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ABSTRACT
We propose a numeric variant of quantum-inspired evolutionary al-
gorithm (QIEA) where gene in the quantum chromosome is a su-
perposition of k qubits, thus allowing the genes of the classical
chromosome to take numeric values. We also present a modified
form of real observation QIEA. Both these techniques are applied
to the problem of partitioning a complex network. The algorithm
parameters are tuned using an evolutionary bilevel search optimiza-
tion technique.
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1. INTRODUCTION
Quantum-inspired evolutionary algorithms (QIEAs) are evolu-

tionary algorithms (EAs) using the quantum computing concepts
like quantum bits (qubits), superposition, and unitary transforma-
tions of quantum states. A QIEA works with quantum population
comprising of chromosomes. Each chromosome is represented as
a string of qubits with the advantage that it can represent a linear
superposition of states in search space probabilistically. The orig-
inal QIEA, first implemented by Han and Kim [3], involves mea-
suring the quantum population to generate a classical population
followed by an update operation that involves application of quan-
tum gate as variation operator. Survey of extensions and applica-
tions of the QIEA [12] categorizes QIEA that are characterized by
the qubit representation, measurement process and quantum gates
into binary observation QIEA (bQIEA), and real observation QIEA
(rQIEA) based on the type of data assumed in the classical chromo-
some. Both these variants allow one qubit per gene. In this paper,
we propose a numeric variant (numQIEAm) that allows the genes of
the classical chromosome to take numeric values. Here, every gene
in the quantum chromosome is superposition of k qubits. This for-
mulation is useful for combinatorial optimization problems where
the data type of a gene in the classical chromosome is numeric.
We also present a modified form of rQIEA (rQIEAm). Both the
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techniques are applied to the problem of partitioning complex net-
works. The problem is modeled as an evolutionary bilevel opti-
mization problem for parameter tuning [2]. In the rest of the paper,
section 2 describes the proposed strategies, section 3 details the ex-
perimentation conducted and is followed by concluding remarks.

2. QIEA
The smallest unit of information stored in two-state quantum

system is called a qubit which may be in "1" state, "0 "state, or
in any superposition of "1" and "0" states. The state of a qubit
can be represented as |Ψ >= a |0 > +b |1 >, where a and b are
complex numbers specifying the probability amplitudes of the cor-
responding states. |a|2 and |b|2 denote the probabilities that the
qubit may be found in states 0 and 1 respectively. The condition
|a|2 + |b|2 = 1 guarantees normalization. Thus, a qubit is defined
using a pair of complex numbers (a, b), represented by the vector
[a, b]T . The proposed numeric observation QIEA algorithm with

Procedure QIEAm: QIEA with quantum mutation operator

Input: Graph G = (V, E)
Output: Best solution B

t← 0
initialize quantum population Q(t)
determine P(t) by measuring Q(t) (Measure function)
repair P(t)
evaluate P(t), that is, compute fitness function (network modu-
larity) for each chromosome
store the best solution (that gives a positive gain in network mod-
ularity) among P(t) in B
while not termination condition do

t← t + 1
determine P(t) by measuring Q(t−1)
evaluate P(t)
for all chromosome in Q(t) and P(t) do

mutate and repair the chromosome
modify Q(t) using quantum gates (update operation)
update B with the best solution among P(t−1) and P(t)

end for
end while

mutation (numQIEAm) and the modified real observation QIEA al-
gorithm with mutation (rQIEAm), both follow the general steps of
the algorithm QIEAm. The specific details for the proposed strate-
gies are elaborated in further sections.

2.1 Binary Observation QIEA
In a binary observation QIEA (bQIEA), a chromosome encoding

binary representation of the solution uses a representation based on
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qubits. Thus, n qubits may be used to represent a quantum chromo-
some of size n as follows,

q =

[
a1 a2 . . . an
b1 b2 . . . bn

]
(1)

Here, the states are in superposition and can be represented as,

|Ψ >= a1a2 . . .an|00 . . .0 > +a1a2 . . .an−1bn|00 . . .01 > +

a1a2 . . .an−2bn−1an|00 . . .010 > + . . .+ b1b2 . . .bn|11 . . .1 >

For example, consider the following 3-qubit chromosome with three
pairs of amplitudes,

q =

 1√
2

√
3

2
−1√

2
1√
2

1
2

1√
2


Here, the states can be represented as,

|Ψ >=
−
√

3
4
|000 > +

√
3

4
|001 > −

1
4
|010 > +

1
4
|011 >

−

√
3

4
|100 > +

√
3

4
|101 > −

1
4
|110 > +

1
4
|111 >

This implies that states |000 >, |001 >, |010 >, |011 >, |100 >,
|101 >, |110 > , and |111 > occur with probabilities 3/16, 3/16, 1/16,
1/16, 3/16, 3/16, 1/16, and 1/16 respectively.
A system of n-qubits can represent 2n states at the same time but
each qubit collapses to a single state 0 or 1 when measured, re-
sulting in a classical binary chromosome. Considering n=12, a 12-
qubit chromosome
a1|0 > +b1|1 >,a2|0 > +b2|1 >, . . . ,a12|0 > +b12|1 >
when measured may yield a binary chromosome such as,

0 1 1 1 0 0 1 1 0 1 1 0
For the ith qubit in the chromosome, given by probability ampli-
tudes [ai, bi]T , a random number r in the range [0, 1] is generated.
If r < |a|2, then the corresponding classical bit is set to 0 else to
1. In the context of community detection, the values 0 and 1 in the
above chromosome may be interpreted as a community IDs asso-
ciated with the corresponding nodes. Thus, the above chromosome
may be interpreted as,

Node no. 1 2 3 4 5 6 7 8 9 10 11 12
Community ID 0 1 1 1 0 0 1 1 0 1 1 0

That is, nodes 1, 5, 6, 9, and 12 belong to the community 0 while
nodes 2, 3, 4, 7, 8, 10, and 11 belong to the community 1.

2.2 Numeric Observation QIEA
The proposed numQIEAm algorithm (m for mutation) according

to terminology given by Zhang [12], follows the basic steps of the
algorithm QIEAm. In a numeric observation QIEA (numQIEAm),
the genes of the classical chromosome take numeric values and
genes in the quantum chromosome are each a superposition of k
qubits. This allows nc = 2k possible states for every gene. This for-
mulation is suitable for problems like that of discovering communi-
ties in complex networks where each gene in the classical chromo-
some may take discrete values representing the partition number of
the corresponding node. We assume that the partition number val-
ues lie in the known range [1, nc], nc being the estimated number of
communities, input by the user during algorithm initialization, with
a maximum value n, number of nodes in the network. The quantum
chromosome of size n may be represented with n (k-qubits) as,

q =
[

g1 g2 . . . gn
]

(2)

The ith gene may be represented as,

gi =

[
a1 a2 . . . ak
b1 b2 . . . bk

]
For example, consider the following 2-qubit gene with two pairs of
amplitudes,

g =

 1√
2

√
3

2
1√
2

1
2


Here, the states of a gene are in superposition and can be repre-
sented as, |Ψg >=

√
3

2
√

2
|00 > + 1

2
√

2
|01 > +

√
3

2
√

2
|10 > + 1

2
√

2
|11 >.

This implies that states |00 >, |01 >, |10 >, and |11 > occur with
probabilities 3/8, 1/8, 3/8, and 1/8 respectively. Renaming the states
as 0d , 1d , 2d , 3d , we can interpret this gene as having 4 possible
quantum states, thus allowing a maximum of 4 communities in the
network. In general, we can represent the probability amplitudes
for state |Ψgi > of the k-qubit ith gene gi as |Ψgi >= [ti1 , ti2 , . . . , tinc ]T .
A system of n (k-qubits) can represent (2k)n states at the same
time and each gene will collapse to a single state between 0 and
nc− 1 = 2k − 1 when measured, resulting in a numeric chromo-
some. For example, a 12 (2-qubit) chromosome represented as,
|Ψg1 > , |Ψg2 > , . . . , |Ψg12 >, further expanded as,
t11 |0d > +t12 |1d > +t13 |2d > +t14 |4d >, t21 |0d > +t22 |1d > +t23 |2d >
+t24 |3d >, . . . , t121 |0d > +t122 |1d > +t123 |2d > +t124 |3d >
when measured may yield a numeric chromosome such as,

3d 2d 1d 1d 0d 1d 1d 3d 2d 1d 3d 0d
In the context of community detection, the values 0d , 1d , 2d , and
3d in the above chromosome may be interpreted as community IDs.
That is, nodes 5 and 12 belong to the community 0d , nodes 3, 4, 6,
7, and 10 belong to community 1d , nodes 2 and 9 belong to com-
munity 2d , and nodes 1, 8, and 11 belong to the community 3d .

2.2.1 Quantum Population Initialization
For a quantum chromosome, as given in (2), every k-qubits gene

is initialized as:
1/
√

nc |0d > + 1/
√

nc |1d > + . . . + 1/
√

nc |(nc−1)d >, where nc = 2k.

2.2.2 Measure Function
For the ith gene in the quantum chromosome, given by probabil-

ity amplitudes [ti1 , ti2 , . . . , tinc ]T , a random number r in the range
[0, 1] is generated. If r <

∑nc
l= j |til |

2, j = nc, , . . . , 1, then the
corresponding classical bit is set to j. Thus, a gene in the classical
chromosome takes a value in the range [1, nc].

2.2.3 Mutation
A classical chromosome is selected for mutation with a proba-

bility of mutRate, an algorithm parameter. For every gene in the
selected chromosome, a random number r in the range [0, 1] is
generated. If r < 1/n, the ith gene is selected for mutation [7]. The
selected gene with value x is mutated to value x′ = b (nc − 1) rc.
For the ith gene in the corresponding quantum chromosome, the x′-
th and x-th amplitudes are interchanged. The chromosome is then
repaired, that is, new community ID is assigned to all the neigh-
bors of the node and their corresponding quantum genes are also
mutated. The mutation is accepted if the mutated gene in P(t) in-
creases the network modularity.

2.2.4 Repair Function
Tasgin and Bingol (2006) [9] repaired the generated classical

chromosome to improve the convergence of the algorithm. A chro-
mosome is randomly picked for repair with probability α and a
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Figure 1: Partitioning structure for Zachary karate club network
(NMI=1). Vertex color represents the division into four communi-
ties. Vertex shape represents the principle division into two com-
munities

.

node v is randomly picked with probability β. The community ID
of v is then assigned to all of its neighbors in the chromosome. α
and β are algorithm parameters.

2.2.5 Update Function
As given by Han and Kim (2000) [3], qubits in Q(t) are updated

by applying quantum rotation gate,

U(4θi) =

(
cos(4θi) −sin(4θi)
sin(4θi) cos(4θi)

)
(3)

where, 4θi (Table 2), i = 1,2, . . . ,n is the rotation angle of the qubit
qi, towards the fitter state. xi is the ith gene of the classical chro-
mosome corresponding to the ith quantum gene being mutated. Bi
is the ith bit of the best solution (B) achieved so far. Let the xth

i and
Bth

i probability amplitudes in the quantum gene be txi and tBi re-
spectively. Then the updated probability amplitudes are calculated
as [t′xi

, t′Bi
]T = U(4θi) [txi , tBi ]

T . The magnitude of 4θi has an
effect on the speed of convergence, but for very large values, the
solutions may diverge or converge prematurely to a local optimum.

2.3 Modified rQIEA
The proposed modified rQIEA algorithm, called as rQIEAm (m

for mutation) according to terminology given by Zhang [12], fol-
lows the basic steps of the algorithm QIEAm.The quantum popula-
tion in rQIEAm is similar to that in bQIEA. But the classical pop-
ulation for the two differ in that rQIEA allows genes to take real
values. Following is the description of modified functions:
Quantum Population Initialization: For the quantum population
Q(t) = {qt

1,q
t
2, . . . ,q

t
pop}, qt

i (1) is initialized as at
i = 1/

√
2, bt

i =
1/
√

2, i = 1, . . . , n. pop being the population size.
Measure: Measure function is modified to suit the problem of com-
munity detection. For the ith qubit in the chromosome, given by
probability amplitudes [ai, bi]T , a random number r in the range
[0, 1] is generated. If r > 0.5, then the corresponding classical bit
is set to b(n−1) |b|2c else to b(n−1) |a|2c, n being the chromosome
size. Thus, a gene in the classical chromosome takes a value in
the range [1, n], denoting the community ID of the corresponding
node.
Mutation: A chromosome is selected for mutation with a probabil-
ity of mutRate, an algorithm parameter. The ith gene is selected for
mutation with probability 1/n [7]. The ith gene with value x is then
mutated to value n − x. The ith qubit in the corresponding quantum

Table 1: Lookup table for quantum rotation gate, applied to ith

qubit. Values for θ1, θ2 are given in Table 2

xi Bi f (x) ≥ f (B) 4θi
0 0 false 0
0 0 true θ2
0 1 false θ1
0 1 true θ2
1 0 false −θ1
1 0 true −θ2
1 1 false 0
1 1 true θ2

Figure 2: Partitioning structure for Dolphins social network
(NMI=1). Vertex color represents the division into four commu-
nities. Vertex shape represents the division into two communities

.

chromosome, given by probability amplitudes [ai, bi]T , is mutated
to probability amplitudes of [bi, ai]. The new community ID of the
ith gene in the classical chromosome is then propagated to all the
neighbors of the node and their corresponding quantum genes are
also mutated. The mutation is accepted if the mutated gene in P(t)
increases the network modularity.

3. EXPERIMENTAL RESULTS
We make use of MATLAB implementation of NSGA-II as in

[8]. The algorithms use the catastrophe operation to avoid prema-
ture convergence [10]. We have experimented on two most popular
benchmark real-world social networks: Zachary Karate Club Net-
work (Figure 1) [11] and Dolphins Network (Figure 2) [5].

3.1 Partition Similarity Metric
Normalized Mutual Information (NMI) is a popular measure of

partition similarity between a pair of partitions [1]. Given a known
partitions P1 (for benchmark datasets) and found partition P2 (found
by proposed algorithm), let N = (Ni j) be the confusion matrix where
the rows and columns correspond to the community structure in P1
and P2 respectively and Ni j is the number of nodes in the com-
munity i that appear in the community j. Then normalized mutual
information NMI(P1, P2) is defined as:

NMI(P1,P2) =
−2

∑c1
i = 1

∑c2
j = 1 Ni j log( Ni j n

Ni. N. j
)∑c1

i = 1 Ni. log( Ni.
n ) +

∑c2
j = 1 N. j log( N. j

n )
(4)

where c1 and c2 are the number of communities in P1 and P2 re-
spectively and n is the number of nodes in the network. NMI values
range between 0 and 1, 1 when P1 and P2 are exactly same.

1047



Table 2: Parameter Tuning- NC and NCl give the number of com-
munities in found and known partitions, Q and Ql give the modu-
larity of found and known partitions, Misclass. Nodes: Nodes in
the known partition that are misclassified in the found partition.

Data
set

Algo
rit

hm Ql NCl
Parameter Solution Q NMI NC

Misc
las

s.

θ1 θ2 α β mutR
ate

Nodes

Z
ac

ha
ry nu

mQIE
Am

.4188 4

.061 .0047 .36 .11 .36 .4198 .9233 4 10
.0074.0038 .52 .13 .13 .4188 1.0 4 none

k =
2

.083 .0045 .13 .46 .63 .4188 1.0 4 none

rQIEAm

.4188 4 .034 0 .51 .25 .78 .3975 .825 4 12

.36 2

.054 .0002.062 .3 .6 .36 1 2 none

.055 .0047 .43 .37 .025 .36 1 2 none

.035 .0038 .77 .2 .31 .36 1 2 none

.034 0 .51 .25 .079 .36 1 2 none

D
ol

ph
in

s

nu
mQIE

Am

.5191 4

.033 .0036 .36 .21 .8 .5268 .7830 4 4,9,40,
54,60,62

.51 .005 .31 .22 .033 .5191 1.0 4 none

k =
3

.0074.0038 .52 .13 .13 .5191 1.0 4 none

rQIEAm .5191 4 .028 .0027 .49 .41 .23 .5106 .7473 4 3,4,9,21,
40,51,63

.073 .0026 .6 .49 .91 .5147 .7731 4 4,9,21,37
,40,51,60

.03 .0028 .53 .4 .19 .506 .8643 6 13, 36,
40, 51

.072 .0026 .59 .49 .11 .5064 .8615 6 13, 40,
51, 61

3.2 Parameter Tuning
In evolutionary optimization, bilevel programming problems are

those in which an upper level solution is feasible only if it is one
of the optimum of a lower level optimization problem. The effi-
ciency of the algorithms proposed in this paper depend on the al-
gorithm parameters. The parameter tuning is an essential task that
can be posed as lower level optimization task in a bilevel optimiza-
tion framework. Community detection problem is then the upper
level optimization task and requires searching among the solutions
obtained from the lower level task to find an optimal solution cor-
responding to one or more different (higher level) objectives [2].
Thus, we model our task as an evolutionary bilevel optimization
problem where the lower level task tunes the algorithm parameters-
θ1, θ2, α, β, mutRate by using NSGA-II for multi-objective opti-
mization of network modularity and Normalized Mutual Informa-
tion (NMI) [1]. A good set of parameters will not only maximize
modularity but also maximize NMI for benchmark datasets. The
results obtained are shown in Table 2.

4. CONCLUSION AND FUTURE WORK
The paper presents novel variants of quantum-inspired genetic

algorithms and applies the techniques to the problem of detecting
communities in complex networks. The algorithms do not require
any decoding step at the end to realize the communities from the so-
lution chromosomes. Experiments on real life benchmark networks
show that the methods are able to successfully reveal community
structure with high modularity. We plan to study the scalability of
approach in future. The proposed QIEA variants may also be tested
on other combinatorial optimization problems. We also intend to
explore a parallel implementation with a view to reduce the com-
putation time as the quantum-inspired algorithms lend themselves
naturally to parallel computation.
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