
Multi-core GE : Automatic Evolution of CPU Based
Multi-core Parallel Programs

Gopinath Chennupati
BDS Group

CSIS Department
University of Limerick, Ireland
gopinath.chennupati@ul.ie

R. Muhammad Atif Azad
BDS Group

CSIS Department
University of Limerick, Ireland

atif.azad@ul.ie

Conor Ryan
BDS Group

CSIS Department
University of Limerick, Ireland

conor.ryan@ul.ie

ABSTRACT

We describe the utilization of on-chip multiple CPU ar-
chitectures to automatically evolve parallel computer pro-
grams. These programs have the capability of exploiting the
computational efficiency of the modern multi-core machines.

This is significantly different from other parallel EC ap-
proaches because not only do we produce individuals that,
in their final form, can exploit parallel architectures, we can
also exploit the same parallel architecture during evolution
to reduce evolution time.

We use Grammatical Evolution along with OpenMP spe-
cific grammars to produce natively parallel code, and demon-
strate that not only do we enjoy the benefit of final individ-
uals that can run in parallel, but that our system scales
effectively with the number of cores.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search - Heuristic methods

Keywords

Grammatical Evolution; Multi-cores; Parallel Programming;
Symbolic Regression; OpenMP.

1. INTRODUCTION
Real-world applications of evolutionary algorithms (EA)

vary dramatically in terms of the computation power re-
quired. Depending on the specific problem, techniques vary-
ing from caching up to parallel evaluation of both individuals
and testcases can be used to reduce computation time.

While there have been some instances where EAs were
used to convert existing sequential code to functionally iden-
tical parallel code [12], as well as concurrent code [14], there
has been no work that produces code that natively exploits
multi-core architectures.

It is a well known factor that the execution time limits the
emergence of Evolutionary Computation (EC) techniques

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.

Copyright 2014 ACM 978-1-4503-2881-4/14/07 ...$15.00.

http://dx.doi.org/10.1145/2598394.2605670.

into the traditional machine learning domain when experi-
mented on large datasets. In fact it is a major concern for
any prediction system, for example, if a weather prediction
system consumes more than a day or two to produce pre-
dictions for the next days then, it is pointless to use that
predictor.

The primary reason behind this high computational cost
is that the stochastic nature of the EC techniques requires
a number of candidate evaluations to produce an optimal
solution of certain quality. Genetic Programming (GP) [6]
and Grammatical Evolution (GE) [11] are such EAs that
require optimization in their computational effort spent on
the evaluation of the candidate solutions.

There have been a number of attempts from machine code
generation to the usage of parallel computational resources
that address this issue. Graphics Processing Units (GPUs)
attracted a lot of attention from the EC community with
their high computational capabilities through light weighted
cores. One such work related to GP is [10] that tried to
reduce the evaluation time while it also questions the high
performance speedups reported in the other GPU based EC
implementations. Another attempt in [4] tried to reduce
the execution time through the termination of the runs that
produce low quality solutions.

However, recent desktops and PCs are made of multiple
cores that have better compute capabilities to improve the
speedup at a reasonable cost. These multi-core processors
are equipped with a shared memory configuration that can
be accessed by all the cores which in turn helps to achieve ef-
ficient parallelization. Little work has been done on exploit-
ing the compute capabilities of these architectures. How-
ever, utilizing the power of the multi-cores can optimize the
execution time significantly.

This paper proposes to automatically evolve parallel com-
puter programs that have the ability to exploit the compute
capabilities of the modern CPU based multi-core architec-
tures. We use OpenMP thread based programming prac-
tices along with GE grammars for the automatic evolution
of these parallel programs. This approach is assessed on two
standard bench mark problems: 6-multiplexer and a sextic
polynomial regression.

2. BACKGROUND
GE is an evolutionary algorithm that can evolve computer

programs in an arbitrary language through a linear genome
representation and the rules of the BNF grammars. Each
individual in the GE population is a variable length binary
string and, typically, the genome is divided into 8 bit codons,

1041

which are used to select the possible rules of the grammar.
GE mapping is a crucial component of its evolutionary cycle
which is responsible for producing code in any programming
language, and is an extra step which does not occur in GP.

2.1 Phenotype Evaluation
A general consensus in the EC community is that an

EA’s fitness evaluation is the most computationally expen-
sive task. Particularly in GE, experimental observations
presented in [3] confirm this statement (with 66% of total
execution time) while GE mapping (with 33% of total exe-
cution time) is the next computationally expensive task. GE
is unique in its fitness evaluation as it is calculated through
the evaluation of phenotype whereas all the remaining ge-
netic operations (such as crossover, mutation) are performed
on the genotype. This separation between the solution and
the search space has been made possible with the help of
the Context Free Grammars (CFGs) and the GE specific
mapping process as explained here.

GE mapping process converts a genotype into phenotype,
a computer program in a user specified language. GE first
decodes a variable length binary string to a string of eight
bit integers term known as codons. These codons are then
used to pick rules from a CFG with this function:

Rule = (Codon Integer Value) % (# rules for this non-
terminal)

Most often (not always), the fitness of the phenotype is
evaluated using a complier, an evaluator in GE. It evaluates
the evolved computer program serially over all the fitness
cases. One drawback with the current GE system is that it
can only use the compute capabilities of only one core that
leaves the remaining cores of a multi-core machine idle. In
this paper we focus only on optimizing the execution time
of GE phenotype evaluations that can make use of the com-
putational power of these modern machines.

2.2 Related Work
Most of the EC approaches (GA, GP) are inherently par-

allel or contain the design that is suitable for explicit paral-
lelization. The explicit parallelization approaches can largely
be classified as population parallel and data parallel as shown
in [8]. The former deals with a population of individuals
with different sets of configurations that exploit the power
of multiple computers, while the latter deals with simul-
taneous data computations. Cantú-Paz [2] contemplated
different parallelization configurations in GAs whereas [8]
(Chapter 10) listed out different approaches that can acceler-
ate GP. However, recently graphics processing units (GPUs)
emerged as highly parallel computing resources. Robilliard
et al. [10] tried to exploit the power of G80 GPUs in par-
alleling GP fitness evaluations. Chitty [5] demonstrated a
population parallel approach that fully exploits the power
of CPU based multi-cores on a new implementation of GP.

Along these EC approaches, also the design of GE is “em-
barrassingly parallel” that takes advantage from the separa-
tion offered through its mapping. The first parallelization
attempt on GE was made in [13] with an island model that
was implemented in python programming language. It op-
timized the total execution time when tested on a 17 node
cluster with each node containing the Intel Pentium IV Dual
Core processor. Osmera et al. [7] proposed a two level pop-
ulation parallel approach with GE in the first level and Dif-
ferential Evolution in the next level in a hierarchical master-

slave configuration, where the slaves port their best candi-
date solutions to the master. They tested it on a group of
6 computers networked together with one master and five
slaves with two populations (female, male) on each one.

Recently, for the first time [9] reported promising acceler-
ation in the execution time by the entire GE algorithm on
GPU cores. Although the proposed approach optimized the
execution time, they also have reported a serious limitation
on the use of GPU memory that would decelerate the speed
of execution as the population size scales up.

Parallel GE implementations are relatively few in number
due to the need to access specialized parallel hardware such
as GPUs. However, modern CPU vendors (Intel i7) are of-
fering desktop computers with multiple cores with each core
having the power of a standard single core processor. The
computational power of these architectures has been little
explored leaving a lot of scope for us to investigate. Despite
the parallelization investigations in the literature, to the best
of our knowledge for the first time we propose to exploit the
compute capabilities of multi-core architectures through an
automatic evolution of parallel programs through grammars.
In fact the automatic evolution of parallel programs frees us
from the shackles of maintenance costs of parallelization that
parallel programming researchers often face.

<s ta r t> : := <omp pragmas><f o r l o op><data>
<evolved expr>

<omp pragmas> : := #pragma omp p a r a l l e l
shared (Evolved , chunk) p r i v a t e (i) {
#pragma omp f o r schedu le (dynamic , chunk)

<f o r l o op> : := f o r (i =0; i<FITNESS CASES ;
i=i +1) {

<data> : := xva l s [i] ; yva l s [i] ;
<evolved expr> : := temp= <expr>;<ass ign>
<expr> : := mymul(<expr>, <expr>) |

mysub(<expr>, <expr>) |
myadd(<expr>, <expr>) |
pdiv(<expr>, <expr>) |
i f c ond (<expr>, <expr>, <expr>, <expr>)
| (<expr>) | s i n (<expr>) | cos (<expr>)
| tan(<expr>) | exp(<expr>) | xva l s [i]
| yva l s [i] | 1.000 | <const> | −<const>

<const> : := 0.< d i g i t><d i g i t><d i g i t>
<d i g i t> : := 0 | 1 | 2 | 3 | 4 | 5 | 6 |

7 | 8 | 9
<ass ign> : := i f (temp < 0) { Evolved [i] = 0 ;

} e l s e { Evolved [i] = 1 ; } }

Figure 1: Design of multi-core grammars

3. MULTI-CORE GE
Each core of a multi-core machine is a single unique CPU.

Utilizing the compute capabilities of these cores is relatively
a simple process in comparison with the GPU cores. Cre-
ating different threads on each core enables us to exploit
the power of these cores. Thus, under any operating system
environment, calling OpenMP enabled C/C++ function cre-
ates user requested number of threads. OpenMP offers par-
allel programming pragmas that can execute independent
threads on cores.

1042

We use these OpenMP pragmas to automatically evolve
parallel programs that are compatible with multi-core CPU
shared memory architectures. Figure 1 presents the gram-
mars that are used in the automatic evolution of parallel
programs. For these preliminary investigations, the evolved
programs follow a data parallel approach so that at any given
period of time only one phenotype is evaluated across mul-
tiple fitness cases in parallel.

In this approach, load balancing is a serious concern that
was caused by thread scheduling. OpenMP improves this in-
efficiency with the help of a few thread scheduling options,
dynamic scheduling is the best option among them. It dy-
namically assigns t iterations of the remaining iterations to
the threads that are idle, finding the optimal t can be hard
some times. That means the available data is divided into
chunks of size t and allocates each chunk dynamically to the
threads immediately upon completion of their execution.

Figure 2: Parallel evaluation scheme of the evolved
GE program on a multi-core CPU.

Figure 2 shows the phenotype evaluation scheme across
multiple cores of a modern CPU. The main characteristic of
this approach is, a single GE program is executed across all
the cores with a different set of fitness cases, thus making the
execution single instruction multiple data (SIMD). That is
fitness cases are processed in parallel across all the cores. For
example on a 4 core machine, every core evaluates 1/4th of
the fitness cases (this may vary due to dynamic scheduling)
ideally and must report an evaluation speedup factor of 4.

In this scheme some threads finish their execution early
while the others fall behind so that we end up with an issue of
thread synchronization in calculating the final fitness value.
In such instances the OpenMP parallel reduction is applied
on squared error (regression problems), the number of hits
(classification problems) in a separate function. Since both
the operations involve summation that can be generalized
as the sum of n numbers for which the time complexity is
O
(

n2
)

. With the reduction operation the complexity has

been reduced to O
(

nlogn
)

. In reduction there is a chance
for the occurrence of race condition when the evolved class
values are compared with that of the target (if (evolved[i]
== target[i])) where the evolved class in thread 1 might

race to check the equivalence with thread 2 of the target
class. In order to prevent this an OpenMP critical section
was used where only one thread can execute at any given
time in that region.

4. EXPERIMENTS
In order to test the proposed approach the experiments

were carried out on a cluster node with an Intel (R) Xeon
(R) CPU E7-4820 with a processor speed of 2 GHz. It con-
tains 16 cores each of which are enabled by hyper threading
with an ability to run 2 independent threads per core and 18
Mb of L3 cache memory was shared among all the cores. The
experimental parameters were set as follows. The population
was initialized randomly with the maximum depth set to 25,
while the minimum depth was 15. It is interesting to see the
performance of the proposed approach with various popula-
tion sizes and a variable number of CPU cores. Hence, the
population sizes were kept at 25, 50, 100, 200, 400 while the
number of CPU cores were at 2, 4, 8, 16. One point cross-
over with a probability 0.9, point mutation with a probabil-
ity 0.01 were used. We used steady state GA where the best
individuals replace the worst in the population. GNU GCC
evaluator is used for phenotype evaluations. A total of 30
runs were conducted with a generation count of 50.

4.1 Results
We evaluate the performance of our approach on two stan-

dard benchmark problems: 6-multiplexer and, sextic poly-
nomial regression (x6−2x4+x2). The first benchmark con-
tains 64 training points with 2 address bits (A0-A1), 4 data
bits (D0-D4) and the second benchmark is a regression prob-
lem that also has 64 training points in the range [-1.5,+1.5].
A complete description of the serial implementation of the
grammars can be found in [1]. We focus on our goal of
optimizing the phenotype evaluation time and report those
results, despite the fact that there is no significant difference
in the serial and the parallel (proposed) version of the solu-
tions. The total execution time results were measured using
the OpenMP platform independent timer utility function.

Table 1 demonstrates the performance of multi-core GE.
The average evaluation time of fitness evaluation results of
the evolved parallel programs with varying number of CPU
cores is shown over 30 runs on both the bench mark prob-
lems. On 6-multiplexer problem, with 2 cores there is no
significant difference in the average evaluation time whereas
for the remaining cores (4, 8, 16) it was reduced significantly
recording better speedups. For sextic symbolic regression,
incrementing the cores to 2 has in fact increased the average
evaluation time as it a well known OpenMP pattern. Except
that, for the remaining configurations significant reductions
were observed. Overall, the performance of the multi-core
parallel programs reported promising results in the fitness
evaluations.

5. CONCLUSION AND FUTURE WORK
In this paper we presented a new method to exploit the

power of modern multi-core machines through an automatic
evolution of parallel programs that can reduce the risk of
maintaining the parallel programming. Modern multi-cores
are more suitable for multiple instruction multiple data (MIMD)
style of execution, whereas the proposed approach follows
SIMD, following multi-core adaptable style of execution might

1043

Table 1: Average evaluation time (in secs) results (average [standard deviation]) of multi-core GE over 30
runs on 6-multiplexer and sextic regression problems.

Problem
Pop Cores
Size 1 2 4 8 16
25 88.49 [11.86] 92.78 [6.01] 41.54 [6.45] 22.01 [6.82] 12.6 [6.41]
50 226.29 [24.65] 173.26 [12.31] 123.65 [16.52] 46.56 [10.47] 30.13 [15.23]

6-multiplexer 100 347.13 [25.40] 335.84 [27.32] 177.11 [24.81] 69.56 [21.92] 44.16 [21.95]
200 703.21 [35.42] 698.76 [19.14] 285.86 [12.61] 185.54 [17.32] 86.28 [17.92]
400 1399.54 [15.95] 1428.75 [28.42] 897.14 [23.36] 392.03 [26.70] 169.85 [33.51]
25 107.96 [17.71] 152.07 [25.44] 36.86 [20.60] 17.27 [21.06] 10.77 [20.88]
50 217.69 [26.52] 279.65 [21.68] 82.86 [26.63] 35.03 [33.14] 22.62 [32.94]

sextic regression 100 482.91 [34.37] 601.77 [33.43] 183.88 [24.82] 80.28 [29.78] 55.54 [29.32]
200 847.17 [26.14] 1361.33 [37.93] 498.85 [22.50] 168.64 [20.41] 118.35 [17.01]
400 1748.67 [33.87] 3757.92 [27.34] 1030.70 [16.24] 405.21 [18.41] 261.86 [18.93]

report much better performance with optimal efficiency. Re-
call that we evaluated the final fitness of the phenotype
in synchronous fashion using a critical section where some
threads wait for the others to finish their execution. Al-
though we observed improvement in the speedups this syn-
chronous execution makes the cores to sit idle as a result
CPU time is underutilized. Asynchronous phenotype evalu-
ation is one of the recommended directions to investigate.

It is interesting to see the length of the genotypes as it
is clear from the presented grammars that the size of the
grammars is larger than the serial version for the respective
problems. There is a chance to get longer individuals that
are being evaluated in less time. It is also possible to in-
vestigate by incrementing the size of the fitness cases, using
a generational strategy as opposed to the used steady state
replacement procedure that which might pose different chal-
lenges with an increased breeding time.

Experimenting with highly decomposable problems such
as quick sort, vertex colouring and the ones that also in-
volve task level parallelism is another interesting research
direction.

6. REFERENCES

[1] R. M. A. Azad and C. Ryan. An examination of
simultaneous evolution of grammars and solutions. In
T. Yu, R. Riolo, and B. Worzel, editors, Genetic
Programming Theory and Practice III, volume 9,
pages 141–158. Springer, US, 2006.

[2] E. Cantú-Paz. A survey of parallel genetic algorithms.
Calculateurs paralleles, reseaux et systems repartis,
10(2):141–171, 1998.

[3] G. Chennupati, C. Ryan, and R. M. A. Azad. An
empirical analysis through the time complexity of GE
problems. In R. Matousek, editor, 19th International
Conference on Soft Computing, MENDEL’13, pages
37–44, Brno, Czech Republic, Jun, 26-28 2013.

[4] G. Chennupati, C. Ryan, and R. M. A. Azad. Predict
the performance of an evolutionary algorithm run. In
the Genetic and Evolutionary Computation
Conference, GECCO ’14, Vancouver, BC, Canada,
Jul, 12–16 2014, to appear.

[5] D. M. Chitty. Fast parallel genetic programming:
multi-core cpu versus many-core gpu. Soft Computing,
16(10):1795–1814, 2012.

[6] J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, USA, 1992.

[7] P. Osmera, O. Popelka, and P. Pivonka. Two level
parallel grammatical evolution. In IEEE World
Congress on Computational Intelligence, IEEE
Congress on Evolutionary Computation, CEC 2008,
pages 2473–2480, June 2008.

[8] R. Poli, W. B. Langdon, and N. F. McPhee. A Field
Guide to Genetic Programming. Lulu Enterprises, UK
Ltd, 2008.

[9] P. Pospichal, E. Murphy, M. O’Neill, J. Schwarz, and
J. Jaros. Acceleration of grammatical evolution using
graphics processing units. In Proceeding of Genetic
and Evolutionary Computation Conference, GECCO
’11, pages 431–438. ACM, 2011.

[10] D. Robilliard, V. Marion, and C. Fonlupt. High
performance genetic programming on GPU. In
Proceedings of the Bio-inspired algorithms for
distributed systems, pages 85–94. ACM, 2009.

[11] C. Ryan, J. J. Collins, and M. O’Neill. Grammatical
evolution: Evolving programs for an arbitrary
language. In W. Banzhaf, R. Poli, M. Schoenauer, and
T. C. Fogarty, editors, Proceedings of the First
European Workshop on Genetic Programming, volume
1391 of LNCS, pages 83–95. Springer, 1998.

[12] C. Ryan and P. Walsh. The evolution of provable
parallel programs. In J. R. Koza, K. Deb, M. Dorigo,
D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo,
editors, Genetic Programming 1997: Proceedings of the
Second Annual Conference, pages 295–302, Stanford
University, CA, USA, 1997. Morgan Kaufmann.

[13] M. Stallard. A parallel approach to grammatical
evolution in python, 2006.

[14] A. Trenaman. Concurrent genetic programming,
tartarus and dancing agents. volume 1598 of LNCS,
pages 270–282. Springer, 1999.

1044

