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ABSTRACT 

Stagnation is a prevalent issue in many heuristic search 

algorithms, such as Particle Swarm Optimization (PSO).          

PSO stagnation occurs when the rate of position changes (or 

velocities) that attract particles to the global best position 

approaches zero, potentially leading the swarm to being 

trapped in a local optimum, especially for deceptive 

multimodal optimization problems. This paper proposes a 

novel fitness-based stagnation detection method that 

effectively and efficiently restarts the search process to escape 

potential local optima. The main idea of the proposed method 

is to make use of the already calculated fitness values of 

swarm particles, instead of their pairwise distance values, to 

predict an imminent stagnation situation. That is, the proposed 

fitness-based method does not require any computational 

overhead of repeatedly calculating pairwise distances between 

all particles at each iteration. The proposed fitness-based 

method substantially outperforms the commonly used 

distance-based method when tested on several classical and 

advanced (shifted/rotated) benchmark optimization functions 

in three ways: 1) The optimization performance is significantly 

better performing (using Wilcoxon rank-sum test). 2) The 

optimization performance is considerably faster (up to three 

times). 3) The proposed fitness-based method is less 

dependent on the problem search space, compared with the 

distance-based method.   

Categories and Subject Descriptors 

I.2.8 [Artificial Intelligence]: Problem Solving, Control 

Methods, and Search—Heuristic methods 

Keywords 

multi-start particle swarm optimization; fitness-based stagnation 

detection; search diversification; speedup technique. 

1. INTRODUCTION 
Drawing inspiration from the sociological behavior associated 

with bird flocking, Particle Swarm Optimization (PSO) has had 

growing scientific attention in many diverse domains [16] since 

its inception in 1995 [10]. While PSO algorithms showed 

efficient, robust and fast-convergence behavior on several 

optimization problems, they suffered from a number of key issues, 

such as swarm explosion and swarm stagnation. The early 

versions of PSO suffered from the swarm explosion issue [4],      

in which particle velocities indefinitely grow, causing divergence 

of swarm particles for some values of the inertia and learning 

coefficients. Among early attempts to address this issue was       

the ‗velocity clamping‘ strategy, which limits the velocity 

magnitude to a maximum velocity threshold. This strategy avoids 

increasing particle velocities indefinitely and prevents particles 

from taking extremely large shifts from their current position,                   

realistically simulating the incremental change of human    

learning [9].    

A better strategy to address the swarm explosion issue is the 

use of a ‗constriction coefficient‘, which was first proposed by 

Clerc in 1999 [2]. Then shortly after, in 2000, Eberhart and Shi 

[6]  analyzed the convergence behavior of PSO and suggested the 

popular settings of the constriction and learning coefficients (i.e., 

= 0.729 and c1=c2=2.05), which ensures that the particle 

velocities will shrink over time, rather than indefinitely growing 

to infinity.  While the Constriction Coefficient PSO (CC-PSO) 

guarantees convergence to a stable point, there is no guarantee 

that this point is a quality point in the search space.  Thus, Van 

der Berg,  in 2002 [18], introduced the Guaranteed Convergent 

PSO (GC-PSO) to address this issue. Nonetheless, the 

effectiveness of the GC-PSO was only remarkable on unimodal 

optimization problems, rather than complex multimodal problems.  

Among earlier attempts to better handle multimodal problems 

was the Species-based PSO (SPSO), proposed by Li in 2004 [11]. 

Although SPSO worked fairly well on multimodal function 

optimization using sub-swarm (or species), it was challenging to 

define the best species radius, especially for multimodal problems 

with little (or no) prior knowledge about their search space. A 

number of years later, Van den Bergh provided a formal 

convergence  proof for PSO [19], and argued that the use of a 

multi-start strategy can potentially convert the PSO algorithm 

from a local to global optimizer, even on complex multi-modal 

optimization problems.    

This paper is organized as follows:  Section 2 provides a brief 

background on different stagnation detection methods used in the 
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literature to restart PSO. Section 3 describes the proposed fitness-

based stagnation detection method for PSO. Section 4 discusses 

the experimental results and observations. The last section 

concludes the study and suggests possible future work.  

 

2. BACKGROUND 

2.1 Stagnation Detection Methods 
PSO stagnation, or premature convergence, issue occurs when 

the private experiences of the particles (or, their individual best 

positions) do not change relative to the swarm social experience 

(or, the global best position) for a number of iterations [3]. This 

critical issue vanishes the rate of position changes (or velocities) 

that attract particles to the global best position prematurely, 

making the swarm prone to being trapped into local optima, 

especially for deceptive multimodal optimization problems. 

 Different stagnation detection methods have been studied in 

the literature [21] to restart the search process of PSO, such as 

Maximum Swarm Radius, Cluster Analysis and Objective 

Function Slope [17]. The Maximum Swarm Radius method 

restarts the swarm when the most-distant particle from the global 

best particle reaches a predefined minimum distance, while the 

Cluster Analysis method restarts the swarm when the majority of 

swarm particles (e.g., >60%) reaches a predefined minimum 

distance from the global best particle. Both the Maximum Swarm 

Radius and Cluster Analysis are distance-based stagnation 

detection methods that check how close the particles are to the 

global best particle.  The third method, Objective Function Slope, 

detects stagnation and restarts the swarm when the change rate in 

the objective function remains negligible for a predefined number 

of iterations.  It has been claimed that distance-based methods 

outperform the Objective Function Slope method [7]; thus, the 

Maximum Swarm Radius method was adopted in Regrouping 

PSO [7], as well as in a number of other more recent studies [14; 

23]. The main disadvantages, however, of the distance-based 

methods is that they are computationally expensive and dependent 

on the range of the search space [15].  

On the contrary, the proposed stagnation detection method 

restarts particle positions and resets their velocity and memory 

using a criterion that is not based on the relative distances 

between particles and the global best particle to the problem 

search range (as in the Maximum Swarm Radius and Cluster 

Analysis methods), nor based on the change rate in the objective 

function (as in the Objective Function Slope method). Instead, the 

proposed method is based on the swarm-wide performance on the 

objective function with relative to the global best performance. 

That is why the proposed fitness-based method is more efficient 

and less dependent on the search range, compared with the 

commonly used distance-based methods for stagnation detection. 

3. METHODOLOGY  
The proposed stagnation detection method uses a more 

efficient fitness-based criterion to effectively trigger what we 

called the ―Agile Restart‖ mechanism, as needed. In general, 

agility is the ability to change the body's position rapidly and 

efficiently as required, which is basically what the proposed 

―Agile Restart‖ attempts to accomplish when particles are trapped 

in a local optimum. The proposed method uses a Performance-

based Stagnation Indicator (PSI) based on Average Swarm Fitness 

to define a potential stagnation situation to be imminent when the 

fitness of the global best particle becomes almost the same as the 

average fitness of the entire swarm, as shown in (1). The proposed 

fitness-based criterion has a computational advantage over the 

distance-based criterion of O(nk) for a swarm of  n particles in k 

number of iterations, since it makes use of the already calculated 

fitness values of swarm particles to trigger the restart mechanism, 

instead of calculating their pairwise distances at each iteration. 

Interestingly, the efficiency of the proposed criterion does not 

come at the cost of the solution quality. The proposed PSI 

criterion showed competitive results when compared with the 

distance-based Maximum Swarm Radius criterion, on several 

classical and advanced benchmark optimization functions. 

 

        (1)                                 

 

Where: f is the objective (minimization) function,  is the 

corresponding fitness vector of particles‘ historically best 

positions,  is the fitness value of the global best particle 

position, and  is the PSI threshold, which is a positive 

percentage value defined by the user to adaptively control the 
restart mechanism. In particular, unlike some methods that reset 
the PSO algorithm every fixed K number of iterations [20], the 
proposed method does not trigger the restart mechanism 
according to some artificially fixed cycles of equal length; it is 
rather dynamically triggered (as needed) according to the ‗run-
time’ behaviour of the search process.  The smaller the value 

of , the more frequent the restart mechanism will be triggered. 

Thus, PSI value clearly affects the algorithm sensitivity to 
triggering the restart mechanism. It was empirically found that this 
approach works well when the PSI threshold is set between 90% 
for low-dimensional problems and 70% for high-dimensional 
problems. The reason why higher-dimensional problems generally 
require lower PSI threshold is because of the fact that the chance 
of stagnation situation usually increases as the problem 
dimensionality increases. It is perhaps worth mentioning that the 
proposed stagnation detection method was successfully applied to 
a real-life computational biology problem in our recent work [1].  

 

4. RESULTS AND DISCUSSION  
The proposed fitness-based stagnation detection method is 

tested on a set of 8 classical and advanced (shifted/rotated) 

benchmark optimization functions, and compared with the 

commonly used distance-based stagnation detection method on 

the same set of general optimization benchmarks. This set is 

sufficient to include various classes of optimization problems with 

different regularity, modality, separability and dimensionality [7; 

22], such as Ackley, Griewank, Quadric, Rastrigin, Rosenbrock 

and Spherical functions [7], each at 3 to 30 dimensions. A 

function is called unimodal if it only has one global optimum with 

no local optima, whereas a function is called multimodal if it has 

more than one local optimum, besides at least one global 

optimum. A function of variables is called separable if it can be 

rewritten as a sum of functions of only a single variable [8]. 
Three performance evaluation metrics are considered in this 

experiment: 1) the achieved solution quality or the algorithm‘s 

effectiveness, 2) the search effort or the number of function 

evaluations required to reach the solution, and 3) the algorithm‘s 

efficiency, represented as the CPU time needed to reach the 

solution. It is worth emphasizing here that the goal of this 

experiment is not to compare two different Multi-Start PSOs 

(MPSOs) but to compare the effect of using the popular distance-

based stagnation detection method with the proposed fitness-

based method on any MPSO model. In this paper, an MPSO 

model based on the Constriction Coefficient PSO (CC-PSO) [4] 
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was used for all of the comparisons. The performance was 

recorded over 50 independent runs (with different random seeds) 

per benchmark with a maximum of 800,000 function evaluations 

per run, using a swarm size of 20 and Clerc‘s constriction model 

with  = 0.729 and c1=c2=2.05. 

The first comparison metric that we considered in this 

experiment is the solution quality, or algorithm‘s effectiveness. 

We, therefore, performed the Wilcoxon rank-sum test [5], using 

Matlab statistical toolbox, to validate if (and when) the proposed 

fitness-based stagnation detection methods is significantly better 

performing (i.e., P-Value < 0.05, h=1 and Z-Score > 0) [13] than 

the commonly used distance-based stagnation detection method 

over the 50 conducted independent runs. Table 1 confirms that the 

proposed fitness-based method is indeed significantly better 

performing than the distance-based method, except for a few 

highlighted values in bold and red color (i.e., when  Z-Score  < 0  

and P-Value < 0.05 ).  
In particular, as  shown  in  Table 1,  the  proposed  fitness-

based stagnation detection methods outperformed the distance-

based method on most tested benchmark functions at lower 

dimensionality (n=3 and n=10), except for the Shifted Rosenbrock 

and Rotated Rastrigin functions.  Nonetheless, while the proposed 

method achieved better performance (Z>0) in the classical 

Griewank function, the improved performance in this particular 

case (at n=10) is not, but almost, significantly validated at 95% 

confidence level (P = 0.0672).  Concerning higher-dimensional 

problems (at n=30), the proposed method showed significantly 

better performance on unimodal functions, such as Quadric and 

Spherical functions. As for multimodal functions at higher 

dimensions (i.e., n=30), the proposed method showed overall 

better performance on Ackley and Shifted Rosenbrock,              

and showed significantly better performance on the Rotated 

Rastrigin benchmark.  

The second comparison metric is the search effort or the 

number of function evaluations required to find the optimal 

solutions.  The termination criterion of the search process is 

considered the sooner of reaching a maximum of 800,000 

function evaluations per run, or reaching a 64-bit, double-

precision value of zero, which is the global optimum on all  tested  

benchmarks (except for the Shifted Rosenbrock function with a 

global optimum of 390).  In our experiments, the proposed 

fitness-based method generally exhibited same or less search 

effort on most tested functions at different dimensionality. In 

particular, the proposed method remarkably exhibited less search 

effort on most tested benchmarks with n = 3 and 10, and fairly 

less search effort on Griewank and Classical Rastrigin with n =30. 

On the other hand, the commonly used distance-based method 

never achieved a better (i.e., fewer) number of function 

evaluations compared with the proposed fitness-based method 

(except for the low-dimensional Quadric function at n=3). 

The third comparison metric is the algorithm‘s efficiency, 

represented as the CPU time needed to reach the solution (in 

seconds). All experiments were executed on a 2.20 GHz, 64-bit 

Core-i7 processor with 8 GB RAM. As shown in Figure ‎1, the 

CPU time is remarkably improved on the first 6 tested classical 

benchmarks at different dimensions. The improvement is 

generally stronger, however, in low-dimensional problems as 

opposed to high dimensional problems. The time improvement is 

particularly impressive for the Rastrigin, Quadric and Spherical 

functions. The average improvement on the first 6 classical 

benchmarks with low dimensionality (n = 3) is about 308%, 

which means PSO with Agile Restart is about 3 times faster than 

PSO with Distance-based Restart. It is also about 203% faster for 

n = 10 and 121% faster for n=30, on average. 

As for the advanced (shifted/rotated) benchmarks [12; 24], we 

observed a slight time improvement,  but  not  as  substantial as 

the time improvement for the 6 tested classical benchmarks, as 

shown in Figure 1. The aggregated average time improvement on 

all 8 tested benchmarks became 238%, 159%, and 117% for          

n = 3, 10 and 30, respectively. This considerable CPU time 

improvement was expected, as discussed earlier, due to the fact 

that the proposed fitness-based method does not require the time 

consuming process of calculating pairwise distances between all 

particles and the global best. Instead, the stagnation is detected 

using the Average Swarm Fitness criterion, making use of the 

already calculated fitness values for each particle. Replacing 

distance-based criterion with the proposed fitness-based criterion 

can, therefore, be used to increase the computation speed for any 

Multi-Start PSO algorithm (MPSO) that uses Maximum Swarm 

Radius, such as RegPSO [7], which showed rather slow 

performance when recently applied to data clustering [15]. 

 

Table 1. Wilcoxon Rank-Sum Significance Test Results 

Dimensions  n = 3 n = 10 n = 30 

Significance P 
Z 

(h) 
P 

Z 

(h) 
P 

Z 

(h) 

Ackley 3.31E-20 
9.21 

(1) 
4.73E-20 

9.17 

(1) 
3.03E-01 

1.03 

(0) 

Griewank 6.64E-04 
3.40 

(1) 
6.72E-02 

1.83 

(0) 
5.14E-09 

-5.84 

(1) 

Quadric 1.69E-18 
8.78 

(1) 
5.26E-19 

8.91 

(1) 
7.07E-18 

8.61 

(1) 

Rastrigin 1.85E-13 
7.36 

(1) 
3.31E-20 

9.21 

(1) 
1.33E-03 

-3.21 

(1) 

Rosenbrock 2.75E-18 
8.72 

(1) 
2.37E-06 

4.72 

(1) 
7.49E-01 

-0.32 

(0) 

Spherical 2.06E-17 
8.49 

(1) 
3.31E-20 

9.21 

(1) 
7.07E-18 

8.61 

(1) 

Rotated 

Rastrigin 
8.40E-01 

0.20 

(0) 
5.06E-01 

-0.67 

(0) 
1.58E-09 

6.04 

(1) 

Shifted 

Rosenbrock  
1.05E-06 

-4.88 
(1) 

1.74E-15 
-7.96 

(1) 
2.16E-01 

1.24 

(0) 

 

 
Figure 1. The run-time improvement between the proposed 

fitness-based (Agile) restart and the popular distance-based 

restart is up to three times better, on average. 
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5. CONCLUSIONS  
This paper addresses the popular premature convergence issue 

of PSO by restarting particle positions and resetting their 

velocities and memories when an imminent stagnation situation is 

detected, using a novel stagnation detection method. The 

proposed stagnation detection method uses a more efficient 

fitness-based criterion to effectively trigger what we called the 

―Agile Restart‖ mechanism, as needed, by collectively 

incorporating the fitness performances of the swarm relative to the 

objective function, and comparing the Average Swarm Fitness 

with the global best fitness. The proposed fitness-based criterion 

has a computational advantage over the distance-based criterion 

of O(nk) for a swarm of  n particles in k number of iterations. This 

is because it makes use of the already calculated fitness values     

of each particle to trigger the restart mechanism without the 

overhead of calculating all pairwise distances between particles 

and the global best at each iteration.  

Interestingly, the efficiency of the proposed fitness-based 

criterion did not come at the cost of the solution quality. The 

proposed stagnation detection method demonstrated superior 

solution quality (compared with the commonly used distance-

based method) on most tested optimization benchmarks, verifying 

not only a significantly better, but also a remarkably more 

efficient performance. The significance of the performance 

comparison results over 50 independent runs was validated by the 

Wilcoxon rank-sum test at 95% confidence level.  

The performance comparison between the distance-based 

method and the fitness-based stagnation detection methods was 

conducted at low-to-moderate dimensionality that ranges from 3 

to 30, on a test set of 8 general optimization benchmarks. It is 

therefore planned for our future work to carry out further 

verification simulations on a more comprehensive set of 

benchmarks at even higher dimensions (i.e., greater than 30).  
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