and CC for LSGO 50/75

Differential Grouping vs CCVIL

X4 X{=X1+0
X2 e
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o

Figure : Detection of interacting variables using differential grouping and
CCVIL on different regions of a 2D Schwefel Problem 1.2.
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CEC’2010 Benchmark Suite

Benchmark Functions

0 Separable Functions (f-f3)

e Single-group m-nonseparable Functions (f4-fg)
f4: Single-group Shifted and m-rotated Elliptic Function.
f5: Single-group Shifted and m-rotated Rastrigin’s Function.
fs: Single-group Shifted and m-rotated Ackley’s Function.
fz: Single-group Shifted and m-rotated Schwefel’'s Problem 1.2.
fg: Single-group Shifted and m-rotated Rosenbrock’s Function.

Q ﬁ-group m-nonseparable Functions (fy-f;3)
0 %-group m-nonseparable Functions(fy4-fig)
e Nonseparable Functions (fig9-fa0)

Experiment Setup

o Dimensionality of the functions: 1000; m = 50.

@ Number of fi ness evaluations: 3 x 10°

) Population Size: 50; Subcomponent Optimizer: SaNSDE.
[~ (see Algorithm 3) is set 1073;
o

The average, mean and standard deviation are recorder over 25 independent runs.

Xiaodong Li (RMIT University) Decomposition and CC for LSGO 51/75
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Differential Grouping (¢ = 10-%) / CCVIL DG compares with CCVILs grouping performance

Function Non-sep Non-sep # Misplaced #FE Grouping
Vars Groups Vars Accuracy
fy 0 0 0/0 1001000 / 69990 100% / 100%
f 0 0 0/0 1001000 / 69990 100% / 100%
f3 0 0 0/31 1001000/ 1798666  100% / 93.8% Diff ial : lqorith " .
N = - o7 AT TT06 T 00% [ 500k o Di erentlg grouping a gqut m performs a more accurate grouping
fs 50 1 0/0 905450 / 1795705  100% / 100% with considerably fewer fithes evaluations on most of the
fs 50 1 0/3 906332 /1796370  100% / 94% i
" 50 1 16/ 1 67250/ 1796475  69% / 98% flnctions exceptfor fy, f, and f7.
fa 50 1 4/50 23608 / 69842 92% /0% @ CCVIL performs even worse than differential grouping on all
f5 By o o7e ZPUSWZ I THEP2Z O o 2 instances of the Rosenbrock function.
f1o0 500 10 0/8 272958 / 1774642 100% / 98.4% o N )
fi1 500 10 1/9 270640 / 1774565  99.2% / 98.2% @ An advantage of CCVIL is its ability to quickly detect fully
fi2 500 10 0/65 271390 /1777344 100% / 87% : : ; :
e . 6 e 0§ 00 S na separal?le variables with a relatively low number of fitnes
e 7000 20 0/281 21000/ 1785975 100% / 71.9% evaluations.
fis 1000 20 0/18 21000/ 1751241 100% / 98.2%
fie 1000 20 4/11 21128 /1751647  99.6% / 98.9%
fi7 1000 20 0/25 21000/ 1752340  100% / 97.5%
fig 1000 20 827 /1000 34230 / 69990 17.3% /0%
fio 1000 1 0/0 2000 / 48212 100% / 100%
f20 1000 1 918 /980 22206/ 1798708  8.2% /2%

Result analysis of different grouping methods
Functions DECC-DG MLCC DECC-D DECC-DML DECC-I

fy 547e+03 1.53e-27 1.01e24  1.93e-25 1.73e+00
f 4.39e+03 5.57e-01 2.99e+02 2.17e+02 | 4.40e+03
:3 1'%9"(1); :.:?6-11?; ;':;e':z ;';:e':‘z ;'?;e":): @ DECC-DG outperforms other algorithms on non-separable

.[Oet+ .blet+ .99%e+ .58e+ 13et+ . g

f;‘ 1.55e+08 3.84e+08 4.16e+08 2.98e+08 | 1.34e+08 functions, whereas DECC-DG is outperformed by DECC-DML on
fs 1.64e+01 1.62e+07 1.36e+07  7.93e+05 1.64e+01 separable functions fy, f,, and fs.
fz 1.16e+04 6.89e+05 6.58e+07 1.39e+08 | 2.97e+01 . .
fa 3.04e+07 4.38e+07 5.39e+07 3.46e+07 | 3.19e+05 @ DECC-DG outperforms DECC-DML when grouping accuracy is
fo 5.96e+07 1.23e+08 6.19.407 5.92e+07 | 4.84e+07 high. DECC-DG performs poorly on instances of the Rosenbrock
fio 4.52e+03 3.43e+03 1.16e+04 1.25e+04 | 4.34e+03 i i i
7 1090401 1980402 4760401 180043 1020401 funct.lons(fg, f13, f18, and fpg), where low grouping accuracy is
fi2 2.52e+03 3.49e+04 1.53e+05 3.79¢+06 | 1.47e+03 obtained.
f, 4546+06 2.08e+03 9.87e+02 1.14e+03 | 7.51e+02 . : . N
13 S S S 2 S @ Comparing with DECC-I| (where ideal grouping is used), the
fia 341e+08 3.16e+08 1.98¢+08 1.89e+08 | 3.386+08 . ; .
fis 5.88e+03 7.11e+03 1.53e+04 1.54e+04 | 5.87e+03 results show in most cases, DECC-DG benefit from utilizing
fi6 7.39e-13 3.76e+02 1.88e+02  5.08e-02 2.47e-13 grouping information.
fiz 4.01e+04 1.59e+05 9.03e+05 6.54e+06 | 3.91e+04
fig 1.11e+10  7.09e+03 2.12e+03 2.47e+03 | 1.17e+03
fio 1.74e+06 1.36e+06 1.33e+07 1.59e+07 | 1.74e+06
f20 4.87e+07 2.05e+03 9.91e+02 9.91e+02 | 4.14e+03
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Convergence plots on fz and fy
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Evaluations Evaluations

Observation

Although a certain number of fitnes evaluations have been used to
discover the ideal grouping structure, this effort is compensated for in
the optimization phase due to optimum grouping structures.

Xiaodong Li (RMIT University) Decomposition and CC for LSGO 56/75

/ /
Convergence plots on f{, and f;,
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Observation

For MA-SW-Chains, there is initially a drastic improvement in the

fitnes value, and thereafter it becomes stagnant. This is largely due to
MA-SW-Chains’ strong local search ability (it is actually a memetic
algorithm).
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Results on DG with contribution-based CC

It is arguable that in most real-world problems, some imbalance exists
between various subcomponents. Hence we modifie CEC’2010
benchmark functions fy to f13 (category 3) fi4 to f1g (category 4) to
allow imbalance to be considered.
Imbalanced functions

T

Fcat3 = Z 102(i_9) X Fnonsep + Fsep
i=0
3

Fcat4 = Z 10(i_9) X Fnonsep + Fsep .
i=0
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CBCC-DG vs DECC-DG and MA-SW-CHAINS

Table : CBCC-DG’s number of wins, loses and ties against DECC-DG and
MA-SW-Chains before and after inclusion of imbalance in benchmark
functions (f3-fg and fg-f{g)

Balanced Imbalanced
Algorithm Wins Loses Ties | Wins Loses Ties
DECC-DG 7 5 8 9 2 4
MA-SW-Chains 5 10 0 6 7 2

Observation

Contribution-based CC is beneficia especially for dealing with
imbalanced problems. CBCC is just one simple scheme. More
effective contribution-based CC schemes are possible.
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Outline CEC’2013 LSGO benchmark test functions

Designed to challenge large-scale black-box optimization algorithms,
especially their ability to decompose large scale problems. This was
built on the success of CEC’2008, CEC’2010, and CEC’2012 Special
Session and Competition on Large Scale Global Optimization.

CEC’2013 LSGO benchmark [Li, et al. 2013]

@ 15 large-scale benchmark test functions, an extension to the
CEC’2010 benchmark functions;

@ Facilitate comparative studies between various evolutionary
algorithms for large-scale global optimization;

@ Introducing imbalance between various subcomponents;
@ CEC’2013 LSGO Benchmark Test Functions @ Subcomponents with nonuniform sizes;
@ Conforming and conflictin overlapping functions.

@ New transformations to the base functions: ill-conditioning,
symmetry breaking, and irregularities.

60175 61175
Outline Real-world problem: winter gritting in UK (2006)

@ 3000 gritting routes

@ 120,000 km or 30% of the entire road network
@ Millions of pounds each year

@ Large Scale Combinatorial Optimization!

ﬂ Route Distance Grouping for Capacitated Arc Routing Problems

Figure : Black ice hazard
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An example of South Gloucester, UK
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Figure : Temperature distribution Figure : A routing plan
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IEEE CIS Taskforce on Large Scale Global
Optimization

@ Promote research for large scale optimization problems;

@ Facilitate the knowledge sharing and collaboration between
researchers in the related areas;

@ Exchange experience and promote discussion and contacts
between researchers, industrialists and practitioners.

Further information:
http://goanna.cs.rmit.edu.au/~xiaodong/ieee-1lsgo/

In 2014, the taskforce is involved in the following:

@ CEC’2014 Special Session on Large Scale Global Optimization

@ Special Issue of Information Sciences Journal (ISJ) on “Nature-Inspired Algorithms for
Large Scale Global Optimization”.

@ CEC'2014 and GECCO'2014 Tutorial on “Decomposition and Cooperative Coevolution
Techniques for Large Scale Global Optimization”.
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Decomposition: Route Distance Grouping

A
[\
v

Depot

Figure : Grouping routes that are Figure : Optimizing the grouped
close to each other. routes.
Further information can be found in [Mei, et al. 2013].
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Outline

e Conclusions
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Conclusions Future works

@ Various decomposition methods using cooperative coevolution o .
(CC) techniques have been developed over the years, and a few @ A more accurate contribution assessment scheme that can quickly
recent methods have shown particularly promising results for respond to the changes.

LSGO problems. @ What is the optimal decomposition for totally separable problems,
given a fi ed computational budget? See a recent work on this

@ A related issue to decomposition, in the presence of imbalanced .
[Omidvar, et al. 2014].

problems, is how to best spend computational budget on the

subproblems which contributes the most to the global fitnes . We @ Effects of different population sizes in different subcomponents.

have shown that a contribution based CC method can improve @ What would be the competent optimizer for a subcomponent in

over the traditional CC. CC, given the optimal (or close to optimal) grouping of variables
@ A new decomposition method, differential grouping, shows very discovered?

promising results, capable of automatic decomposition of a @ How to better deal with the overlapping functions as presented in

partially separable problem into subcomponents with a minimum the technical report of CEC’2013 LSGO benchmark functions?

inter-dependency.
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