
Improving the Quality of Supervised Finite-State Machine
Construction Using Real-Valued Variables

Igor Buzhinsky, Daniil Chivilikhin, Vladimir Ulyantsev, Fedor Tsarev
ITMO University

Computer Technologies Laboratory
Saint Petersburg, Russia

{buzhinsky, chivdan, ulyantsev, tsarev}@rain.ifmo.ru

ABSTRACT
The use of finite-state machines (FSMs) is a reliable choice
for control system design since they can be formally veri-
fied. In this paper a problem of constructing FSMs with
real-valued input and control parameters is considered. It
is supposed that a set of human-created behavior examples,
or tests, is available. One of the earlier approaches for solv-
ing the problem suggested using genetic algorithms together
with a transition labeling algorithm. This paper improves
this approach via the use of real-valued variables which are
calculated using the FSM’s input data. FSMs with real-
valued variables are represented as systems of linear con-
trollers. The new approach allows to synthesize FSMs of
better quality than it was possible earlier.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
Program synthesis

Keywords
Finite-State Machine; Finite-State Machine Construction;
Ant Colony Optimization

1. INTRODUCTION
In this paper we deal with the problem of test-based finite-

state machine (FSM) [10] construction for controlling ob-
jects in complex environments. The use of behavior exam-
ples, or tests, is reasonable when it is difficult to formal-
ize the desired system behavior. Finite-state machines are
widely used in the development of reactive systems [8,9] and
can be easily verified using the Model Checking [6] approach,
which allows to check whether some temporal properties are
satisfied for them. The ease of FSM verification, which is
the main advantage of their application, contributes to their
ability to be the components of reliable software. FSMs can
also be used as models of existing software systems [16].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
Copyright 2014 ACM 978-1-4503-2881-4/14/07 ...$15.00.
http://dx.doi.org/10.1145/2598394.2605679.

Manual FSM construction is usually hard. For example,
the optimal FSM for the Artificial Ant problem [11] was
found only using automated FSM synthesis [15] with genetic
algorithms [11]. Genetic algorithms and other search opti-
mization techniques require a fitness function, a measure
of the solution quality, to be defined. There are two ap-
proaches for FSM fitness function definition. One approach,
which often leads to huge time requirements, is to model
FSM execution in a simulated environment [14]. In [2], an-
other approach, which suggested using a computationally
cheap test-based fitness function, was applied for searching
FSMs capable of controlling an aircraft model. FSMs in [2]
were equipped with real-valued output actions which were
assigned automatically given the transition function of an
FSM. This approach is model-free and thus is applicable for
various controlled objects.

Model-based approaches are also known for similar prob-
lems. One of such approaches [1], which does not use FSMs
and is mostly based on machine learning techniques, was de-
veloped for the autonomous helicopter control and suggested
finding a hidden trajectory which is implicitly encoded in
tests. Another approach [13] allows to create correct-by-
design finite-state controllers.

In this paper the approach suggested in [2] is improved.
The same controlled object as in [2], an aircraft model, is
used. This paper suggests a way to construct FSMs with
better correspondence to tests, which remains computation-
ally inexpensive and model-free. A key feature of the pro-
posed method is the use of so-called real-valued variables as
inputs for FSMs.

In section 2 we formally describe the problem being solved.
Section 3 describes the FSM construction method used in
this paper. Finally, in section 4 the experimental evaluation
of the method is presented.

2. PROBLEM STATEMENT
An FSM is a sextuple (S, s0, E,A, δ, λ) where S is a finite

set of states, s0 ∈ S is a start state, E is a set of input events,
A is a set of output actions, δ : S × E → S is a transition
function, and λ is an output function (λ : S × E → A for
Mealy machines and λ : S → A for Moore machines). An
FSM execution is a sequence of cycles: on each cycle the
FSM receives an input event, generates an output action
according to λ and changes its active state according to δ.
In this paper the cycles are equally spaced in time with an
interval of 0.1 seconds. The way how FSMs deal with real-
valued inputs and outputs will be explained later.

1039

Figure 1: Aircraft control procedure

Consider a finite set of tests which describe the proper
behavior of the controlled object. Informally, a test consists
of the input data describing the object’s state at different
timestamps and the output data which shows how the ob-
ject should be controlled. Tests are obtained from a human
expert. The problem is to construct an FSM with a behavior
close to the one recorded in the tests.

From now on, we will focus on the unmanned aircraft
control problem. The FlightGear flight simulator (http:
//www.flightgear.org/) is used for test recording and FSM
execution. The input part of the tests consists of flight pa-
rameters: altitude, airspeed, etc. The output part is formed
by aircraft control device (elevator, ailerons, etc.) positions
characterized by real values, which will be referred to as
control parameters.

2.1 Control Procedure
An input tuple is a sequence of P real numbers (i1, ..., iP).

Applied to the problem under consideration, each number
corresponds to one of the flight parameters of the unmanned
aircraft. The controlled object also has C control parame-
ters. They are of two types: discrete (e.g. starter position),
which have finite domains, and continuous, or real-valued
ones (e.g. rudder position). For instance, the rudder posi-
tion from the leftmost to the rightmost can be described by
values from [−1, 1]. From now on, we will assume that all
control parameters are continuous.

An output tuple (o1, ..., oC) is a snapshot of all C control
parameters at some timestamp. As the control parameters
are bounded, for each parameter i and for each output tuple
o there exist cmin

i and cmax
i such that cmin

i ≤ oi ≤ cmax
i .

At the beginning of each cycle the FSM receives an input
tuple. After that, variable values are calculated. Variables
are functions of input tuples and their history. For instance,
a variable can transform the aircraft’s altitude to its deriva-
tive or to its square, or it can just return the altitude un-
transformed. A specific class of variables, predicates, have
Boolean domain. The statement “altitude is decreasing” is
an example of a predicate. Variable values determine the
FSM’s output actions on the current cycle and its new state.
The scheme of the control procedure is shown in Fig. 1.

2.2 Tests
Tests describe tasks (e.g. aerobatic figures) an unmanned

aircraft is desired to perform. Denote the length of the i-th
test in a test set (1 ≤ i ≤ N , where N is the number of tests)
as len[i]. It is equal to the number of timestamps recorded
in a test. The difference between the recorded timestamps
is equal to the cycle length (0.1 s). Test i is formed by two

sequences. The input sequence, in[i], consists of input tuples
in[i, t], where t (1 ≤ t ≤ len[i]) is the time in cycles. The
output sequence, out[i], consists of output tuples out[i, t].

3. PROPOSED APPROACH
In this section the proposed improvement of the method [2]

is described. The general scheme of the used approach does
not differ significantly from the one from [2]: FSM search
is based on metaheuristics, and the individuals are FSMs
with undefined output functions, or skeletons. The output
function is derived automatically for each individual.

The main novelty of the proposed approach involves rep-
resenting FSMs as systems of linear controllers. The fitness
function was also modified to simplify the search of visually
simpler FSMs with clearly distinct states. Instead of a ge-
netic algorithm applied in [2], we use an ant colony optimiza-
tion (ACO) [7] algorithm suggested in [5]. It has some ben-
efits in computational effort on the considered problem [3]
and does not require to define a crossover operator.

3.1 FSM Representation
The previous approach [2] for the problem considered in

this paper only allowed to construct FSMs which used pred-
icates, or Boolean variables, for output action generation.
This led to the impossibility of inferring smooth control laws.
The presence of the issue has been tested experimentally:
the aircraft model under control of such FSMs was unable
to perform a 180◦ turn in the horizontal plane.

We use a new method of FSM representation which in-
volves both predicates and real-valued variables. Predicates
are only used as transition conditions. Consider a set of
predicates p1, ..., pm. In each state only several of them are
significant : for each state s ∈ S and a combination of signifi-
cant predicate values in s, a transition is defined. To encode
such data in individuals, a Boolean mask defining which
predicates are significant, and a transition table are stored
for each state (assume that |S| is fixed during optimization).
This reduced table approach was suggested in [14].

Oppositely, real-valued variables are only used for output
generation. For each control parameter j consider a set of
real-valued variables vj,1, ..., vj,nj . Each state s ∈ S defines
a controller for each control parameter, which uses the cor-
responding variable values as inputs. The controllers were
chosen to be linear to make the automatic derivation of the
output function simple. Assume uj is the j-th control pa-
rameter value and s is the current state, then on each cycle
the change of uj is calculated according to the formula:

∆uj =

nj∑
i=1

rs,i,jvj,i. (1)

Real-valued variables, as well as predicates, are to be de-
fined before the optimization, but the numbers rs,i,j are cho-
sen automatically. Firstly, some of the variables are actually
not used in some states (for each control parameter a signif-
icance mask for real-valued variables is also stored), so the
corresponding rs,i,j are equal to zero. The use of significance
masks for both types of variables makes the proposed FSM
representation scalable for large values of m and n1, ..., nC .
The remaining coefficients are set to maximize the fitness
function for a given skeleton.

An example of a transition diagram of a three-state FSM
(in case of a single control parameter u) is shown in Fig. 2.

1040

Figure 2: A transition diagram of an FSM

3.2 Fitness Function
Assume ans[i] is the output tuple sequence generated by

a fixed FSM in response to in[i]. To measure FSM behavior
quality on a single test, the following distance between the
output sequences is considered:

ρ (ans[i], out[i]) =

√√√√√ 1

len[i]

len[i]∑
t=1

1

C

C∑
j=1

(
ans[i, t]j − out[i, t]j

cmax
j − cmin

j

)2

Another measure we found to be essential is the num-
ber of times an FSM changes its state during the execution
on tests. When this number is large, it is usually difficult
to assign intuitive meanings to different states. The values
max(τi−|S|+ 1, 0), where τi is the number of state changes
on test i, can serve as additional penalties. The described
distances and penalties for different tests can be combined:

Pρ =

√√√√ 1

N

N∑
i=1

ρ2(ans[i], out[i]),

Pτ =

√√√√ 1

N

N∑
i=1

(max(τi − |S|+ 1, 0))2.

Finally, the fitness function f is defined in the following way:

f = 1− Pρ −K · Pτ ,

where K is a small number (we used K = 0.00015). A
fitness function similar to f , but which did not include the
transition penalties Pτ , was used in [2].

A so-called transition labeling algorithm was used in [2] to
automatically derive the output functions of FSMs to maxi-
mize the fitness function. A similar approach was developed
for the presented FSM representation. We omit the math,
which partly repeats the one from [2], and only present the
result: the problem of maximizing f is reduced to solving C
systems of linear equations. To compute a single system’s

matrix, O
(
M2
j

∑N
i=1 len[i]

)
time is required, where Mj is

the number of non-zero values rs,i,j (for a fixed j). Then
each system can be solved in O(M3

j) time. The linearity of
the resulting systems comes from the linearity of (1).

4. EXPERIMENTAL EVALUATION
The experiments, which were performed to evaluate the

proposed FSM representation, included running FSM con-
struction with two FSM representations (the one from [2]
and the proposed one) and measuring the solution quality
in FlightGear. This evaluation is an extended version of the

Figure 3: Several aircraft paths from the barrel roll
test set

Table 1: Parameter values tuned with irace
FSM representation Nants Nmut nstag pnew

Proposed in this paper 5 13 55 0.1428
Previous one 2 29 8 0.2471

one presented in [4]. To perform the evaluation, three test
sets were recorded in FlightGear. They included a loop (33
tests), a barrel roll (28 tests) and a banked 180◦ turn in the
horizontal plane (19 tests). Fig. 3 shows several examples of
paths performed by the aircraft during test recording.

The penalties Pτ were disabled (K = 0) while construct-
ing FSMs with the previous representation to make f sim-
ilar to the one from [2]. For each test set a predicate set
was chosen for the previous FSM representation, and both
predicate and variable sets were chosen for the proposed rep-
resentation. The variable choice process was iterative: if the
method did not yield an FSM with proper quality (measured
in simulation), the variable set was adjusted. We failed to
come up with a good predicate set to construct an FSM
performing the 180◦ turn with the previous representation,
which led to poor simulation results for this case.

For each of three test sets, for |S| = 3, 4, 5 and for each
FSM representation 50 ACO executions were performed.
Pheromone-based edge selection was changed to uniformly
random, as pheromone did not influence the algorithm’s
performance in a measurable way. The number of ants
Nants and other pheromone non-related parameters Nmut,
nstag, pnew (see [5]) were tuned with the irace [12] package
(1000 ACO runs were performed for each representation,
see Table 1 for the tuned values). The termination criterion
was stagnation during 5000 fitness evaluations. In Table 2
(columns 3–5) the median fitness values reached on different
problem instances are shown. The table shows that the use
of the proposed FSM representation slightly improves the
fitness value on the loop and barrel roll test sets, and re-
tains the fitness value nearly the same on the turn test set.
The time required for a single ACO run often did not exceed
10 minutes on a personal computer with a quad-core Intel
Core i7–2670QM 2.2GHz processor. These performance re-
sults are close to the ones from [3].

The constructed FSMs were also examined in computer
simulation. Two quality criteria measured the average pitch
and roll deviations from the values recorded in the tests.
The pitch criterion value was equal to the average distance
|αtest
i,t −αrun

j,t | between the pitch angles at timestamps t of the
i-th test (αtest

i,t) and of the j-th FSM execution in simulation

1041

Table 2: FSM quality metric values on different problem instances

|S| FSM Representation
Median fitness values Median roll errors (◦) Median pitch errors (◦)

Loop Barrel roll Turn Loop Barrel roll Turn Loop Barrel roll Turn

3
Proposed in this paper 0.9856 0.9854 0.9892 1.71 16.52 4.80 17.21 3.20 1.95

Previous one 0.9812 0.9832 0.9894 6.37 18.56 50.29 20.54 4.44 7.58

4
Proposed in this paper 0.9866 0.9863 0.9898 2.41 15.35 4.10 23.04 2.51 1.42

Previous one 0.9836 0.9856 0.9901 6.32 21.86 57.04 22.11 4.08 6.79

5
Proposed in this paper 0.9873 0.9868 0.9901 3.21 14.74 4.07 25.27 2.43 1.36

Previous one 0.9842 0.9858 0.9902 9.54 22.99 45.83 24.44 4.68 7.83

(αrun
j,t), where i = 1..N, t = 1..len[i] and j = 1..10. A simi-

lar criterion was used for the roll angle. For each problem
instance, 50 FSMs with the best fitness values (each FSM
from a separate run) were examined in simulation. Table 2
(columns 6–11) shows the median quality criteria values for
the described FSM groups. It implies that the quality values
are generally better for the suggested FSM representation.

Rather high pitch and roll error values for the 180◦ turn
performed by FSMs with the previous representation signify
their poor quality. None of such FSMs were able to perform
the turn from the beginning to the end. The situation is
different for the suggested FSM representation.

A video record of the Gloster Meteor jet fighter performing
the turn is available at http://youtu.be/n9q5FmCYs6M.

5. CONCLUSION
An earlier developed method [2] of supervised finite-state

machine construction has been improved. The improvement
allows to synthesize FSMs which use real-valued variables to
form output actions. The benefits of the suggested approach
were shown on three test sets for the unmanned aircraft
control problem. The use of the modified method improves
the quality of generated solutions. The failure of the original
method on one of the test sets is no longer the case for the
new FSM representation.

6. ACKNOWLEDGEMENTS
This work was financially supported by the Government of

Russian Federation, Grant 074-U01, and by RFBR, research
project No. 14-07-31244 mol a.

7. REFERENCES
[1] P. Abbeel, A. Coates, and A. Ng. Autonomous

helicopter aerobatics through apprenticeship learning.
The International Journal of Robotics Research,
29(13):1608–1639, 2010.

[2] A. Alexandrov, A. Sergushichev, S. Kazakov, and
F. Tsarev. Genetic algorithm for induction of finite
automata with continuous and discrete output actions.
In Proceedings of the 13th annual conference
companion on Genetic and evolutionary computation
(GECCO ’11), pages 775–778. ACM, 2011.

[3] I. Buzhinsky, V. Ulyantsev, and A. Shalyto.
Test-based induction of finite-state machines with
continuous output actions. In Proceedings of the 7th
IFAC Conference on Manufacturing Modelling,
Management, and Control (MIM ’13), pages
1049–1054. IFAC, 2013.

[4] I. Buzhinsky, V. Ulyantsev, F. Tsarev, and A. Shalyto.
Search-based construction of finite-state machines

with real-valued actions: New representation model.
In Genetic and Evolutionary Computation Conference
(GECCO ’13) Companion, pages 199–200. ACM, 2013.

[5] D. Chivilikhin and V. Ulyantsev. Muacosm – a new
mutation-based ant colony optimization algorithm for
learning finite-state machines. In Proceedings of the
Genetic and Evolutionary Computation Conference
(GECCO ’13), pages 511–518. ACM, 2013.

[6] E. Clarke, O. Grumberg, and D. Peled. Model
checking. MIT press, 1999.

[7] M. Dorigo and T. Stutzle. Ant Colony Optimization.
MIT Press, US, 2004.

[8] D. Harel and A. Pnueli. On the development of
reactive systems. Logic and Models of Concurrent
Systems, pages 477–498, 1985.

[9] D. Harel and M. Politi. Modeling Reactive Systems
with Statechart. The Statemate Approach.
McGraw-Hill, NY, 1998.

[10] J. Hopcroft, R. Motwani, and J. Ullman. Introduction
To Automata Theory, Languages, and Computation
(3rd Edition). Prentice Hall, 2006.

[11] J. Koza. Genetic programming: on the programming of
computers by natural selection. MIT Press,
Cambridge, MA, USA, 1992.

[12] M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle, and
M. Birattari. The irace package, iterated race for
automatic algorithm configuration. Technical Report
TR/IRIDIA/2011-004, IRIDIA, Université libre de
Bruxelles, Belgium, 2011.

[13] M. Mazo, A. Davitian, and P. Tabuada. Pessoa: A
tool for embedded control software synthesis. Lecture
Notes in Computer Science, 6174:566–569, 2010.

[14] N. Polikarpova, V. Tochilin, and A. Shalyto. Method
of reduced tables for generation of automata with a
large number of input variables based on genetic
programming. Journal of Computer and Systems
Sciences International, 49(2):265–282, 2010.

[15] F. Tsarev and A. Shalyto. Use of genetic programming
for finite-state machine generation in the smart ant
problem. In Proceedings of the IV International
Scientic-Practical Conference “Integrated Models and
Soft Computing in Artificial Intelligence”, pages
590–597, 2007.

[16] N. Walkinshaw, R. Taylor, and J. Derrick. Inferring
extended finite state machine models from software
executions. In Proceedings of the 20th Working
Conference on Reverse Engineering (WCRE ’13),
pages 301–310. IEEE Computer Society Press, 2013.

1042

