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Self-Assembly Self-Assembly in Nature

How do you design something that builds itself?

Photo by wtodi CC BY 2.0
© Shutterstock
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Motivation

¢ Self-assembly is considered to be a vital part to
understanding the architecture of life [19]

e Self-assembly is viewed as an enabling
technology for the creation of artificial systems
[22]

¢ Engineering new technologies with natural
characteristics, such as parallel construction,
self-repair, reconfiguration, adaptability, and self-
replication [16]

Introduction

The “Cheerios Effect”

[27]

Introduction

What is Self-Assembly?

e Origins in organic chemistry
¢ Self-assembly is not a formalized subject

e Self-assembly: autonomous “processes that
involve pre-existing components (separate or
distinct parts of a disordered structure), are
reversible, and can be controlled by proper
design of the components” [28]

Introduction

Types of Self-Assembly

e Siatic self-assembly: processes that lead to
structures or patterns in local or global
equilibrium and do not dissipate energy [28]

e Dynamic self-assembly: processes that lead to
structures or patterns that can only occur while
the system is dissipating energy [28]

e Further subcategories of self-assembly include:

templated, biological, netted systems,
hierarchical, algorithmic, and software [4]

Introduction
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Designing Self-Assembling Systems

e \Where do you start?

e How can you get two objects to assemble
autonomously together?

e Could you extend your technique to multiple
objects and create a variety of structures?

Introduction

Example Using Magnets

ooce 33 3.

Disc Magnet Effective
Magnetic
Non-Magnetic Radius

Material

Introduction

Example Using Magnets

3, 5, 20]

Introduction

Forwards and Backwards Problems

e Forwards Problem: given a set of components,
which self-assembled structures will result? [22]

e Sackwards Problem: given a desired self-
assembled target structure,what is the required
set of components? [22]

e Other problems: yield, duration, scale,
complexity, hierarchy of assembly methods...

Introduction
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Agenda System Overview

¢ |Introduction

® In 1957, L.S. Penrose and R. Penrose created

the first artificial, mechanical, self-assembling
¢ DNA Nanotechnology and DNA Computing systems [23]

e A Self-Reproducing Analogue

* 3D Printed Self-Assembling Tiles e Their system could replicate a seed complex,

* Self-Assembling Robots simply by horizontally shaking a track

e Evolutionary Self-Assembly

e Staged Self-Assembly © @ @@

ap complex Ba complex
¢ Conclusions

3 Self-ReprOducmg Analogue

Example Scenario Physically Encoded Information

I e i i e T i

Initial Configuration

LT LT e L7

Final Configuration

A Self-Reproducing Analogue A Self-Reproducing Analogue
951



Assembly Rules Rotation Rules
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A Self-Reproducing Analogue A Self-Reproducing Analogue

Rotation Rules Environment Rules

=

A Self-Reproducing Analogue A Self-Reproducing Analogue
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Autocatalysis Rules

af autocatalysis a+B3 — af3; a3

Ba autocatalysis B+a — Ba; Ba

A Self-Reproducing Analogue

Reversed Engineered Replica

[6]

A Self-Reproducing Analogue
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DNA Nanotechnology

[24]

DNA Nanotechnology and DNA Computing
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DNA Computing

Photo by LaBean & Han CC BY 2.5

DNA Nanotechnology and Computing

GECCO 2014 Tutorial: Se sembly

abstract Tile Assembly Model (aTAM)

¢ A mathematical model, connecting computation
with pseudo-crystalline growth [25]

* DNA tiles [29]

e Seed tile, environment temperature, co-operative
binding

DNA Nanotechnology and DNA Computing
GECCO 2014 Tutorial: Self-Assembly

Extensions to the aTAM

e Tile Hard-coding Programming
e Staged Programming
e Tile Concentration Programming

e femperature Programming

DNA Nanotechnology and DNA Computing

NP-Complete

e The aTAM has been used to investigate the
complexity of self-assembly

e The problem of determining if a set of tiles self-
assemble into a target structure is an NP-
complete decision problem [1]

e The aTAM and its extensions have been used to
investigate the algorithmic complexity of self-
assembling a variety of target structure [15]

DNA Nanotechnology and DNA Computing

GECCO 2014 Tutorial: Self-Assembly
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Video

3D Printed Self-Assembling Tiles

Three-Level Approach

Level 1: Definition of Rule Set

map rule set to physically-
independent model for
evaluation

Level 2: Virtual
Execution of
Rule Set
‘ map rule set
to physically
encoded

information
Level 3: Physical Realization of Rule Set [6, 8, 1 ‘I]

3D Printed Self-Assembling Tiles

Level 1: Definition of Rule Set

e Component Rules: specify the arrangement of
component information

e Environment Rules: specify temperature and
boundary constraints

e System Rules: specify the frequency of
component types, and component-component
and component-environment interactions

3D Printed Self-Assembling Tiles
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Level 1: Definition of Rule Set

Top
O O O
2D Component Left Right 00 0'0 ouo
O O O

Bottom
|

Top

N
N

3 D C O m p O n e n't Left Front Right Back 2

Bottom

3D Printed Self-Assembling Tiles

Level 2: Virtual Execution of Rule Set

Tiling Models

Model Features cTAM aTAM
Seed Components not required required
Parallel Self- s no
Assembly Y
Number of Tile multiple one
2D/3D 2DcTAM/3DcTAM 2D
Rotations 2D/3D no
One-Pot-Mixture yes yes
Error Checking yes no

3D Printed Self-Assembling Tiles

Level 2: Virtual Execution of Rule Set

O O No Assembly Path
O O O
O O
3D Printed Self-Assembling Tiles

Level 3: Physical Realization of Rule Set

360° 360° 180° 90° 90° 90°

Black White Purple Green Orange Yellow

3D Printed Self-Assembling Tiles
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Physical Encoding Scheme 2D System Rules
* Place 1 permanent magnetic disc in each bit Key/Lock | 3-Bit | Label |  Fits Rule Breaks Rule
location in a key Lock 000 | A |AfitsB—A+B |db
* Place 2 permanent magnetic discs in each bit Lock 110 | C [CfitsD > C+D |¢
location in a lock Lock 011 E |EfitsF = E+F |
Lock 101 G |GfitsH— G+H
¢ Strong key-lock binding, and weak key-key _I He
binding (break using environment temperature) Key 11 | B |BfitsA—~B+A |b
Key 001 | D |DfitsC—D+C |db
* Assign magnetic-bit patterns to keys and locks Key 100 F |FfitsE = F+E |&
to prevent or reduce mismatch errors Koy 010 H HfsG = HeG |

3D Printed Self-Assembling Tiles 3D Printed Self-Assembling Tiles

3D System Rules 2D Systems
Key/Lock | 5-Bit | Label Fits Rule Breaks Rule
Lock 00000 | [ fitsJ = [+J $
Lock 10000 K |KfitsL = K+L |&
Lock 01010 M [Mfits N = M+N [
Lock 10011 P P fits O = P+O |®
Lock 00111 R |RfitsQ = R+Q |
Lock 10111 T |TfitsS—=T+S |
Key 11111 J |Jfits | = J+l $
Key 01111 L Lfits K= L+K |
Key 10101 N [N fits M = N+M |
Key 01100 O |OfitsP = O+P |
Key 11000 | Q |QfitsR = Q+R |$
Key 01111 S |SfitsT = S+T |

3D Printed Self-Assembling Tiles 3D Printed Self-Assembling Tiles




3D Systems

3D Printed Self-Assembling Tiles
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System Categories

e Self-propelled
e Externally propelled:
e Component directed

e Environment directed

[18]

Self-Assembling Robots
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Component Directed

[17]

Self-Assembling Robots

Environment Directed

v

, Y-Displacement (mm) g
(=] - N W & vk

o

10 _ 20 30 40
Time (sec) [21 ]

Self-Assembling Robots
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Evolving Self-Assembling Systems

¢ Hierarchical processes
e Self-assembly protocols

e Component and environment information
(forwards problem)

e Specific component sets (backwards problem)

Evolutionary Self-Assembly
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Evolving Self-Replication Evolving a Self-Assembly Protocol

o~

9‘»\? _— N ™ &
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\ [30, 31]

Evolutionary Self-Assembly Evolutionary Self-Assembly

Evolving Virtual Tiles Evolving Physical Tile Sets

Level 1: Definition of Rule Set

map rule set to physically-
independent model for
evaluation
Level 2: Virtual Evolutionary
Executonof ——————™ Computing
Rule Set evaluate
modeling
results if desired result
achieved, then
map rule set to
I physically
l encoded
information
[26] Level 3: Physical Realization of Rule Set [9’ 11 ]

Evolutionary Self-Assembly Evolutionary Self-Assembly
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Evolutionary Self-Assembly

Evolving Physical Tile Sets

¢ Evolutionary unit is a single component

e One genotype can have many phenotypes

e (enotype is a variable-length list of components

e Phenotype is the resulting structure(s) from a set
of components

Evolving Physical Tile Sets

e Generational genetic algorithm with elitism
* Roulette-wheel selection

¢ Variable-length crossover

¢ Duplication, deletion, and mutation

e Multi-objective fithess evaluation

Evolutionary Self-Assembly

General |Euler
Fltness |z-axis
matches

2D 3D
area volume
perimeter |surface area

mean breadth
Euler

z-axis
matches

Refined [locations
Fitness  |error

locations
error

5
F20=(0_18§]|T0i- ANOI|

6
F3D = (0.15;} |TOi - ANOI|

Evolutionary Self-Assembly

) +0.05(ANO6 + NOT)

) +0.05(ANO7 + NO8)

Evolving Physical Tile Sets

D (0,0,1)

F(1,0,0)

H(0,1,0)

B(1,1,1)

D (0,0,1)

2

F(1,0,0)

4

2

H (0,1,0)

sloflale

3

3

4
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Evolving Physical Tile Sets

Evolutionary Self-Assembly
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Leveraging Time

e Using components that cannot differentiate
results in self-assembly being constrained to a
limited set of components and their binding
mechanisms

e Siaging addresses this challenge by dividing the
self-assembly process into time intervals, and
encodes the construction of a target structure
into the staging algorithm itself, and not
exclusively into the design of the components
[13]

Staged Self-Assembly

Morphology and Error Prevention

Error Prevention

[10, 12]

Staged Self-Assembly
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Synthetic Development

Al

=
o
=
[0}
(24
(2]
g
=
jo)
%)
e}
[0)
(o))
I
e
n

0

)

[12]

-+

(-

()

-

o

O

(O]

>

® o

() =

&) 2

© )

- O

-+ >

(@ ()

= Q

@) o
b5
h
=
>
(@)
[ )

2D Staged Self-Assembly

>
]
S
@
(24
12}
<
=
o}
%)
°
[0}
o)
I
e
o

3D Staged Self-Assembly

Staged Self-Assembly

biological development

to the design and
assembling systems [7]

applying the principles

of evolution and
construction of self-
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Synthetic Development 3D System Rules

Key/Lock | 5-Bit | Labe Fits Rule Breaks Rule
¢ 6 pairs of 90° degree Lock 00000 | | Jiftsd=1+J |
rotational codes is Lock 01111 L |LfisK=L+K |b
required Lock 01010 M |Mfits N = M+N |
Lock 01100 O [OfitsP = O+P |d

. o Lock 11000 Q |QfitsR = Q+R

* Only 3 pairs of 90° — Lock | 01111] S _|Sfits T =S4T i
degree rotational codes | | Key 1] J |Jditsl = del b
in the 5-magnetic-bit Key 10000 | K |Kfits L = K+L |db
physical encoding ot ot Key 10101 | N [Nfits M = N+M|d
scheme Key 10011 P |PfitsO—=P+0O |
REEERS =1 Key 00111] R |RfitsQ — R+Q |d
T e e Key 10111 T |TfitsS—=T+S [b

Staged Self-Assembly 3D Printed Self-Assembling Tiles

Synthetic Development Synthetic Development
e Reintroduce g = ==
component information |,;>4."%; e To create multiple L
used in a previous time |, %% o

target structures, use ~ ——
the morphology of the
H substructures to _

interval

e Time intervals and L % S _ =3
component information ] ¢ emulate a 90° rotational — ¢
: 5 information 5
tO Create a Slngle target wzlo.!u? °'=:L Wzlq.!b: °';:L wzl’“w': N.!y':L wzl-’“,u: M’w:'—
structure L N MBS MEs

Staged Self-Assembly Staged Self-Assembly
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Agenda Conclusions

¢ |Introduction

e A Self-Reproducing Analogue e Research in self-assembling systems is

« DNA Nanotechnology and DNA Computing continuing to expand, within multiple disciplines

* 3D Printed Self-Assembling Tiles e One subfield that is still in its infancy is
. optimizing self-assembling systems, particularly
* Self-Assembling Robots applying evolutionary computation

e Evolutionary Self-Assembl , .
Y Y e An area we believe to have tremendous promise

e Staged Self-Assembly is synthetic development

e Conclusions
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