
Flood Evolution: Changing the Evolutionary Substrate
from a Path of Stepping Stones to a Field of Rocks

David Shorten
University of Cape Town

Private Bag X3
Rondebosch 7701

dshorten@cs.uct.ac.za

Geoff Nitschke
University of Cape Town

Private Bag X3
Rondebosch 7701

gnitschke@cs.uct.ac.za

ABSTRACT

We present ongoing research that is an extension of novelty
search, flood evolution. This technique aims to improve evo-
lutionary algorithms by presenting them with large sets of
problems, as opposed to individual ones. If the older ap-
proach of incremental evolution were analogous to moving
over a path of stepping stones, then this approach is similar
to navigating a rocky field. The method is discussed and
preliminary results are presented.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning

General Terms

Algorithms

Keywords

Novelty Search

1. INTRODUCTION
This is a position paper detailing a current research topic

and results of a case study are discussed. This topic is flood
evolution, an extension to novelty search.
Assume one is trying to navigate across a field, from point

A to pointB, by only setting foot on rocks. If one is traveling
along a path of stepping stones, one’s journey will be termi-
nated if the gap between any two stones is too large to be
crossed. However, if one is moving across a field strewn with
rocks and boulders, then in the instance that one reaches a
rock from which no unvisited rocks are within the range of
a single jump, one can backtrack and attempt to find an
alternate route to the desired point.
There exists very little knowledge concerning what deter-

mines the difficulty, from the perspective of evolution, of
jumping from one stone to another. This paper argues that,
given this, it is beneficial for Evolutionary Algorithms (EAs)
to be presented with a large field of stones through which
they can determine their own path.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2881-4/14/07$15.00.

http://dx.doi.org/10.1145/2598394.2605675.

It is necessary to point out that the usage of the stepping
stone metaphor in this paper is subtly different to that in
important related literature (eg: [4, 10]). In that context
it is referring to an intermediate phenotype which allows
for the evolution of a more complicated one. However, here
it is referring to the act of providing an incentive towards
the development of such a phenotype. Although intermedi-
ate phenotypes can emerge for reasons other than selective
pressure [13], rewarding a phenotype requires a definition
of it. Thus, the reward of a phenotype and the phenotype
itself are two inextricably linked concepts. It is for this rea-
son that it is justifiable to use the stepping stone metaphor
in this different, but closely related, context. However, to
avoid confusion, this concept shall be referred to as a step-
ping stone incentive for the rest of this paper.

2. THE GRAPH OF PROBLEMS
A good way of making the field of rocks metaphor more

precise is to employ the mathematical abstraction of a graph.
A stepping stone incentive can be viewed as a synonym
for a problem which is presented to an EA. Flood evolu-
tion presents EAs with sets of problems. A set of problems,
Π, can be represented as a graph G = (E, V). Each prob-
lem P ∈ Π can have an associated node p ∈ V . Given
P,Q ∈ Π and their corresponding nodes p, q ∈ V , then the
edge (p, q) ∈ E can be defined as existing if and only if, for a
given a population of solutions γ, which contains a solution
to P , it is easy to evolve a solution to Q using γ as the ini-
tial population. This definition of an edge is analogous to an
evolutionary jump between stones. It is, however, imprecise,
due to the stochastic nature of EAs [5].

A given graph representing a set of problems may have
connected subgraphs. Assume one wants a solution to the
problem B. Assume also that one has a set of problems
Π and that B ∈ Π. Further assume that Π is constructed
such that it is feasible to randomly instantiate a population
of solutions γ such that γ contains a solution to a problem
in Π. This problem can be labeled A, and in the graph
representation of Π, the nodes representing A and B can
be labeled a and b, respectively. If a and b are part of the
same connected subgraph then one could apply an evolution-
ary algorithm which continuously attempts to jump from all
solved problems to all others. This algorithm is guaranteed
to find the solution to b and is an application of flood fill [8].
This approach shall be referred to as flood evolution.

It is intuitively likely that, the larger a given problem set,
the more edges each node in the associated graph will have.
Moreover, increasing the size of the problem set should in-
crease the probability that a randomly instantiated popu-

1061

lation solves a problem within it. From this it follows that
increasing the size of a problem set increases the chance that
a randomly instantiated population will be able to evolve a
solution to a desired problem within it.
It is necessary to clarify what exactly is meant by two dif-

ferent problems. In this context, two problems are consid-
ered different unless they are identical in every way. So, for
instance, two pole balancing problems [7] would be consid-
ered different if they had slightly different initial conditions.

3. BACKGROUND
Current theories in Biology state that the evolution of

complicated features requires many incremental stepping stones
[4, 3]. Moreover, the evidence for this viewpoint is over-
whelming [12]. Although we have some understanding of
the stepping stones which led to complicated life on Earth,
our knowledge of them is sparse [18, 2].
There exists much exploration of the use of sequential, lin-

ear, stepping stone incentives in the EA literature [6, 15, 16,
17, 20]. This approach has often been termed incremental
evolution. It has been shown that this approach allows cer-
tain EAs to solve problems which they would have otherwise
been unable to.
The ideas presented here are largely inspired by the nov-

elty search of Lehman and Stanley [10]. The authors view
the work described in this paper as an extension of the ideas
contained therein. In this paradigm the authors replace the
more traditional fitness function, which rewards solutions
based on how close they are to a single goal, with one which
rewards solutions based on how novel they are. The conse-
quence of this is that there is an evolutionary incentive for
solving many problems closely related to the target problem.
Novelty search has been demonstrated to be a powerful

method [10, 11, 14]. This paper proposes that a reason for
this success is that it is closer to the rocky field metaphor.
More specifically, it has two key differences from the older
approach of incremental evolution:

1. There is a larger variety of intermediate problems.
2. The path through these intermediate problems is un-

specified; evolution is allowed to figure out its own
path.

The authors interpret the success of novelty search as ev-
idence towards the plausibility of flood evolution being a
useful technique.
Similar ideas to what is being proposed here have been

explored within the framework of artificial life. Lenski et
al [12] ran simulations which rewarded genomic programs
for executing one of nine logical operations. The reward re-
ceived for executing them was proportional to the complex-
ity of the operation. They were able to demonstrate that
the evolution of complex operations requires simpler opera-
tions as intermediate goals. Arthur and Polak demonstrated
a similar result with regards to the evolution of technology
[1]. These results are interpreted as further evidence for the
utility of providing evolution with a non-linear substrate of
incentives.

4. FLOOD EVOLUTION
Similar to novelty search, flood evolution is an augment-

ing technique which can be applied to a given evolutionary
algorithm.
At the start of evolution, a population of candidate solu-

tions must be initialized. At the same time, a set of problems

must also be instantiated (see section 5 for further discus-
sion). Each individual candidate solution is always evalu-
ated on all the problems in the in the problem set. A solution
receives fitness for each problem which it solves. However,
in order to provide an incentive for unsolved problems in
the set to be solved, fitness sharing is implemented. In the
present preliminary experiments, a solution receives fitness
β/n2, where β is a constant and n is the number of solutions
which solve that particular problem. A solution’s total fit-
ness is the sum of all the fitness it receives from all the
problems which it solves. The manner in which the authors
foresee this strategy running is displayed in figure 1. These
predictions are already partially confirmed (see section 6).

PROBLEM SPACESOLUTION SPACE

(a) Post-initialisation

(b) Early generation

(c) Late generation

Figure 1: The change in state of a hypothetical

but representative evolutionary run over a problem

space. The squares in the left column represent the

solution space squashed into two dimensions. Simi-

larly, the right squares represent the problem space.

Nodes which are filled represent points in the solu-

tion space. Nodes which are empty represent un-

solved points in the problem space and nodes with

hatching represent solved points. An edge from a

solution node to a problem node signifies that the

solution solves the problem.

1062

5. PROBLEM SETS
In order to implement flood evolution, it is necessary to

have a method by which very large sets of problems can
be easily instatiated. This paper proposes two case studies,
the second of which is already partially implemented. Both
use Artificial Neural Networks (ANNs) as their solutions.
As such, this research falls under the umbrella of Neuro-
Evolution (NE). A question which these case studies intend
to address is the effect of having mixed problem sets which
contain multiple problem types.

5.1 Maze-Solving
Maze solving is already an established testing environment

for NE algorithms [10]. Furthermore, there exists freely-
available software which implements NE over a maze-solving
environment1. There also exist many algorithms for auto-
matically constructing mazes [19]. This means that the con-
struction of a problem field which consists of many mazes
should be an easy task.

5.2 Polynomial-Interval-Finding
A polynomial-interval-finding problem set, Π, will have

three variables constant across it. These are the scaling fac-
tor, s (see below), the numbers of inputs and outputs, m
and n respectively, which all solution ANNs will have and
the number of iterations t which each ANN will be evaluated
over. Each P ∈ Π is specified by a set of inputs H, a set of
coefficients C, a set of exponents E as well as an interval on
the real number line, described by a lower bound l and an
upper bound u. The notation P = (H,C,E, l, u) could be
used. Necessary specifications are imposed on the sizes of
H,C and E. More specifically, |H| = tm and |C| = |E| = tn.
An ANN is evaluated on a problem as follows. The first m
inputs from H are supplied to the ANN, that is, the ANN
receives the input vector 〈h1, h2, . . . , hm〉 where ha ∈ H,
1 ≥ a ≤ mt. The ANN will then produce the output vec-
tor 〈o1, o2, . . . , on〉. In the next iteration the input vector
will be 〈hm+1, hm+2, . . . , h2m〉 and the output vector will
be 〈on+1, on+2, . . . , o2n〉. This continues until, in the tth it-
eration, the input vector is

〈

h(t−1)m+1, h(t−1)m+2, . . . , htm

〉

and, similarly, the output vector is
〈

o(t−1)n+1, o(t−1)n+2, . . . , otn
〉

.
A result r can then be calculated as specified in equation (1).

r =
tn
∑

i=1

ci (soi)
ei (1)

The problem is considered solved if u < r < l.
The motivation for this case study is that it is easy to

implement and testing an ANN on it uses comparatively
little computational resources.

6. SAMPLE RUN
An implementation of the polynomial-interval-finding prob-

lem set was made and incorporated into Joel Lehman’s Nov-
elty Search C++ 1 as described in [9]. A few things to note
regarding this incorporation:

1. The implementation of fitness search [10], as opposed
to novelty search, was used.

2. The parameter values used for the rtNEAT implemen-
tation included in this package were the default ones.

1http://eplex.cs.ucf.edu/software/NoveltySearchC+
+.zip

Table 1: Parameters used in creation of the

polynomial-interval-finding problem set

set size 1000
l (lower bound) uniform random numbers in

range [-100, 100]
u (upper bound) l + 2.0
t (iterations) 10
n (number inputs) 11
m (number outputs) 2
s (scaling factor) 10
I (input set) uniform random numbers in

range [0, 1]
C (coefficients set) uniform random numbers in

range [-10, 10]
E (exponents set) random numbers from set

{0, 1, 2, 3, 4}

This was with the exception of the population size,
which was increased from 250 to 1000.

3. All solutions were evaluated on all problems each gen-
eration.

4. In the original version of the package, each generation,
one solution was added and one removed from the pop-
ulation. This number was changed to 100.

5. The parameters pertaining to the problem set are shown
in table 1. These parameters were used as prelim-
inary experiments showed that they allowed for the
near complete solution of the set within a relatively
small amount of wall time.

The implementation was run for 640 generations. Figure 2
displays two measures of the change in state of the algorithm
during these generations. A number of interesting features
can be observed. The first is that, despite the fact that
the total number of problems solved did start to plateau
around generation 300, progress was still being made right
until the end of the 640 generations (figure 2(a)). Before
generation 500, the largest number of problems solved in
any generation was 978. The number of problems solved
in generation 640 was 989. The second interesting feature
is that general solutions were being found (figure 2(b)). In
later generations, on average, solutions were solving more
than four problems each. From generation 287 until the end
of the run, there was at least one solution which was solving
15 or more problems.

The authors are aware that it is not possible to draw solid
conclusions from a single run. These are, however, early,
preliminary results and a more rigorous analysis is presently
underway. Furthermore, other experimental runs produced
similar results.

7. FUTURE RESEARCH
At present, a more detailed and rigorous analysis of the

performance of flood evolution on polynomial-interval-finding
problems is underway. An important goal is to establish
whether flood evolution can solve problems which other NE
techniques are unable to solve. We also intend to imple-
ment and test maze-solving problem sets. Another avenue
of exploration which the authors are considering exploring
is the coevolution of the problem set. Problems could be
represented by genotypes and rewarded for producing more
complicated individuals in the solution population.

1063

(a) Saturation of the problem space (b) Generality of solutions

Figure 2: Graphs showing the interaction between the problem and solution spaces during a run of flood

evolution.

8. CONCLUSIONS
It is concluded that flood evolution is a promising area

of research which has the potential to improve the power
of NE algorithms as well as aid our understanding of the
underlying mechanisms of evolution.

9. REFERENCES
[1] W. B. Arthur and W. Polak. The evolution of

technology within a simple computer model.
Complexity, 11(5):23–31, 2006.

[2] J. W. O. Ballard and M. C. Whitlock. The incomplete
natural history of mitochondria. Molecular ecology,
13(4):729–744, 2004.

[3] C. Darwin and W. F. Bynum. The origin of species by
means of natural selection: or, the preservation of
favored races in the struggle for life. AL Burt, 2009.

[4] R. Dawkins. The selfish gene. Oxford university press,
2006.

[5] A. E. Eiben and J. E. Smith. Introduction to
evolutionary computing. springer, 2003.

[6] F. Gomez and R. Miikkulainen. Incremental evolution
of complex general behavior. Adaptive Behavior,
5(3-4):317–342, 1997.

[7] F. J. Gomez and R. Miikkulainen. Solving
non-markovian control tasks with neuroevolution. In
IJCAI, volume 99, pages 1356–1361, 1999.

[8] C. Y. Lee. An algorithm for path connections and its
applications. Electronic Computers, IRE Transactions
on, (3):346–365, 1961.

[9] J. Lehman and K. O. Stanley. Exploiting
open-endedness to solve problems through the search
for novelty. In Proceedings of the Eleventh
International Conference on Artificial Life (ALIFE
XI), Cambridge, MA, 2008. MIT Press.

[10] J. Lehman and K. O. Stanley. Abandoning objectives:
Evolution through the search for novelty alone.
Evolutionary computation, 19(2):189–223, 2011.

[11] J. Lehman and K. O. Stanley. Evolving a diversity of
virtual creatures through novelty search and local
competition. In Proceedings of the 13th annual
conference on Genetic and evolutionary computation,
pages 211–218. ACM, 2011.

[12] R. E. Lenski, C. Ofria, R. T. Pennock, and C. Adami.
The evolutionary origin of complex features. Nature,
423(6936):139–144, 2003.

[13] M. Lynch. The frailty of adaptive hypotheses for the
origins of organismal complexity. Proceedings of the
National Academy of Sciences, 104(suppl
1):8597–8604, 2007.

[14] S. Risi, C. E. Hughes, and K. O. Stanley. Evolving
plastic neural networks with novelty search. Adaptive
Behavior, 18(6):470–491, 2010.

[15] N. Saravanan and D. B. Fogel. Evolving neural control
systems. IEEE Intelligent Systems, 10(3):23–27, 1995.

[16] A. P. Wieland. Evolving controls for unstable systems.
In Connectionist models: proceedings of the 1990
summer school, pages 91–102, 1990.

[17] A. P. Wieland. Evolving neural network controllers for
unstable systems. In Neural Networks, 1991.,
IJCNN-91-Seattle International Joint Conference on,
volume 2, pages 667–673. IEEE, 1991.

[18] J. J. Wiens. Missing data, incomplete taxa, and
phylogenetic accuracy. Systematic Biology,
52(4):528–538, 2003.

[19] J. Xu and C. S. Kaplan. Image-guided maze
construction. In ACM Transactions on Graphics
(TOG), volume 26, page 29. ACM, 2007.

[20] C. H. Yong and R. Miikkulainen. Coevolution of
role-based cooperation in multiagent systems.
Autonomous Mental Development, IEEE Transactions
on, 1(3):170–186, 2009.

1064

