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ABSTRACT
This research is devoted analysis of convergence in particle
swarm where each of the particles can represent different
dynamic behaviour in search space.
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1. INTRODUCTION
Particle swarm is one of heuristic optimization approaches

being a subject of great interest. This is a population-based
method proposed by Kennedy and Eberhart in 1995 [2] where
members of population, called particles, represent a sample
of solutions of a given problem. A set of all possible solu-
tions, called search space, is a subject of exploration by the
algorithm. With use of the population, the algorithm sam-
ples the space. During this process the particles exchange
information with each other like, for example, a swarm of
bees or school of fishes. This way they coordinate their
movement through the space searching for more promising
regions. The quality of the points in the search space is de-
fined by the evaluation function. The swarm is searching for
the best point in the space, that is, for the optimum (max-
imum or minimum) of the evaluation function. Thus, the
swarm can be called a heuristic optimization algorithm.

A simple scheme of the particle swarm optimization al-
gorithm is given in Algorhitm 1. A particle yi represents
the best solution found by the i-th particle (called particle
attractor), and a particle y∗ – the best solution found by
the swarm (called swarm attractor).

Numerous implementations are based on the particle pa-
rameters values presented by Clerc and Kennedy [1]. This

http://dx.doi.org/10.1145/2598394.2605682.

Algorithm 1 the particle swarm optimization

1: Create and initialize the swarm: x1, . . . ,xN

2: repeat
3: for i = 1 to N do
4: if f(xi) > f(yi) then
5: yi = xi

6: end if
7: if f(yi) > f(y∗) then
8: y∗ = yi

9: end if
10: end for
11: update location and velocity of all the particles
12: until stop condition is satisfied

method of balancing global and local searches known as con-
striction defines the particle speed equation as follows:

vt+1
j = w[vtj + c1 · rt1 · (ytj − xt

j) + c2 · rt2 · (y∗tj − xt
j)] ,

(1)
where:
vtj — particle’s velocity,
xt
j — particle’s location,

yt
j — the best solution the particle xt has found so far,

y∗t
j — the best value obtained so far by any particle in the

neighborhood of xt.
r1, r2 — random values: U(0, 1)
c1 = c2 = c as proposed by Clerc and Kennedy [1]

The value of w is derived from the existing constants in
the velocity update equation:

w =
2 · κ

|2− ϕ−√ϕ2 − 4ϕ| where ϕ = c1 + c2 (2)

The factor κ controls balance between exploration and ex-
ploitation:

1. κ ≈ 0: fast convergence, local exploitation,

2. κ ≈ 1: slow convergence, high degree of exploration.

For w > 4 and κ ∈ [0, 1] the swarm convergence would be
quick and guaranteed. So, using the constant ϕ = 4.1 to
ensure convergence, Clerc and Kennedy proposed the values
c = 2.05 and w = 0.729843788.

In our paper we study features of particles defined with
different values of parameters c and w and propose a new,
nonuniform configuration of particle parameters in the swarm.
Presented results of experimental tests show that for some
classes of problems this configuration is more efficient, that
is, less computational cost is needed to find points located
in a very close boundary of the global optimum.
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Figure 1: Convergence of particles of type: A, B, C, and D (from left to right).

2. THE SELECTED MODEL OF PARTICLE
MOVEMENT

In our research a model of particle movement proposed
in [1, 4] is investigated:

yt+1 = Ayt +Bp (3)

where:

A =

[
1− c w
−c w

]
yk =

[
xk

vk

]
B =

[
c
c

]
(4)

The model is equivalent of the model proposed by Shi and
Eberhart [3] with the inertia weight factor. In [1, 4] authors
convert the equations into the form applied in the theory
of linear, discrete-time dynamic systems. This way parti-
cles with different movement characteristics can be identi-
fied easily, that is convergent particles, or particles with har-
monic oscillatory behaviour or with zigzagging behaviour.

3. PARTICLE BEHAVIOR TYPES
Four types of particles are considered in our research.

Their characteristics are depicted in Figure 1.
The safe configuration proposed in [1] represents uniform

swarm which consists of particles of the same type. In our re-
search we give careful consideration to the swarms assembled
of some numbers of representatives for all the four types.

The most efficient configurations of particle types within
a swarm are searched experimentally. The results of experi-
ments for three types of test cases are presented in the next
section.

4. BENCHMARKS
Three test-cases are selected for the research:

• a unimodal function defined with a formula same as
1-dimensional Gaussian probability density function:

f(x) = 1/(
√
2πσ2) exp(

(x− μ)2

2σ2
) (5)

with a mean μ and a standard deviation σ,

• a multimodal function build of two neighbouring hills
(two Gaussian p.d.f.),

• the Ackley function:

f(x) = −20 exp

(
−0.2

√
1
n

n∑
i=1

x2
i

)
−

exp

(
1
n

n∑
i=1

cos(2πxi)

)
+ 20 + e

(6)

5. METHODOLOGY OF EXPERIMENTAL
RESEARCH

5.1 Test-cases and evaluation measures
Two groups of experiments were performed:

1. with uni- and duo-modal function in one-dimensional
search space,

2. with the Ackley function in two and five-dimensional
search space.

For the evaluation of the results: for selected test-case and
for a series of 100 executions of particle swarm optimization
algorithm the mean values of numbers of execution of eval-
uation function to converge. The convergence is defined as
finding a solution located in euclidean distance not greater
than 10−3 from the optimum. The maximum number of it-
erations to converge is set to 1000. In the case of exceeding
this limit the result is set to the upper boundary, that is,
1000.

5.2 Tested swarm configurations
A single swarm might consist of four types of particles,

identified as A,B,C, and D.
In the first group of experiments the swarms consisted of:

1, 2, 3, and 5 particles of any type. For swarms of size 1
and 2 all the possible sets of particles were tested. In the
remaining two just the selected configurations were applied.
All the cases, that is, 1, 2, 3, and 5 particles, were also
tested with swarms consisting of standard particles, that is,
having the parameters of velocity formula defined as advised
in [1]. It is worth noting that the behaviour of the standard
particles is of type A, however, the proposed configuration of
particles of type A has slightly different values of parameters.

In the second group of experiments the swarm configu-
rations originated from the output of a genetic algorithm
(GA). First, GA searched for the most promising sets of
particles where the chromosome represented the entire sin-
gle swarm of a given size. The chromosomes sizes: from 1 to
20 with step 1 for 2-dimensional search space and from 30
to 50 with step 5 and also for a size of 100 for 5-dimensional
search space. The value of a chromosome is defined as the
mean value of numbers of iterations to converge for a series
of 100 executions. The population consisted of 100 chro-
mosomes. Every time, a single GA execution consisted of
15 iterations. For each of the chromosome sizes GA was
executed 20 times for 5D search space and 50 times for 2D.

Then the obtained best chromosomes, that is, the best
configurations of swarms were subject of more detailed anal-
ysis. For each of the test-cases from the series of 20 (for 5D)
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Table 1: Convergence for single particles of the four
types and two types of fitness landscape

landscape\type A B C D

Unimodal 23.84 39.88 24.91 67.47
Duomodal 24.37 37.12 31.72 80.33

Table 2: Convergence for swarms of size two and
unimodal fitness landscape

type\type A B C D

A 257.0 566.46 501.34 598.7
B 1808.32 1201.46 1728.88
C 514.04 1116.72
D 1291.42

or 50 (for 2D) outputs (that is, the best chromosomes in the
final population) the best among them was selected. For
the obtained chromosome the number of particles for each
of the four types is counted. The histogram with the counted
numbers is the final result of experiment for a given swarm
size.

6. RESULTS OF EXPERIMENTS

6.1 First group of experiments
Experiments from the first group are presented in Ta-

bles 1, 2, 3, 4 and 5.
Tables 1, 2 and 3 show the convergence for swarms con-

sisting of one and two particles. Particles of type A give
the best convergence, however, for the duo-modal landscape
and two particle-swarm the winner configuration are ex ae-
quo AA and AC. Dominance of A type which is the same
type as proposed in [1] is evident.

For the swarms of size 3 and 5 and the unimodal land-
scape the highest convergence can be obtained with mix of
A, C and D type, however, the second best results is without
C, which means that the role of C particle is very similar to
A. This can be observed also in Table 3 where the winning
configuration also contains particle of type C. For the re-
maining cases (see Table 4) the common observation is that
A particles should be the majority of a swarm, but for bet-
ter results a small fraction of C particles should appear. For
the swarm of size 5 in both cases there is also a particle of
type B.

Table 5 shows the convergence of the swarms of size 1, 2,
3 and 5 which are build of standard particles. The standard
swarm convergence is worse for all the cases except from the
swarm of size 5 where the convergence of standard swarm
significantly outperforms nonuniform swarms.

Table 3: Convergence for swarms of size two and
duomodal fitness landscape

type\type A B C D

A 636.52 908.12 635.0 740.16
B 1927.12 1411.52 1871.36
C 1012.56 1277.78
D 1658.94

Table 5: Convergence for four swarm sizes with stan-
dard particles

landscape\size 1 2 3 5

Unimodal 43.49 639.3 342.69 166.25
Duomodal 42.49 927.72 821.61 439.1

Table 6: Configurations of swarms: numbers of par-
ticles of a given type for the types A, B, C, and D for
different swarm sizes in 2-dimensional search space

size\type A B C D convergence

2 2 0 0 0 1325
3 3 0 0 0 916.5
4 3 0 1 0 510.8
5 3 0 1 1 526,5
6 0 0 6 0 243
7 2 0 5 0 233.8
8 2 0 6 0 264.0
9 6 1 2 0 248.4

10 4 0 6 0 268.0
11 3 2 5 1 288.2
12 3 1 7 1 254.4
13 6 1 4 2 257.4
14 4 1 7 2 312.2
15 3 2 9 1 285.0
16 5 2 8 1 286.4
17 6 1 8 2 294.1
18 4 5 9 0 306.0
19 4 3 11 1 321.1
20 5 5 10 0 300.0

6.2 Second group of experiments
Experiments from the second group with the Ackley func-

tion are presented in Tables 6, 7 and 8.
Table 6 shows the best configurations and convergence

levels for swarms of size from two to 20 found by GA for the
Ackley function defined in 2-dimensional search space. One
can see, that there is a significant rise of the number of A
particles as the swarm size grows. The proportion between
the types of particles for the very small swarm sizes shows
the dominance of particle A. For larger swarm sizes the num-
ber of particles A remains constant whereas the number of
particles C grows. In both cases the numbers of particles B
and D stay low.

Table 7 shows the best swarm configurations and conver-
gence levels obtained as previously but for the 5-dimensional
search space and swarm sizes from 20 to 50 with step 5. As
in the case of two-dimensional search space the numbers of
particles A and C are higher than the numbers of particles
B and D.

The results for the final part of experiments is presented
in Table 8. Based on the observation obtained so far, the
structure of swarms applied in these experiments was: 3
parts of particles A and 2 parts of particles C and with no
particles B and D regardless of the search space dimension-
ality (briefly 3A2C-swarm). In particular, for the swarm of
size 20 there are 12 A particles and 8 C particles, and for the
swarm of size 50 there are 30 A particles and 20 C particles
and so on. The obtained number is a mean of numbers of
evaluation function executions in 100 runs of particle swarm
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Table 4: Convergence for 10 best swarms of size 3 and 5 for uni- and duomodal fitness landscape
three particles five particles

rank\landscape Unimodal Duomodal Unimodal Duomodal

The best – 1 354.42- ACD 365.88 - AAC 504.75 - AAABC 560.65 - AAABC
2 357.12 - AAD 527.43 - AAB 506.05 - ABCCD 575.55 - ABBCC
3 362.07 - CCC 547.23 - ACD 507.3 - AABCD 590.08 - AACCD
4 416.79 - AAA 548.85 - ACC 508.15 - AAACD 597.7 - AAAAC
5 432.27 - ABB 597.6 - ABC 509.95 - AAADD 617.7 - ACCCD
6 432.93 - ABD 668.94 - AAD 515.3 - AAAAB 642.7 - AABBC
7 456.15 - CCD 734.64 - AAA 515.6 - ACCCD 643.7 - AAACD
8 480.45 - ADD 824.91 - ABD 517.2 - AADDD 646.15 - AABCD
9 511.83 - BCC 837.18 - BCC 526.8 - ACCCC 696.15 - ACCCC

10 789.99 - BCD 873.78 - CCD 528.65 - AAAAD 704.35 - AAACC

Table 8: No. of evaluation function executions of swarms (mean value, the std. deviation and Student’s t-test
value) with the best configurations compared with the convergence of standard swarms

two dimensional search space five dimensional search space
size\conf. 3A2C Std t-test 3A2C Std t-test

20 701.36 ±38.86 818.66 ±273.26 6,68246E-07 13280.24±821.02 12545.98 ±847.16 0.20790
25 825.625 ±47.2 937.725 ±70.469 5,80947E-32 12829.225±1213.75 11982.325 ±1121.55 0.06603
30 967.53 ±285.3 1087.56 ±46.77 4,92E-05 13103.73±1223.04 11758.74 ±1120.89 0.00759
35 1049.265 ±55.615 1235.885 ±58.205 0,000369 13486.48±1503.88 12071.29 ±1484.91 0.37055
40 1172.8 ±52.84 1371.12 ±72.36 2,24579E-36 13498.92±1639.56 12519.36 ±1819.28 0.21277
45 1270.8 ±57.105 1511.955 ±62.46 9,66967E-49 13962.69±1877.04 13026.96 ±2008.755 0.08600
50 1375.35 ±57.05 1651.1 ±69.4 6,22448E-48 14622.35±2063.2 13228.50 ±1874.05 0.01534

Table 7: Configurations of swarms: numbers of par-
ticles of a given type for the types A, B, C, and D for
different swarm sizes in 5-dimensional search space

size\type A B C D convergence

20 5 5 9 1 11326.0
25 8 3 9 5 21159.0
30 7 5 9 9 11787.0
35 11 6 10 8 9943.5
40 13 3 17 7 5460.0
45 14 10 15 6 8347.5
50 15 5 17 13 6855.0

optimization algorithm until solution is located in euclidean
distance not greater than 10−3 from the optimum. This is
compared with the same mean for the uniform swarm con-
sisting only of standard particles. In addition there is also
standard deviation for the given mean.

For the two-dimensional search space in every case the
3A2C-swarm outperforms the uniform one.

For the five-dimensional search space mean values for the
uniform swarm has a slight advantage over the values for
the 3A2C-swarm. However, due to large values of standard
deviations we decided to do additional statistical tests. Stu-
dent’s t-test for the compared convergence means revealed
lack of statistical difference for 5 out of 7 swarm sizes selected
for experiments. Therefore, assuming normal distribution of
the results we may say that for 5-dimensional search space
the two swarm types offer similar efficiency of the algorithm.

7. CONCLUSIONS
This paper demonstrates the performance of nonuniform

swarms, consisting of 4 types of particles, compared to uni-
form consisting only of standard particles.

We tested nonuniform swarms configurations in order to
find the fastest converging one. Aforementioned experi-
ments show clearly that nonuniform swarms can be opti-
mized to perform similar or even better than uniform swarms
consisting solely of particles proposed in [1].

Additional research can be conducted to test other values
for parameters w and c as well as other swarms’ compositions
in order to improve convergence.

8. REFERENCES
[1] M. Clerc and J. Kennedy. The particle

swarm-explosion, stability, and convergence in a
multidimensional complex space. IEEE Transactions on
Evolutionary Computation, 6(1):58–73, 2002.

[2] J. Kennedy and R. C. Eberhart. Particle swarm
optimization. In Proc. of the IEEE Int. Conf. on
Neural Networks, pages 1942–1948, Piscataway, NJ,
1995. IEEE Service Center.

[3] Y. Shi and R. C. Eberhart. A modified particle swarm
optimizer. In Proceedings of the IEEE Congress on
Evolutionary Computation 1998, pages 69–73. IEEE
Press, 1998.

[4] I. C. Trelea. The particle swarm optimization
algorithm: convergence analysis and parameter
selection. Information Processing Letters, 85(6):317 –
325, 2003.

1060




