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» What is Bilevel Optimization?

» Difference from Single and Multi-objective
optimization

» How practical are they?

» Evolutionary Bilevel Optimization (EBO)

» Past EBOs

» Recent advancements in EBO

» Conclusions and EBO Repository
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» Kalyanmoy Deb is Koenig Endowed Chair Professor of
Electrical and Computer Engineering at Michigan State
University, East Lansing. His main research interest is in
Evolutionary Multi-Criterion Optimization. His NSGA-II
algorithm has more than 10,000 Google Scholar citations.
His Computational Optimization and Innovation (COIN)
laboratory develops original research and applications in
Evolutionary Optimization. He has published 365 papers, 2
text books and 18 edited books. More of research papers
can be found in http://www.egr.msu.edu/~kdeb.

» Ankur Sinha is a researcher at Aalto University School of
Business, Helsinki, Finland. His research interests include
Evolutionary Multi-Objective Optimization, Multi-Criteria
Decision Making, Bilevel optimization and Statistical
Language Processing. He completed his dissertation at the
Aalto University School of Business in the year 2011, where
he received the dissertation of the year award. More
information about his research can be found at
https://people.aalto.fi/ankur_sinha. He also maintains a
website on Evolutionary Bilevel Optimization that can be

accessed at http://www.bilevel.org. R .
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What is Bilevel Optimization?

» Two levels of optimization tasks
= Upper level: (x,, x)
= Lower level: (x)
» An upper level feasible solution must be an optimal lower
level solution

Minx, x,) F(%u,x1),
: f(xua xl)
st x; € argmin ) { g(xu,xl) > O,h(xu,xl) —0 [’
G(xy,%;) > 0,H(x,,%x;) = 0,
(xu)m.’i'n <xy < (xu)maa:7 (xl)min <x < (xl)maa:
A!
| | 3
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An lllustration

» Lower level solution x, can be a singleton or multi-valued

» The best combination is preferred at upper level based on upper level
function value
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Similarities with Constrained Single-Objective
Optimization

> A single-objective Minimize f(x)

optimization problem: Subject to hy(x) =0, Vk
g X) Z 01 Vj
» Equality constraint: = Y(x\z)

= Usually, a root-finding problem
= Asolution x is feasible, only if it satisfies all constraints
> In EBO, LL problem is an optimization problem

= Asolution (x,, x) is not feasible, unless x, is a solution to the LL
optimization problem

paur
G

GECCO-2014, Vancouver 13 July 2014

McHcANSIATE  Aalto

858

Multi-level Optimization: A Generic Optimization
Problem

> Multi-level (L levels) optimization
= Two (L=2) or more levels of optimization
= |deally, nested optimization

» Usual single, multi- and many-objective optimization
problems
= Special cases (L=1) of L-level optimization

> Bilevel: A more generic optimization concept than
single-level optimization
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A Mathematical Bilevel Optimization Problem

Min(w) 3y +x
s X=X, XEY Such that
> AtLL, forx, Y S W) |3 ot
maximize y { ii%ffiﬁ:ﬁ%}
> Bold lineis y

solution set for LL

» Min 3y+x for bold
line

> The SO|uti0n iS Bold Line - Induced Set

(216) R

(2,6) - Bilevel Solution

Single-obj optimum *
X4 X |
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Not to be Confused with Multi-Objective

Optimization

> <

M}n(x,y) 3y +x
Mln(x,y) -y

Such that

X+y=<8 y
X+4y=8

x+2y=<13

I=x=<6

.

> Min 3y+x, s.t. y2y’ 3 (x,y)*=(1,y’)

Pareto-optimal Set (Decision
Space)

Bilevel Optimum

' g

> Pareto-optimal set very different from Bilevel optimum
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Bilevel Problems in Practice

» Often appears from functional feasibility
= Stability, equilibrium, solution to a set of PDEs
= |deally, lower level task must implement above
= Dual problem solving in theoretical optimization
» Lower level is bypassed by approximation or by
using direct simplified solution principles
= Due to lack of suitable BO techniques
» Stackelberg games: Leader-follower
= Leader must be restricted to follower’ s decisions
= Follower must respect leader’ s decisions

GECCO-2014, Vancouver 13 July 2014

Optimal Control Problems

» Broom balancing:

> Upper level: Movement

(u) of platform for A e
minimum supplied R u
energy ( : T me )
> Lower level: Maximum
stability of broom from Controller
different initial plant state
conditions and plant control u
- Env.

parameters

Hybrid
System

PLANT
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Structural Optimization

» Upper level: Topology
> Lower level: Sizes and coordinates
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10 Welght 73,981 Avecage Welght 107.144" Grado 97,884
A \ 7

|
PaVANNA
Jeneration 42 Weight 64.9%9 Avecage Weight 10481 Urade 78.2 ade 60378
=
\
11 We 147986 Average . ‘Grade 52.1 133 We 4819 Avernge We 2525 -
m P

"198 Weight 45379 Avecage Welght 47.47 Urado 4539 Wolght 44077 Averagn Woight 46 83 Grad 44017

“Genecation 25 Weight 79.622 Average Weight 101,295 Grade 86,062

GECCO-2014, Vancouver 13 July 2014




Toll Setting Problem

Authority's problem:

» Authority responsible for highway system
wants to maximize its revenues earned
from toll

» The authority has to solve the highway
users optimization problem for all the
possible tolls

Highway users' problem:

» For any toll chosen by the authority,
highway users try to minimize their own
travel costs

» A high toll will deter users to take the
highway, lowering the revenues

MoHcan st Aalto
School
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Seller-Buyer Strategies

> An owner of a company dictates
the selling price and supply. She/
He wants to maximize profit.

» The buyers look at the product

quality, pricing and various other —
options available to maximize their I
utility )

> Mixed integer programs on similar o "
lines have been formulated by B

Heliporn et al. (2010)
Heilporn et al. (2010)

GECCO-2014, Vancouver 13 July 2014

Taxation Strategy

» Recently, there has been a
controversy in Finland for gold
mining in the Kuusamo region
in Finland

» The region is a famous tourist
resort endowed with immense
natural beauty

» For any taxation strategy by
the government, the mining
company optimizes its own
profits

GECCO-2014, Vancouver 13 July 2014

N

Leader: Government Maximize
revenue from taxes, Minimize
Pollution

Follower: Mining Company
Maximize Profit

Sinha, et al. (2013)

14

Properties of Bilevel Problems

» Bilevel problems are typically non-convex,

disconnected and strongly NP-hard

» Solving an optimization problem produces a one or
more feasible solutions

» Multiple global solutions at lower level can induce
additional challenges

» Two levels can be cooperating or conflicting

GECCO-2014, Vancouver 13 July 2014




Solution Methodologies

» KKT conditions of the lower level problem are used as
constraints (Herskovits et al. 2000)
= Lagrange multipliers increase the number of decision
variables
= Constrained search space
= Applicable to differentiable problems only
» Another common approach: Nested optimization
= For every x,, lower level problem is solved completely
= Computationally very expensive
» Discretization of the lower level problem
= The best solution obtained from discrete set for a
given x, is used as a feasible member at upper level

S
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Solution Methodologies (cont.)

» Evolutionary algorithms have also been used for bilevel
optimization
» Most of the methods are nested strategies
» Mathieu et al. (1994): LP for lower level and GA for upper level
> Yin (2000): Frank Wolfe Algorithm for lower level
» Oduguwa and Roy (2005): Proposed a co-evolutionary approach
» Wang et al. (2005):
= Solved bilevel problems using a constrained handling scheme
in EA
= Method is computationally expensive, but successfully
handles a number of test problems
» Lietal. (2006): Nested strategy using PSO
» EAresearchers have also tried replacing the lower level problems
using KKT (Wang et al. (2008), Li et al. (2007))

GECCO-2014, Vancouver 13 July 2014
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Solution Methodologies (cont.)

» Penalty based approaches
= Special forms of penalty functions have been used
= Lower level is usually required to be convex
= Penalty function may require differentiability
» Branch and Bound techniques (Bard et al. 1982)
= Used KKT conditions
= Handled linear problems
= Converted the problems into variable separable form
= Utilized the branch and bound approach
» Taking an approximation of the lower level optimization
problem such that its optimum is readily available
= The optimal solutions from lower level might not be
accurate

AL
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Why Use Evolutionary Algorithms?

> First, no implementable mathematical optimality conditions exist
(Dempe, Dutta, Mordokhovich, 2007)

= LL problem is replaced with KKT conditions and constraint
qualification (CQ) conditions of LL

= UL problem requires KKT of LL-KKT conditions, but handling LL-
CQ conditions in UL-KKT becomes difficult

= Involves second-order differentials

» Moreover, classical numerical optimization methods require various
simplifying assumptions like continuity, differentiability and convexity

» Most real-world applications do not follow these assumptions

» EA’s flexible operators, direct use of objectives and population
approach help solve BO problems better

GECCO-2014, Vancouver 13 July 2014
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Niche of Evolutionary Methods

> Usually, LL solutions are multi-modal
> Usually, BO problems are multi-objective BO
= Both problems require to find and maintain multiple
optimal solutions
= EAs are known to be good for these cases
» Computationally faster methods possible through meta-
modeling etc.
» Other complexities (robustness, parallel implementation,
fixed budget) can be handled efficiently

GECCO-2014, Vancouver 13 July 2014

h

SMD Test Problem Framework
(Sinha, Malo & Deb, 2014)

The objectives and variables on both levels are
decomposed as follows:

F(xy,x;) = Fy(%u1) + Fa(xi1) + F3(Xu2, X12)
F(xu, x1) = f1(Xu1, Xu2) + fo(xi1) + f3(Xu2, Xi2)
where

Xy = (Xu1,Xu2) and  x; = (X51,X2)

GECC0-2014, Vancouver 13 July 2014
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Bilevel Test Problems

Controlled difficulty in convergence at upper and lower levels
Controlled difficulty caused by interaction of two levels
Multiple global solutions at the lower level for any given set of
upper level variables

Clear identification of relationships between lower level optimal
solutions and upper level variables

Scalability to any number of decision variables at upper and
lower levels

Constraints (preferably scalable) at upper and lower levels
Possibility to have conflict or cooperation at the two levels
The optimal solution of the bilevel optimization is known

GECCO-2014, Vancouver 13 July 2014
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Roles of Variables

Panel A: Decomposition of decision variables

Upper-level variables Lower-level variables

| Vector I Purpose | Vector I Purpose
Xul Complexity on upper-level X1 Complexity on lower-level
Xu2 Interaction with lower-level X2 Interaction with upper-level

Panel B: Decomposition of objective functions

Upper-level objective function [ Lower-level objective function

| Component ] Purpose | Component | Purpose
F1(Xu1) Difficulty in convergence f1(Xut, Xu2) Functional dependence
F(xy1) Conflict / co-operation Fa(xi1) Difficulty in convergence
F3(xy2,%2) Difficulty in interaction f3(xu2,%2) Difficulty in interaction

o

R A!
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Controlling Difficulty for Convergence

» Convergence difficulties can be induced via following routes:
» Dedicated components: F, (upper) and f, (lower)
» Example:

F(xy,x;) = Fi(%u1) + F2(x11) + F3(Xu2, X12)

Quadratic
F(Xu, X1) = f1(Xu1, Xu2) +uf2(Xl1) + f3(Xu2,Xi12)

Multi-modal

paur ' .
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Difficulty due to Conflict/Co-operation

» Dedicated components: F, and f, or F; and
f; may be used to induce conflict or
cooperation

» Examples:
= Cooperative interaction = Improvement in lower-level
improves upper-level (e.g. F,=f,)
= Conflicting interaction = Improvement in lower-level
worsens upper-level (e.g. F, = -f,)
= Mixed interaction = Both cooperation and conflict (e.g.
Fo=f,and F3 =2 (x,))? - f3

A! .
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Controlling Difficulty in Interactions

» Interaction between variables x,, and x;, could be chosen as
follows:
* Dedicated components: F, and f,

» Example: .
F(xy,%;) = F1(%xu1) + Fa(x11) + F5(Xu2, X12)
S oka)+ 3 (el anc?
F(%u, X1) = f1(Xu1,Xu2) + fa(xn1) +jf3(xu2yxl2)
S (@ha)? — tanaly)?

i=1
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Controlled Multimodality

> Obtain multiple lower-level optima for every upper level
solution:
= Component used: f,
» Example: Multimodality at lower-level
Fr(xu1, xu2) = (231) + (231)® + (232)° + (22,)*
fg(xll) = (zlll - $l21)2 Induces multiple solutions: x*,, = x%
1 2 2 242
f3(xu2sxl2) = (zu2 - .’13112) + (zu2 - ‘TZQ)

Fi(xu1) = (z31)* + (231)°
Fy(xi1) = (2f)? + (af)?
F3(Xu2,X2) = (fﬂqlm - xlz2)2 + (x?m - -’Ez?2)2

Gives best UL solution: x!,, = x?,,=0

GECCO-2014, Vancouver 13 July 2014




Difficulty due to Constraints

Constraints are included at both levels with one or more
of the following properties:

» Constraints exist, but are not active at the optimum

» A subset of constraints, or all the constraints are active at the
optimum

» Upper level constraints are functions of only upper level
variables, and lower level constraints are functions of only
lower level variables

» Upper level constraints are functions of upper as well as lower
level variables, and lower level constraints are also functions of
upper as well as lower level variables

» Lower level constraints lead to multiple global solutions at the
lower level

» Constraints are scalable at both levels

A!

Aalto University
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Test Problems: SMD4 - SMD6

SMD 4:

* Interaction: Conflict
¢ Lower level: Multimodality using Rastrigin’s function
¢ Upper level: Convex (Induced Space)

SMD 5:

* Interaction: Conflict
¢ Lower level: Complexity with Rosenbrock’s function
* Upper level: Convex (Induced Space)

SMD 6:

* Interaction: Conflict
* Lower level: Infinitely many global solutions for any given x,,
* Upper level: Convex (Induced Space)

A!

i Aalto University
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Test Problems: SMD1 - SMD3

SMD1:

* Interaction: Cooperative
* Lower level: Convex (w.r.t. lower-level variables)
* Upper level: Convex (induced space)

SMD 2:

* Interaction: Conflict
* Lower level: Convex (w.r.t. lower-level variables)
* Upper level: Convex (induced space)

SMD 3:

* Interaction: Cooperative
* Lower level: Multimodality using Rastrigin’s function
* Upper level: Convex (induced space)

Aalto University GECCO-2014, Vancouver 13 July 2014
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Test Problems: SMD7 - SMD9

SMD 7:

* Interaction: Conflict
o Lower level: Convex (w.r.t. lower-level variables)
* Upper level: Multimodality

SMD 8:

* Interaction: Conflict
o Lower level: Complexity with banana function
® Upper level: Multimodality

SMD 9:

* Interaction: Conflict
 Lower level: Non-scalable constraints
* Upper level: Non-scalable constraints

A! .
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Test Problems: SMD10 -SMD12

SMD 10

* Interaction: Conflict
* Lower level: Scalable constraints
* Upper level: Scalable constraints

SMD 11

* Interaction: Conflict
* Lower level: Non-scalable constraints, multiple global solutions
* Upper level: Scalable constraints

SMD 12

* Interaction: Conflict
* Lower level: Scalable constraints, multiple global solutions
* Upper level: Scalable constraints

paur ' .
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Interaction: Conflicting
Lower level: Convex (w.r.t. lower-level variables)
Upper level: Convex (induced space)

Upper and Lower Function Contours
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Interaction: Cooperative
Lower level: Convex (w.r.t. lower-level variables)
Upper level: Convex (induced space)

Upper and Lower Function Contours
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Interaction: Cooperative
Lower level: Multimodality using Rastrigin’s function
Upper level: Convex (induced space)

Upper and Lower Function Contours
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fo=a+ o, ((eh)* = cos2na, )
F3 = Sy (k] — log(1 + afy))?

D>

(2] = log(1 + 7))

)Z
) =i

Interaction: Conflicting

Lower level: Multimodality using Rastrigin’s function
Upper level: Convex (Induced Space)

Upper and Lower Function Contours

GECCO-2014, Vancouver 13 July 2014

BLEAQ

Initialization
J
Lower Level Optimization
)
Produce Offspring
)

] Quadratic Approximation

of W Function
3

Is |
Approximation
Good?

1

No

Termination
Check

No Yes

Update Population
4

| Accept Lower Level Variables

as Offspring
4

J
Lower Level Optimization for Offspring
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Efficient Evolutionary Bilevel Optimization
Algorithm

Nested algorithm is expensive

> Train a meta-model for optimal lower level

variable vector and upper level variable vector
mapping

Quadratic approximation of the inducible region
= BLEAQ (Sinha, Malo and Deb, 2013)

> Use meta-model until possible, else solve LL

optimization problem

A!

A’

D>
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Assumption: Close upper-level members are
expected to have close lower-level optimal
solutions

Xu Upper Level Variable Space

x ™

‘e x,@ x,®
A /
/ /\ i

Lower Level Function
’ ‘\

)(I Lower Level Variable Space
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BLEAQ Results

» 10-variable SMD test problems using BLEAQ

» Comparison performed against nested evolutionary approach
= Number of Runs: 21
= Savings: Ratio of FE required by nested approach against BLEAQ

Pr. No. | Best Func. Evals. Median Func. Evals. Worst Func. Evals.
LL UL LL UL LL UL
(Savings) (Savings)
SDM1 | 99315 610 110716 (14.71) | 740 (3.34) | 170808 1490
SDM2 | 70032 376 91023 (16.49) | 614 (3.65) | 125851 1182
SDM3 | 110701 620 125546 (11.25) | 900 (2.48) | 137128 1094
SDM4 | 61326 410 81434 (13.59) | 720 (2.27) | 101438 1050
SDM5 | 102868 330 126371 (15.41) | 632 (4.55) | 168401 1050
SDM6 | 95687 734 118456 (14.12) | 952 (3.25) | 150124 1410

A!
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Convergence Plots on SMD1
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Results on SMD1
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Results on Ten Standard Test Problems

>

Mean (total function evaluations) results for ten bilevel test problems
Comparison against the evolutionary algorithm of Wang et al. (2005,2011)
BLEAQ is almost an order of magnitude better

Pr. No.
BLEAQ [ WIL (BLEAQ Savings) [ WLD (BLEAQ Savings) [ Nested (BLEAQ Savings)

TP1 14810 85499 (5.77) 86067 (5.81) 161204 (10.88)
TP2 14771 256227 (17.35) 171346 (11.60) 242624 (16.43)
TP3 4376 92526 (21.15) 95851 (21.91) 120728 (27.59)
TP4 15285 291817 (19.09) 211937 (13.87) 272843 (17.85)
TP5 15403 77302 (5.02) 69471 (4.51) 148148 (9.62)
TP6 17218 163701 (9.51) 65942 (3.83) 181271 (10.53)
TP7 272971 1074742 (3.94) 944105 (3.46) 864474 (3.17)
TP8 12065 213522 (17.70) 182121 (15.09) 318575 (26.40)
TP9 93517 - - 352883 (3.77) 665244 (7.11)
TP10 100357 463752 (4.62) 599434 (5.97)

Aalto University
¥ _School of Business
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Generalizing EBO Algorithm
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Meta-model of W(x,)
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Approximation N
Error
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B |- l
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W)

\P(X(ﬂ})=ﬁ(x':"’) - W-Mapping

\;w(xu) ‘ :

O L0
Xu Xy

Approximation with localization around x,© for x,©
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W-Mapping
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Advanced Topics of EBO

Multi-objective EBO

= At least one level has multiple objectives

MEBO with decision-making

Many-objective EBO, parallel EBO, multi-modal
EBO, meta-modeling EBO

» Robust EBO: Uncertainty in at least one level

EBO applications

= Parameter tuning of algorithms

= Practical applications

Y

v

Y

A’
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Advanced EBO |deas (cont.)

» Highly constrained EBO

> Mixed-integer EBO

> EBO with a fixed budget at LL and UL
» EBO versus EO for F=f

> Error propagation from lower level to upper
level
= Theoretical convergence studies

» Evolutionary Multi-Level Optimization (EMLO)

GECCO-2014, Vancouver 13 July 2014

Past MEBO Algorithms

» A common approach: Nested optimization

= For every x,, lower level problem is solved completely

= Computationally expensive, extension to multi-objective BO impractical
» KKT conditions of lower level problem used as constraints

(Herskovits et al., 2000)

= Lagrange multiplers increase number of of decision variables

= Constrained search space

= Applicable to differentiable problems only
> Intelligent exhaustive upper level search

= Subdivision approach on upper level and numerical optimization in lower
level (Eichfelder, 2007)

GECCO-2014, Vancouver 13 July 2014
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Past Studies in Multi-Objective Evolutionary
Bilevel Optimization (MEBO)

» Plenty of studies in single-objective bilevel
optimization (BO), not much in multi-objective BO
» Optimality theory difficult
= KKT conditions involve second derivative of lower level
objectives and constraints

= Dempe et al. (2006) developed KKT conditions
= |Impractical to implement (abstract terms)
> Fliege and Vincent (2006): BP = 4-obj MOP

= Involves derivatives and unclear of extensions to multi-
objective and higher level problems

GECCO-2014, Vancouver 13 July 2014

Single Versus Multi-Objective BO Problems

» Single-objective BO
* Scalar F and scalar f
= Usually one target solution x,* and x*
» Multi-objective BO
= Usually multiple solutions x* for each x,*
* Find and maintain many solutions for each x,,

* Not an easy matter

GECCO-2014, Vancouver 13 July 2014




Population structure

BLEMO Lower and upper level
(Deb and Sinha, 2009) NSGA-I
Archiving

»
> Both levels use NSGA-II iteratively

Lower level

NSGA-II Local search

Upper level NSGA-TI

Archive

s\“r
G

M Aalto umvamiy
School of Business
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: _JlTni—-y y upper, (x1,x2) lower
Test min F(x) { ) } ‘
_ (™
PrOblem st (z1,29) € argming,, ., f(x) = (12) s
. gi(x) =y —af —23 >0
(Eichfelder, 2007) Gi(x)=1+z1+22>0,
—-1<m,2 <1, 0<y<
. 04 IUl:ope;' levell N
» Dashed lines are lower level PO PO front Lower level
fronts 02 / 1
. Depends ony 0 0.? 0.2“3 0.7:071 \“0.6 l‘0.5 i
» Upper level PO front on =02 fry=1? ; Lo
constraint G1 a o \ R
. . 04
= Maximum two solutions from .
eachy 06
= Not all y in upper PO front 08|

» Solutions below PO front exist

-1 L I

BT

-2 -18-1.6-14-12 -1 -0.8-0.6

P '
S
]

i Aalto University
V% _School of Business
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BLEMO Features:
Different from a Pure Nested Procedure

> A population of x,, is initialized
= Lower level NSGA-Il attempts to move towards their PO fronts
» Based on intermediate information, x, population is updated
to move towards feasible and PO region of upper level
problem
= Again, lower level NSGA-II attempts to move their own PO fronts
* Andsoon..
» Towards the end x, does not change much, but x, gets towards
Pareto-optimality with iterations

R A! .
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Results (Eichfelder, 2007)

> N,=400, T,=200
> N;=40, T,=40 OF ‘g,
> Near PO solutions found 02}

Boundary .:
L of objective space/ R

L L I L L L
-2 -18 -16 -14 -12 -1
F1
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Lower Versus Upper Level Optimizations

» ldentical function evaluations

» Large T, means nested with less importance
on upper level

» Small T, means less care on lower level
» T=40 seems adequate
> Refer Sinha and Deb (2009), Deb and Sinha

T,| Tu|Hypervolume
20| 391 0.29851
40(200 0.30268
100| 81 0.29716
200| 41 0.28358
400 20 0.23796

(2010)
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Results (Deb and Sinha, 2009)

> True PO solutions are found

» Similar results on Problem 4

0.6 T T 2
[Bouudaty of -
¢ feasible space

05
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Test
Problem

(Deb and Sinha, 2009)

minimize F(x) = { (

(21 = 1>+ 23 +¢?
=12 +a5+(y-1)

subject to (z1,22) € argming,, ., {f(x) =

-1 <z, 29,y <2

)

(21

r?+a3
-y +a3) [’

2 T & o ;
> Developed in this study x1=1 """fLrg;:'fS‘ level
> Only one point from a LS

lower level PO front is on
upper level PO front 2 1f
» Scalable to higher

dimensional problems 051

> 15 variable version is also UpperLexel‘
solved

front ‘

0
0
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A Business DM Problem
CEOQ: Leader and Department Head: Follower

maximize F(x,y) = sub_]ecr to(x) € aramm(x,
( )1, \7
(6,4)(y1.y2)7 .7.4](.(1
l:(3 —9)(v.y)T +( 9,—4,0)(
82=(5,9)01.32)7 +(10,-1,-2)(x1,x2,x:
83=(3,-3).3)T +(0,1,5)(x1,%2, %3
G1=(3,9)(y1,y2)T +(9,5,3)(x1,x2,x3)T <10 9,

{ (1,9)(v1,32)T +(10,1,3) (x1,x2,%3)T }
9.2)01.32)T + (2.7, 4) (.2, m) [

1900

G2= (* “D(m32)T +(3,-3.2)(x1,3.753)T <94, T T T T T T
s >0 wols, -
sof Ry ]
. . 5 hq’w
» Weighted sum solution o T e
. - ®,
(zhang et al, 2007) is an e .,
. 1650 | %, ]
extreme solution FeasbleRegion "'\
1600 b

480 500 520 540 560 580
( A' | :
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Test Problem (Deb and Sinha, 2009)

® minimize F(x) = —(200 — 21 — z2) (21 + 73) — (160 — 72 — 74) (22 + 74),
subject to

x; € argmin(x,) {£(x) = (z1 —4) + (22 — 13)? + (23 — 35)2 + (x4 — 2)?|
g1(x) = 0.4z1 + 0.722 < y1, g2(x) = 0.621 + 0.322 <y,
g3(x) = 0423+ 0.724 < y3, ga(x) = 0.623 + 0.3z4 < w4},

G(x) =y1 +y2 +y3 +ya <40,

0<y1 <10, 0<y2 <5, 0<y3<150<y, <20,

0< @ <20, 0< 29 <20, 0< 23 <40, 0 < 24 < 40.

4500

(Colson, 2002)

» Known optimum: : |
xi, = (7.36,3.55,11.64,17.45)T §5°°° g
xf = (0.91,10,29.09,0)T s
F(x*) = —6600.0 and f(x*) = 57.48. g0

» ldentical solution obtained by i_am
BLEMO g

» BLEMO scales to 1-obj problems IS0
as well

BLEMO (best) —o—

A!

Aalto University
School of Business
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Extensions to This Study

» Difficult test problems suggested (Deb and Sinha,
2009, 2010)
= Allows an adequate test to BP algorithms
» Self-adaptive and local search based BLEMO suggested
(Deb and Sinha, 2010)
= Much faster approach
= No additional parameter
> Interaction with the decision maker at upper level
leads to substantial savings in function evaluations
(Sinha, 2011)

®A .
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Test Problem
Construction Principle

F2 2 {:’:’f/ Step 4: Form lower

. i n level problem from (f1*,2*)
> Difficulties ,kow Step 5: Form upper

H A Step 3: Map (U1,U2, C level problem from

identified \951*9*)}’ 1 B 5 [(vl.vZ)and(Ul.UZ)
» Bottom-up

approach
» Five-step

procedure

» Conflict between
lower and upper

levels
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Hybrid, Self-Adaptive BLEMQ

» Subpopulation size not fixed

= Based on current population with respect to
archive

» All parameters (N,, T, T,) are self-adapted

> Lower level best solutions are improved by a
local search
= Achievement scalarizing function method

» Parametric study on N, suggests N,=20n

A!
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MICHIGAN SATE

Aalto University
o THE_School of Busines:

Mine Taxation Strategy Problem
(Sinha, Malo, Frantsev and Deb, 2013)

» Kuusamo has natural beauty and a famous tourist resort
= Contains large amounts of gold deposits
» Dragon Mining is interested in mining in the region
~ Pros:
= Generate a large number of jobs
= Monetary gains
» Cons:
= Run-off water from mining will pollute Kitkajoki river
= Qre contains Uranium, mining may blemish reputation

= QOpen pit mines located next to Ruka slopes will be a turn-off for
skiing and hiking enthusiasts

= Permanent damage to the nature

GECCO-2014, Vancouver 13 July 2014
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Hallmark of Hybrid BLEMO

Handle larger variables (<= 40), scalable performance

> One to two orders of magnitude less function
1le+09 T T

A!

evaluations ‘ s
o @ Nested
> Interactive lower £ ros) oo
E &
=
upper level £ toor|
NSGA-II quicker 3
£ 16406 |
» Proposed method 3
- U
better than nested Fuooop e forertee
o
10000 =33 2 %0 w0

Variable Size (n)

A

5 Aalto University GECCO-2014, Vancouver 13 July 2014
School of Business

Leader-Follower Problem

» Government needs to make a decision about
= Whether to allow mining in the region
= If yes, then to what extent?
= How to tax the mining company to meet its objectives?

» Mining company wants to maximize its gains given the taxes

N

Leader: Government
Maximize revenue from taxes
Minimize Pollution

® A )

Aalto U GECCO-2014, Vancouver 13 July 2014

School of Business

Follower: Mining Company
Maximize Profit




BLEMO Results

L —
—100 F ) - ,
a=2

~200 - a=1 Preferred 7

~
L ~ / Region |
SN
_600 -  adenotes \\: i
| technologies i

a=3

26500 <= R <= 27768
3623 <=D<=399.8

(|

o B oW

S 3 &

S 3 3
T

- Environmental Damage
Tax per unit of metal

Lo

© ® =

S 2 2

S 3 3
T

g

0 500 1000 1500 2000 2500 3000 3500 4000
Leader’s profit

3
Time Period

Pareto-frontier for the leader’s problem

Preferred srategy
r ! I ~75% profit to the government, ~25% to company
Aaltc = GECC0-2014, Vancouver 13 July 2014 68

Taxation strategies in preferred region.

Robust EBO

> Uncertainty in LL variables/parameters may make LL
optimum sensitive
= Find robust LL solution, but sacrifice in UL function value
> Uncertainty in UL variables/parameters may make UL
optimum sensitive
= Robust UL solution may not come from robust LL solution
» Uncertainty in both LL and UL variables
= Create interesting scenarios, which we are currently pursuing

GECCO-2014, Vancouver 13 July 2014

874

¢ A

MEBQ with Decision Making

> Preference in LL Pareto
front may not lead to

UL Pareto solutions tovein
» Converse is not true 2: I o
> Raises interesting 04 - =
hierarchy among UL 0'3 [P 7~ y‘- ]

and LL decision-makers 0 02 0406 08 1712 14

. Raises very interesting scenarios,
which we are currently pursuing!

27
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EBO Applications:
Parameter Tuning of Algorithms

» GECCO-2014 paper (Sinha,
Malo, Xu and Deb)

» Upper Level: Find optimal
parameters that maximize

Upper Level Optimization
(Algorithm parameters, p)

@ ﬁm

algorithm performance over
a number of initial cond.

Lower Level Optimization
(Problem variables, x)

» Lower Level: Run the x ﬁj o)
optimization algorithm to
find optimized solution

GECCO-2014, Vancouver 13 July 2014




Bilevel Approach to Automated Parameter
Tuning (BAPT)

» BLEAQ approach was
slightly modified

> A single evaluation for each
parameter vector was

00 1.0

80 08

§

P
sufficient to solve the § e 06
problem £

> Multiple evaluations at each ¢ :z o

point increased - 0z
computational expense with 1 feeuree)
negligible improvement in 0 5 1 15 w0

accuracy

e w s Aalto Univers
School of By
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Conclusions

> Bilevel problems are plenty in practice, but are avoided
due to lack of efficient methods

» Bilevel optimization received lukewarm interest by EA
researchers so far

» Population approach of EA makes tremendous potential

> Nested nature of the problem makes the task
computationally expensive

> Meta-modeling based EBO and its extensions show
promise

> More collaborative efforts are needed

R A
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Results of BAPT on DE Algorithm

Sphere Problem Schwefel problem
BAPT: Different parameters obtained
using BAPT in 21 runs

F=0.4, CR=0.9

pauir ' R
G
u 73
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BAPT: Different parameters obtained
using BAPT in 21 runs
F=0.4, CR=0.95
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Join the Club!

Contact any of the authors for further information:
» Ankur Sinha: ankur.sinha@aalto.fi
» Kalyanmoy Deb: kdeb@egr.msu.edu

EBO Website: http://bilevel.org
»> Matlab Codes of BLEAQ

Technical papers

Introductory materials on EBO

» Active research groups

» Register your name, if you are interested
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