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ABSTRACT 
Many-objective optimization problems are common in real-world 
applications, few evolutionary optimization methods, however, 
are suitable for them up to date due to their difficulties. We 
proposed a reference points-based evolutionary algorithm (RPEA) 
to solve many-objective optimization problems in this study. In 
RPEA, a series of reference points with good performances in 
convergence and distribution are generated according to the 
current population to guide the evolution. Furthermore, superior 
individuals are selected based on the assessment of each 
individual by calculating the distances between the reference 
points and the individual in the objective space. The algorithm 
was applied to four benchmark optimization problems and 
compared with NSGA-II and HypE. The results experimentally 
demonstrate that the algorithm is strengthened in obtaining Pareto 
optimal set with high performances.   

Categories and Subject Descriptors 
I.2.8 [Computing Methodologies]: Artificial Intelligence – 
Problem Solving, Control Methods, and Search 

Keywords 
Evolutionary Optimization; many-objective optimization; 
reference point; distance 

1. INTRODUCTION 
Various optimization problems with multiple objectives 

commonly exist in real-world applications. Their common 
characteristics are that they contain more than one objective and 
there exist some conflicts among these objectives, indicating that 
there is no solution which is optimal for all objectives. They are 
termed as multi-objective optimization problems (MOP). 
Problems with more than three objectives are defined as many-
objective optimization problems (MaOP). Without loss of 
generality, the MOP considered in this study is formulated as 
follows: 

( ) ( ) ( ) ( )( )1 2min , ,..., Mf f f=f x x x x   

. . ns t S∈ ⊂x R                                    (1) 
Where x represents an n-dimensional decision variable in space S. 

( ), 1,2,...,mf m M=x  is the m-th objective to be minimized, and 
M is the number of objectives. When M>3, this problem is a 
MaOP. 

Classical multi-objective evolutionary algorithms (MOEA), e.g., 
nondominated sorting genetic algorithm II (NSGA-II) [1], have 
been successfully applied to a large number of MOPs. But these 
Pareto-based algorithms noticeably deteriorate their search ability 
when solving MaOPs. One major reason is that the proportion of 
nondominated solutions in a population rises rapidly with the 
number of objectives. This makes the Pareto-based selection fail 
to distinguish individuals. Hence, seeking for new methods to 
effectively solve MaOPs is of considerable necessity. 

Reference points have been employed to guide the evolution in 
many situations. On account of the assessment of individuals by 
the distances between reference points and them, the selection 
pressure of superior individuals will not lose in many-objective 
optimization. Since existing reference points-based approaches 
usually adopt only one reference point to search solutions in 
objective sub-spaces of interest to the decision maker, intuitively, 
adopting a series of uniformly distributed reference points to 
obtain the whole Pareto front has the potential in solving MaOPs. 
Furthermore, the true Pareto front of a practical optimization 
problem is usually unknown, and continuously generating 
appropriate reference points for the problem is advantageous to 
achieve the solution set with perfect performance. 

In view this, RPEA was proposed in this study. During the 
evolution, a series of reference points with good performances in 
convergence and distribution are adaptively generated according 
to the current population. Then, based on the assessment of each 
individual by calculating the distances between the reference 
points and the individual, superior individuals are selected in the 
environment selection process. 

This study has the following contributions: (1) presenting an 
approach to generating reference points which are adaptive to 
optimization problems; (2) proposing a method of selecting 
superior individuals based on the distances between reference 
points and individuals; (3) validating the superiority of the 
proposed algorithm by optimizing four classical benchmark 
MaOPs. 

The remainder of this paper is organized as follows. Section 2 
reviews the related work. The proposed approach, RPEA, is 
presented in Section 3. Section 4 is the applications of RPEA in 
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several benchmark MaOPs and the comparative experiments. 
Finally, Section 5 concludes this paper and offers suggestions on 
possible opportunities for future research. 

2. RELATED WORK 
2.1 Reference Points-based Evolutionary 
Optimization 

Existing reference points-based approaches usually adopt only 
one reference point to represent the decision maker’s ideal 
solution. Wierzbicki [2] suggested a reference point approach in 
which the goal is to achieve a Pareto optimal solution closest to a 
supplied reference point of aspiration level based on solving an 
achievement scalarize problem. Deb et al. [3] adopted a predator-
prey approach to find a preferred set of solutions near the 
reference point in parallel. Mohammadi et al. [4] combined 
decomposition strategies with reference point approaches to 
search for preferred regions.  

Up to date, there is little research on achieving the whole Pareto 
optimal solution set by employing multiple reference points. 
Figueira et al. [5] generated reference points by estimating the 
bounds of the Pareto front and searched solutions near each 
reference point in parallel. Deb et al. [6] adopted a family of well-
distributed direction vectors to generate reference points, which 
makes a difference to the distribution of the solution set. Wang et 
al. [7] proposed a co-evolution method to simultaneously 
optimize solutions and reference points, but the fitness value of an 
individual is also calculated by the traditional Pareto dominance. 

In the approach proposed in this study, reference points are 
suitable for different problems by continuously generating 
reference points based on the current population; the selection 
pressure in many-objective optimization is improved by 
calculating the distances between these reference points and 
individuals. 

3. PROPOSED METHOD 
The general ideas of RPEA are as follows. First, a series of 

reference points with good performances in convergence and 
distribution are generated according to the current population. 
Then, each individual in the current population and the temporary 
population generated by the former is assessed by calculating the 
distances between the reference points and the individual, and the 
new population is formed by selecting superior individuals. 

3.1 Generation of Reference Point 
In this section, the concept of reference point was first 

presented; a method of generating reference points with good 
performances in convergence and distribution was then proposed. 

3.1.1 Concept of Reference Point 
Loosely, the reference point is a point in the objective space 

that guides the evolution. There are two types of reference points, 
i.e., ideal point and nadir point. 

For a point in the objective space, if its value(s) is (are) not 
inferior to that (those) of a part of the known solutions, it is 
termed as a local ideal point. For instance, when solving the 
problem represented as formula (1) with a MOEA, 

( )1 2, ,...,l l l l
Mr r r=r  is a local ideal point, when 

 ( )min , 1,2,...,
l

l
m P m mr f e m M∈= + =x x                    (2)  

where lP  is a subset of the current (t-th generation) population 
( )P t . 0orme ε= − , and ε is an arbitrarily small positive. In 

particular, the local ideal point 
( ) ( ) ( )( )1 ,..., ,...,l

m Mf f fε= −r x x x                       (3) 
must be superior to solution x. 

For a point in the objective space, if its value(s) is (are) not 
inferior to that (those) of all the known solutions, it is termed as a 
global ideal point. If 

( )min , 1,2,...,g
m Pg m mr f e m M∈= + =x x                   (4) 

where gP  is equal to ( )P t , ( )1 2, ,...,g g g g
Mr r r=r  is a global ideal 

point. 
Similarly, a local nadir point and a global nadir point can also 

be defined. It is worth nothing that a local ideal point can become 
a local nadir point, and vice versa. A reference point may be a 
local ideal point for some solutions; however, it may be a local 
nadir point for other more optimal solutions, and vice versa. 

3.1.2 Generation of Reference Points 
If only one (local) ideal point is adopted to guide the evolution, 

it is difficult to obtain the whole Pareto front of a problem. But 
adopting a series of local ideal points instead, the whole Pareto 
front can be easily obtained. 

While solving a problem with a MOEA, it is easy to seek for a 
new solution superior to the known solution in one objective. 
Nonetheless, it is hard to seek for a superior solution in several 
objectives. Therefore, a local ideal point superior in only one 
objective is beneficial to select solutions with good performance, 
and a local ideal point superior to only one solution is also helpful, 
compared to that superior to several solutions. To this end, 
formula (3) was adopted to generate reference points in this study. 

The population size is supposed to be pN . From formula (3), 

there exist pMN possible reference points with better performance 
in convergence than the current population. However, they may 
not have good performance in distribution. On account of this, a 
method with low computation complexity for generating well 
diversified reference points was proposed in this section. The 
detailed procedure is described in algorithm1. 

Algorithm1. Generation of reference points 
1: ( )R t∑ =∅  

2: for 1,2,...,m M= do 
3: Sort the individuals in ( )P t  based on the crowding distances 
[1] in the m-th dimensional objective space, and select 

( )1r

p

N
p MNNα α  ≤ ≤   well-distributed individuals. Let me ε= − , 

according to formula (3), generate reference points based on the 
selected individuals, and form set ( )mR t ; 

4: ( ) ( ) ( )mR t R t R t∑ ∑= ∪  
5: end for 
6: Select rN  reference points from ( )R t∑  based on the crowding 
distances in the M-dimensional objective space, and form set 

( )sR t  

When r

p

N
MNα = , the aforementioned method has the lowest 

computation complexity, represented as ( )O logp pMN N . In such 

scenarios, the reference points are well-distributed, and the 
computation complexity is substantially reduced. 
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3.2 Selection of Individuals 
In this section, the method of selecting superior individuals was 

given based on the assessment of each individual by calculating 
the distances between the reference points and it. 

In [3], a superior individual is regarded as the one close to the 
reference point. It is appropriate when the reference point is a 
local ideal point. However, for other more optimal individuals, the 
reference point could be a nadir point, and the closer these 
individuals are to the reference point, the worse performance they 
have. Therefore, when a reference point is employed to select 
individuals, it should be judged whether it is a local nadir point or 
not. A new method of assessing individuals was proposed in this 
section, which is described as follows. 

The temporary population generated by the current 
population ( )P t  is denoted as ( )Q t , and the population 

constituted by ( )P t  and ( )Q t  is denoted as ( )'P t . The p-th 

individual in ( )'P t  is denoted as , 1,2,..., 'p p P=x , where 'P  

represents the number of individuals in ( )'P t . The q-th reference 

point in ( )sR t  is denoted as , 1,2,...,q rq N=r . Then the distance 

between px  and qr  can be formulated as 

( ) ( )( )2

1
, M

p q qm m pm
d r fθ

=
= −∑x r x                     (5) 

where 

( )1, 1,2,..., ,

1, other conditions
m p qmm M f r

θ
− ∀ = ≤= 


x
                    (6) 

Formulas (5) and (6) tell that, if qr  is a local nadir point with 

respect to px , ( ),p qd x r  represents the opposite Euclidean 

distance between them; otherwise, ( ),p qd x r  represents the 

Euclidean distance between them. For qr , the individual with 
good performance can be obtained by seeking for the one with the 
smallest ( ), , 1,2,..., 'p qd p P=x r .  

The method of selecting individuals is showed in algorithm2. 

Algorithm2. Selection of individuals 
1: ( )1P t + =∅  

2: For ( )' , 1,2,..., 'p P t p P∀ ∈ =x  and ( ), 1,2,...,q s rR t q N∀ ∈ =r , 

calculate ( ),p qd x r  according to formula (5), and form set 

( ){ }, 1,2,..., ' , 1,2,...,p q rD d p P q N= = =x r  

3: for 1,2,..., pi N=  do 

4: Seek for the individual with the smallest ( )min min
,p qd x r  in D  

5: ( ) ( ) { }min
1 1 pP t P t+ = + ∪ x  

6: Delete ( )min
, , 1,2,..., 'p qd p P=x r  and ( )min

, , 1,2,...,p q rd q N=x r  

from D 
5: end for 

As can be observed from the aforementioned analysis, the new 
population generated in this way has better performances in 
convergence and distribution than the old. As a result, the Pareto 
optimal set of the problem can be obtained along with the 
population’s evolution. 

3.3 Steps of Proposed Algorithm 
Combining Section 3.1 with Section 3.2, the steps of RPEA are 

described as follows: 

Algorithm3. RPEA 
1: Set the values of the control parameters, let 0t = , and initialize 
the population ( )P t  
2: while the termination criterion is not met do 
3: According to algorithm1, generate a series of reference points, 
denoted as ( )sR t , based on ( )P t  

4: Perform genetic operators on ( )P t  so as to generate a 

temporary population ( )Q t  with the same size as ( )P t , and 

let ( ) ( ) ( )'P t P t Q t= ∪  

5: According to algorithm2, form ( )1P t +  by selecting pN  

individuals from ( )'P t , based on ( )sR t  

6: 1t t= +  
7: end 
8: Output the optimal solutions 

4. EXPERIMENTS 
In this section, the performances of RPEA were investigated 

by comparing it with the other two state-of-the-art MOEAs, 
NSGA-II [1] and HypE [8]. NSGA-II is a very popular MOEA 
which adopts the traditional Pareto domination to select 
individuals. HypE is an indicator-based algorithm which 
employs a Monte Carlo simulation to approximate the exact 
hypervolume value, and enables the hypervolume-based search 
to be easily applied to many-objective optimization. These three 
methods were applied to solve the following four benchmark 
optimization problems, i.e., DTLZ1, DTLZ2, DTLZ3, and 
DTLZ5 [9], and metric IGD [10] were adopted to compare them.  

4.1 Parameter Settings 
The following parameter settings were adopted by all these 

methods. The population size was 100 and the size of tournament 
selection was chosen as 2. The operators for crossover and 
mutation were simulated binary crossover and polynomial 
mutation with distribution indexes 20 and 10. The crossover and 
mutation probabilities were 1.0 and 1

n , repectively. The 
termination criterion was that the number of evaluations reaches 
to the predefined one. For DTLZ1 and DTLZ3, it was set 100 000, 
and for DTLZ2 and DTLZ5, 30 000. 

In RPEA, a large value of α can improve the distribution of 
reference points, but the time consumption could be very high. A 
large value of ε is beneficial to improve the efficiency of the 
evolution, while a small value of ε can diversify the solution set. 
Basing on our previous experiments, it was appropriate to set α 
and ε as 0.5 and 0.01, respectively. In HypE, the number of 
sampling points to estimate hypervolume was set 10 000. 

Each algorithm run 30 times on each optimization problem, and 
the mean values and variances of IGD were calculated. In addition, 
Mann-Whitney U distribution test was employed to determine 
whether the metrics obtained by one algorithm has significant 
differences with those obtained by the other. Finally, the null 
hypothesis was rejected at a significant level of 0.05. 

4.2 Results and Analysis 
Table 1 shows metric IGD obtained by different methods, 

where ‘obj’ represents the number of objectives contained in an 
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optimization problem, the boldface data are the best among these 
methods, and those labeled by ‘†‘ mean data significantly 
different from RPEA’s. 

Table 1. Metric IGD of different methods 

Problem Obj NSGA-II HypE RPEA 
DTLZ1 6 4.784E+1 

(2.5E+1)† 
1.616E+0 
(1.0E+0)† 

3.321E-1 
(9.4E-2) 

9 5.652E+1 
(4.2E+1)† 

1.777E+0 
(8.4E-1)† 

5.719E-1 
(2.9E-1) 

12 7.818E+1 
(5.0E+1)† 

2.522E+0 
(9.7E-1)† 

1.363E+0 
(7.1E-1) 

DTLZ2 6 1.722E+0 
(1.9E-1)† 

5.340E-1 
(5.4E-2)† 

3.176E-1 
(1.3E-2) 

9 2.071E+0 
(1.4E-1)† 

6.967E-1 
(4.2E-2)† 

5.461E-1 
(1.7E-2) 

12 2.139E+0 
(2.0E-1)† 

8.508E-1 
(6.0E-2)† 

6.964E-1 
(3.1E-2) 

DTLZ3 6 1.207E+2 
(5.7E+1)† 

3.259E+0 
(3.0E+0) 

3.312E+0 
(2.1E+0) 

9 1.343E+2 
(7.3E+1)† 

3.439E+0 
(2.4E+0)† 

4.953E+0 
(2.2E+0) 

12 1.405E+2 
(8.6E+1)† 

3.874E+0 
(1.8E+0)† 

6.874E+0 
(2.9E+0) 

DTLZ5 6 1.461E-1 
(3.2E-2)† 

1.565E-1 
(7.4E-2)† 

1.043E-1 
(4.5E-2) 

9 4.711E-1 
(3.0E-1)† 

1.980E-1 
(7.7E-2)† 

1.495E-1 
(4.3E-2) 

12 9.118E-1 
(2.6E-1)† 

2.096E-1 
(9.9E-2)† 

1.774E-1 
(5.1E-2) 

 

Based on table 1, (1) when tackling DTLZ1, DTLZ2, and 
DTLZ5, RPEA has a significantly smaller value of IGD than the 
other two, therefore has the best performances in convergence and 
distribution, which validates that the proposed method is very 
competitive in solving MaOPs; (2) when tackling DTLZ3, RPEA 
is significantly superior to NSGA-II, but inferior to HypE. The 
possible reason is that the objective functions have a large range 
and the individuals close to the boundary have poor performances. 
By using the reference points generated by these individuals, new 
superior individuals can hardly be selected in such limited areas. 
As a result, the population is difficult to evolve. This drawback 
could potentially be overcome by introducing a new approach to 
updating the individuals close to the boundary, which will be 
investigated in future work. 

5. CONCLUSIONS 
This paper exploited the potential of the reference points in 

handling MaOPs. The proposed method, RPEA, can mainly be 
characterized as: (1) adaptively generating a series of reference 
points with good convergence and distribution based on the 
evolution of a population; (2) greatly increasing the selection 
pressure toward the true Pareto front by calculating the distances 
between the reference points and the individuals in the 
environment selection process. 

The propose method was applied to four benchmark MaOPs, 
and compared with the other two method to evaluate its 
performance. The results reveal that RPEA is very competitive to 
the others in terms of seeking for a solution set with good 
approximation and distribution in many-objective optimization. 
The results show that RPEA can achieve a good tradeoff among 
the convergence and the diversity under a proper setting. 

It is worth mentioning that RPEA has been applied only to 
optimization problems with numerical objectives. Its effectiveness 

in other optimization problems, especially in engineering 
optimization, should further be confirmed. In addition, RPEA 
adopts a key parameter, ε, which will affect its performance. If 
appropriate methods are employed to adaptively adjust the value 
of ε during the evolution, the performance of RPEA will further 
be improved, which is also our further research work. 
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