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ABSTRACT
The Island Model (IM) is a well known multi-population ap-
proach for Evolutionary Algorithms (EAs). One of the crit-
ical parameters for defining a suitable IM is the migration
topology. Basically it determines the Migratory Flows (MF)
between the islands of the model which are able to improve
the rate and pace of convergence observed in the EAs cou-
pled with IMs. Although, it is possible to find a wide num-
ber of approaches for the configuration of MFs, there still
is a lack of knowledge about the real performance of these
approaches in the IM. In order to fill this gap, this paper
presents a thorough experimental analysis of the approaches
coupled with the state-of-the-art EA Differential Evolution.
The experiments on well known benchmark functions show
that there is a trade-off between convergence speed and con-
vergence rate among the different approaches. With respect
to the computational times, the results indicate that the
increase in implementation complexity does not necessarily
represent an increase in the overall execution time.

Categories and Subject Descriptors
I.2.6 [Learning]: Parameter learning; G.1.6 [Optimiza-
tion]: Global Optimization

General Terms
Algorithms, Performance
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1. INTRODUCTION
The Island Model (IM) is a multi-population approach for

Evolutionary Algorithms (EAs) [6, 17] originally inspired by
the model of punctuated equilibrium [9]. The first studies
about IMs connected them with Genetic Algorithms (GAs)
[9, 22] and it has been shown that they are able to largely
enrich the GAs balance between exploration and exploita-
tion in the solution space [26]. Due to this characteristic,
nowadays, it has also been successfully coupled with a wide
variety of EAs such as Differential Evolution (DE) [16, 32],
Evolution Strategies (ES) [27] and Genetic Programming [3].

Generally speaking, the IM divides a population of candi-
date solutions (also called individuals or simply points) into
subpopulations. Each subpopulation is referred to as an is-
land, and remains relatively isolated from the others during
the evolutionary process of a given EA. The islands evolve
independently for some time, and then a migration process
is performed, by which islands can exchange candidate so-
lutions. This migration process has the potential benefit
of promoting or advancing the evolution of the subpopula-
tions, introducing new characteristics through the exchange
of individuals between the islands.

The migration creates links between islands by which the
individuals can move from one island to another. These mi-
gratory flows play an important role in the IM and result
in two main effects on the underlying optimization process:
the first, which is a positive effect, consists of the speed-up
caused by information exchange; whereas the second one,
which can be a drawback in certain applications, is the com-
munication and processing overhead of the required informa-
tion flow. In view of these drawbacks the IM is usually incor-
porated to EAs when handling more complex problems [26,
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6, 14], nevertheless improvements have also been reported
in simple problems [16].

The adequate setting of the migratory flows, which can
be static or dynamic, has an important impact on the IM
performance [26]. The majority of the approaches presented
in literature are static, usually, based on computer networks
and architectures [16]. On the other hand, dynamic ap-
proaches are able to alter the migratory flow during the
search process, and can use information gathered by the
algorithm during the optimization process to guide the cre-
ation or removal of the inter-island links [16].

Although it is possible to find several different procedures
to the configuration of the migratory flows, the majority of
studies just compare them with traditional static configu-
rations [4, 30]. Therefore, the goal of this paper is to pro-
vide thorough experimental investigation of this procedures
and foster the understanding of their impact in the context
of Differential Evolution Algorithms. The choice of DE is
justified by its easiness of implementation and high perfor-
mance proven in a series of optimization competitions1 and
reported in a variety of problems, such as, flow shop schedul-
ing [21], digital filter [12] and induction motor design [24].

In order to accomplish our goal, we present a detailed
experimental analysis about a wide variety of configura-
tion procedures presented in the literature. They are, Ring
[6], Star [5], Random [30], K-medoids [4], Q-learning [16],
Roulette Wheel [15] and Tournament [15]. The IM ver-
sions of the Differential Evolution Algorithm [28] were im-
plemented and the experiments were conducted in the Large
Scale Global Optimization benchmark. The results show
that there is a commitment between achieving good and fast
convergence rates. Furthermore, in general, the topologies
are very competitive between each other.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the IM and reviews of the migratory flow;
Section 3 presents the different approaches to configure the
migratory flow; Section 4 and 5 present the results obtained
in the Large Scale Global Optimization benchmark set; and
Section 6 presents the final discussion and conclusions of the
paper.

2. BACKGROUND

2.1 Differential Evolution Algorithm
As mentioned before, Differential Evolution (DE)[28] is an

important EA for global optimization. The reasons for its
success can be found in its simplicity and ease of implemen-
tation, while at the same time demonstrating reliability and
high performance [34].

In DE new candidate solutions are created by combining a
parent individual with several other individuals of the same
population. Then, this candidate solution replaces the par-
ent if it has a better fitness value. DE has three control
parameters: the population size NP , the scale factor of the
perturbations generated by mutation F and the crossover
constant CR. The basic iterative process of DE can be de-
scribed as follows:

1DE has obtained the following prizes: First place in the
2006 CEC contest on constrained optimization with real pa-
rameters, third place on the 2007 CEC contest on large-scale
optimization problems and first place in the 2009 CEC con-
test on evolutionary algorithms in uncertain and dynamic
environments.

1. Generate a population of solutions x with random po-
sitions in the search space.

2. Set crossover probability CR and differential weight F

3. Until a stopping criterion is not met, repeat the fol-
lowing steps:

(a) For each solution x:

i. Select other three different solutions a, b and
c from the population which are also different
from x.

ii. In order to generate a new solution y, for each
position i of the solution:

A. Select a random index j between 1 and
the number of variables.

B. Generate a real valued number r between
0 and 1 with uniform distribution

C. If (r < CR∨j == i), yi = ai+F (bi−ci),
else yi = xi

iii. If y is better than x, x is replaced by y

4. Return the best solution found

2.2 Island Model
The Island Model (IM) is a popular and efficient way to

implement Evolutionary Algorithms (EAs) on both serial
and parallel architectures [6, 16, 27, 32]. It is able to im-
prove the performance of EAs when solving complex prob-
lems, providing a better balance between exploration and
exploitation.

The IM is easily parallelizable, and in some cases the gain
in computational performance may be superlinear [2, 7]. Be-
sides its suitability for parallel implementations, the island
model also beneficial to the evolutionary search itself, since
some enhancement in solution quality and convergence time
can be obtained even in sequential implementations [32, 35].

The idea of IM is to divide the population of solutions into
relatively isolated subpopulations called islands. Each island
executes its own EA and evolves independently. This inde-
pendence tends to foster the search in distinct regions of the
solution space, thereby improving the optimization process.
Another fundamental aspect of the IM is the collaboration
between islands, which is achieved through a periodical mi-
gration process. This process consists of a strategy by which
candidate solutions with different characteristics are trans-
ferred from one subpopulation to another. Migration allows
better-performing subpopulations to aid others by introduc-
ing new information in the form of migrating points.

The project of the IM involves taking decisions about
quite a few parameters of the model. These parameters are
directly related to the IM performance and are summarized
as follows:

• Number of islands: represents the number of sub-
populations in the model;

• Migration topology: defines the communication
structure of the model;

• Migratory frequency: determines how often migra-
tion occurs;

• Migratory rate: defines how many individuals mi-
grate from a subpopulation to another;
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• Syncronization type: represents the type of syn-
cronization for the migration process (synchronous or
asynchronous);

• Migratory policy: defines which individuals will be
removed and replaced when migration occurs;

• Migratory flow: defines the path of the emigrants
inside the communication structure.

2.3 Migratory Flow
The migratory flow (MF) is represented by a set of di-

rected edges. These edges form the neighborhood structure
of the IM and represent inter-island links. The movement of
individuals between islands follows those links. The migra-
tory flow is a critical parameter to the performance of the
IM [16, 26]. It directly impacts the quality of the solution
and the pace of convergence [26]. Furthermore, the choice
of the most appropriate migratory flow may ensure that an
IM is more efficient than others.

3. CONFIGURATION OF MIGRATORY
FLOW

The configuration of MF can be divided into static and
dynamic, as described below.

3.1 Static Configuration
In static configurations, the migratory flow (all inter-island

links) are defined a priori and do not change during the evo-
lutionary process [30]. This kind of migratory flow is usually
based on computer networks and architectures.

Two traditional static configurations are illustrated in Fig-
ure 1. The Ring, consisting of a closed circuit of islands (Fig.
1(a)), is the most studied migratory flow in the literature.
The Star is formed by a single central island which is con-
nected with all other islands (see Figure 1(b)).

(a) Ring (b) Star

Figure 1: Traditional Configurations.

3.2 Dynamic Configuration
The dynamic configuration is a recent concept to improve

the communication structure of the IM. It is able to learn
and adjust the MF each stage of evolutionary process [16].
The MF, defined by this mechanism, emerges from heuristic
“beliefs”. Thus, the remaining of section presents dynamic
configurations found in the literature.

3.2.1 Random Configuration

The Random configuration [30] is arguably the simplest
dynamic configuration approach. For each island of the
model, the configuration mechanism randomly selects the

source island from which individuals will be received2. At
the end of the selection process, a complete migratory flow
is defined.

The Random configuration provides continuously varying
links, and its configuration mechanism is very simple to im-
plement. This dynamic configuration, however, is näıve and
makes no use of the knowledge acquired through of the evo-
lutionary process.

3.2.2 Configuration using K-medoids

This configuration mechanism was proposed by Berntsson
and Tang [4], and is based on clustering of the best solutions
from the islands to find groups of islands that work in similar
partitions of the search space. The goal is to reduce the
connectivity, and consequently the complexity, of the IM
while maintaining good performance [4].

The K-medoids algorithm is an unsupervised learning me-
thod based on the automatic division of a set of data into
groups based on similarity [29]. This algorithm uses the
medoid concept, which is the object of a cluster with min-
imum average dissimilarity to all other objects [25]. The
K-medoid algorithm attempts to minimize the squared er-
ror, i.e., the distance between points in the cluster and the
medoid (designated as the center of the cluster).

In this approach, the configuration of the migration flow
is made in two steps:

1. Definition of groups, where the best solution from each
island is taken and used to define the similar groups
using the K-medoids algorithm. The number of clus-
ters and the distance function must be defined by the
user3;

2. Definition of the Migratory Flow, where the groups
defined in the previous step are used to generate the
links between islands belonging to the same group. For
each group, the link can be created at random or in a
ring.

It is worthy noticing that the setting of the number of
clusters is a non-trivial problem for this approach. Further-
more, the processing cost of this configuration mechanism
increases sharply with the number of islands in the model.

3.2.3 Configuration using Q-learning

A new configuration mechanism, which transforms the IM
into a Multi-Agent System (MAS), was proposed by Lopes
et al. in 2012 [16]. In this MAS, each subpopulation is
associated with an agent, and each agent is responsible for
learning the links that collaborate the most to the evolution
of its subpopulation.

The agents of the model act independently and acquire
knowledge from the previous migration processes. The learn-
ing process is based on the Q-learning method [33], which
is a traditional reinforcement learning procedure. In this
method the learning model works through trial-and-error
interactions with a dynamic environment [11]. In the early
stages of the search process each island can receive immi-
grants from all others, but as the algorithm progresses the

2It is important to notice that loop arcs are forbidden, i.e.,
an individual can not be sent to its own island.
3In our study, two clusters and the Euclidean distance are
used for this method.
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agents learn which migration flows have provided the best
individuals, and adapt the flow accordingly.

In this approach, each agent has states and actions. The
states describe the islands from which a defined agent can
receive individuals during the migration process, with each
specific island corresponding to one state. The actions rep-
resent the modification or continuation of the island chosen
to send solutions.

Studies demonstrate that the Q-learning method conver-
ges to an optimal policy of the actions [33]. However, the
learning model is very complex and requires the setting of
many essential parameters. Furthermore, the parameters
may need to be reinitialized due the dynamics of the evolu-
tionary process.

3.2.4 Configuration using Roulette Wheel

This approach was proposed by Lopes et al. in 2013 [15],
and it is similar to the mechanism of the Random configura-
tion. However, in an attempt to explore the dynamics of the
evolution of subpopulations, the selection methods proposed
are based on the fitness of the individuals. It assumes that
the fittest individuals have great probability of improving
the IM performance and thus, for each island, the source of
the immigrant individual is defined by a selection method.

The Roulette Wheel selection [10] is a commonly used
stochastic method for Genetic Algorithms (GAs) both in
reproductive selection and generational selection. In this
selection method, to each individual is attributed a prob-
ability of selection proportional to its relative performance
value - better individuals are selected with greater probabil-
ity - such that the selection probabilities sum to unity. The
selection process is performed by sampling individuals from
the resulting probability mass function.

In this configuration mechanism, the probability of selec-
tion attributed to the i-th individual is given by:

PSi =
fn(xi)∑NI
j=1 fn(xj)

(1)

where fn(xi) is the normalized fitness of the i-th individual
xi, and NI is the total number of individuals participating
in the selection process.

In the IM each island performs this method to choose an
immigrant among the best individuals from all other islands.
This process is repeated until all islands have their own im-
migrant.

3.2.5 Configuration using Tournament

Following the same ideia, Lopes et al. also proposed in
2013 [15], an identical mechanism using the well known
Tournament selection algorithm. This selection method is
a useful and robust selection approach commonly used by
GAs [19]. In this selection process, individuals are selected
through tournaments in which s randomly chosen individu-
als are compared with regards to performance value.

Comparisons are successively performed on pairs of can-
didate solutions, with the winners competing with other in-
dividuals until the tournament size s is reached. In each
comparison, a uniformly distributed random value between
0 and 1 is drawn and compared to a parameter kt defined
as {kt ∈ < | 0 ≤ kt ≤ 1}. If the the random value is smaller
than kt the best individual wins the comparison, otherwise
the worse is selected.

In this configuration mechanism, individuals are selected
based on their fitness f(xi). This mechanism works the same
way as the approach previously presented. Each island per-
forms a tournament to choose an immigrant among the best
individuals of all other islands. This process is repeated until
all of them have their own immigrant.

4. COMPUTATIONAL EXPERIMENTS
For the comparison of the different approaches, IM ver-

sions of the Differential Evolution Algorithm (DE) [28] were
implemented. The DE parameters were defined as CR = 0.9
and F randomly chosen in the interval [0.5, 1.0] as suggested
in [23]. Each island was composed by 25 individuals and ef-
fect of the migration gap4 was evaluated for 5, 15, 25 and
50 generations. The migration policy was set as best sub-
stitutes random, the best individual of an island substitutes
a random one in the receiving island. Only one individual
replaced per island on any given migration episode.

Regarding the Q-learning approach its parameters were
set as γ = 1.0, λ = 0.5, ε = 1.0 as defined in [16]. For
the Tournament approach, the tournament size was defined
as 3 and the parameter kt equal 1.0. The parameters of
Tournament approach were defined according [15].

Six functions of the Benchmark Functions for Large Scale
Global Optimization [31] with known optima were used. f1
and f2 are unimodal and f3 to f6 are multimodal. All func-
tions were defined with 30 variables. For each configuration
25 independent runs were made in each function. The search
was terminated when either of the following conditions were
met:

• The maximum number of generations (12,000) has
been reached;

• ∆f = ftarget − fbest <= 10−4;

where ftarget, fbest represent the know optimal value for the
function and the best result found by the algorithm so far,
respectively.

Two outputs were selected for the analysis, (i) Number
of generations for convergence and (ii) percentage of con-
vergence. Regarding the number of generations, only the
the runs which successfully found the global optimum were
taken into account. In this way the percentage of conver-
gence can be considered as a complementary measure of the
methods’ global performance.

Given the non-normality of the results, the nonparametric
multiple contrast test5 described in [13] was employed for
the statistical analysis of the number of generations. The
statistical model considered a unbalanced design [20], with
the configuration procedures, as experimental factor. The
significance level α was previously defined as 0.05.

For the percentage of convergence, the Cochran’s Q test
[8] was employed, when significant differences were detected
for the methods, McNemar’s test [18] was applied for the
post-hoc comparisons. The obtained p-values were then ad-
justed by Bonferroni method [1].

4The Migration Gap defines the number of elapsed genera-
tions from one migration to another. A migration gap equals
to 10, means that from 10 to 10 generations there will be a
migration process.
5Function mctp from parcomp package of the statistical soft-
ware R
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5. RESULTS
This section presents the comparisons among the stud-

ied approaches. The Figure 2 depicts the interaction of the
configuration methods with the number of islands, Figure 3
depicts the interaction of the configuration methods with the
migration gap, both in regards to the average number of gen-
erations for convergence. Only the configurations and runs
which found the global optimal were considered for these
graphics.

It can be seen in Figure 2 that, when the methods converge
to the global optimum, the approaches which incorporate
information about the search process, tend to converge in
less generations. However, despite not using any information
the Ring configuration has shown competitive performance.
Clearly, the Star configuration presented the worst results,
indicating that a centralized topology is not a good structure
for this kind of optimization.

Furthermore, it is interesting to notice the degrading per-
formance that the static configurations presented with a high
number of islands. This behavior can be explained by the
difficulty that high quality solutions have to spread over
these rigid structures as the number of islands increases.
In overall the approaches which present a higher selective
pressure on the immigrants, Tournament and Roulette, also
presented the best results in this criterion.

Regarding the migration gap, Figure 3 shows that, in gen-
eral, its increment slowed down the convergence. These re-
sults were in some way expected because a smaller migration
gap increases the selective pressure within the islands, once
they are receiving high quality individuals more frequently.
Table 1 presents the results and p-values of the statistical
tests, regarding the number of generations for convergence
(only runs and configurations that found the global opti-
mum). The approaches marked in bold represent the best
configurations in each paired test. The applied test consid-
ers only the effect of the topology configurations, ignoring
the effects of the other factors and interactions. The results
show that the Roulette Wheel and Tournament approaches
converged in a number of generations significantly smaller
than the other methods and corroborate with the previous
analysis.

Configuration 1 Configuration 2 P-value

Q-learning Star 0.0000

Q-learning Tournament 3.4432 ∗ 10−12

Q-learning Roulette Wheel 7.8931 ∗ 10−11

Ring Star 0.0000

Ring Tournament 1.9072 ∗ 10−07

Ring Roulette Wheel 1.5741 ∗ 10−06

K-medoids Star 0.0000

K-medoids Tournament 5.2142 ∗ 10−06

K-medoids Roulette Wheel 5.0668 ∗ 10−05

Star Random 0.0000
Star Tournament 0.0000
Star Roulette Wheel 0.0000

Random Tournament 4.5362 ∗ 10−05

Random Roulette Wheel 3.4016 ∗ 10−04

Table 1: P-values of the statistical analysis for the
number of generations

Figures 4 and 5 present, respectively, the interactions of
the number of island and migration gap, with the configura-
tion approaches in regards to the percentage of convergence.
The percentage of convergence represents the proportion in
which all the configurations and runs found the global opti-
mal. In relation to number of islands (Figure 4), the percent-
age of convergence was improved for all approaches as the
number of islands was increased. Regarding the migration
gap, higher values have shown to be more beneficial, except
the star topology. Although higher migration gaps decrease
the convergence speed, they increase the convergence rate.
In this context, Random, Tournament and Roulette Wheel
presented interesting results once their convergence rate was
virtually the same for migration gaps of 25 and 50 genera-
tions.

Figure 4: Percentage of Convergence (Number of
Islands)

Figure 5: Percentage of Convergence (Migration
Gap)

Table 2 presents the results of the statistical tests on
the mean of percentage of convergence achieved by the ap-
proaches presented and this test considers only the effect
of the topologies. In this table, only results that presented
significant differences with 95% of confidence were displyed
and they show that the Ring and Q-learning converged sig-
nificantly more times than the other approaches. As well as
in the average of number generations, the Star topology was
the worse approach between all.

Table 3 presents the mean and standard deviation of the
running times, in seconds, of all configurations and runs.
The majority of the approaches presented similar running
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Configuration 1 Configuration 2 P-value

Q-learning Star 4.6200 ∗ 10−15

Q-learning Roulette Wheel 6.6087 ∗ 10−03

Ring K-medoids 1.2618 ∗ 10−02

Ring Star 4.6200 ∗ 10−15

Ring Random 4.9833 ∗ 10−02

Ring Tournament 3.8178 ∗ 10−05

Ring Roulette Wheel 1.0258 ∗ 10−08

K-medoids Star 4.6200 ∗ 10−15

K-medoids Roulette Wheel 4.1286 ∗ 10−02

Star Random 4.6200 ∗ 10−15

Star Tournament 4.6200 ∗ 10−15

Star Roulette Wheel 4.6200 ∗ 10−15

Random Roulette Wheel 1.6088 ∗ 10−02

Table 2: P-values of the statistical analysis for the
convergence percentage

Configuration
Method

Average Running
Time(s)

Standard De-
viation(s)

Q-learning 3.8163 5.5127
Ring 3.4150 4.5910
K-medoids 4.1679 6.2383
Star 5.1738 6.6213
Random 3.7746 5.5178
Tournament 3.8262 5.8423
Roulette Wheel 3.8533 5.7371

Table 3: Running Times (s)

times except the Star which again presented the worst re-
sults. The large standard deviations are due to the consid-
eration of the non-successful runs in the measurement.

6. CONCLUSIONS
In this paper, a thorough experimental analysis of a vari-

ety of procedures for the configuration of migration flows has
been presented. To this end, an IM version of the Differen-
tial Evolution Algorithm was implemented and the different
procedures were coupled to it. The main goal of the paper
was to elucidate the influence these procedures in the IM
and their interaction with other IM parameters. In addition
to that, we aimed to cover the lack of comparison between
these different configuration approaches.

The results on well known benchmark functions demon-
strate that there is a difference in the DE performance due
to the different migration topologies applied to the IM. In
synthesis, they indicate that when the methods converge to
the optimal solution, the Tournament and Roulette Wheel
approaches converge faster. The reason for that is likely to
be the rise in the selective pressure caused by those types of
migration topologies. Furthermore, it has been shown that
small migration gaps and a greater number of islands may
also contribute to improve the convergence pace of the al-
gorithm for these approaches. Nevertheless, this increase in
selective pressure seems to decrease the population diversity
leading to smaller convergence rates. In this respect the ap-
proaches which add less selective pressure, e. g., Ring and
the Q-learning, presented better results. Regarding the com-
putational times, the results among the different approaches

were very similar. The addition of complexity due to infor-
mation gathering in the dynamic approaches did not result
in a significant time increase.

Concluding, the study has accomplished its objective, pro-
ducing more knowledge about the migratory flows in IM
which will assist future studies of multi-population approa-
ches.
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