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ABSTRACT
It is commonly observed that aggregation in nature provides
significant benefits to the group members. However, to reach
a consensus individual preferences are frequently lost. Con-
flict is generally avoided because of the negative influence it
could have on the success of collective movements. However,
it could be used to balance consensus costs with individual
preferences. Using a biologically-based collective movement
model, this work investigates the possibility of conflict in a
group movement allowing for differing individual goals to be
accomplished, while still maintaining group cohesion much
of the time. Individuals focus on their own needs, which
may include the protection of being a part of a group or the
desire to move away from the group and towards its pre-
ferred destination. Results show that by allowing conflict in
group decision-making, consensus costs were balanced with
individual preferences in such a way that group level suc-
cess still occurred, while significantly improving the success
of differing goals.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—coherence and coordination,multiagent systems

Keywords
conflict of interest, collective movement, swarm robotics, co-
ordination

1. INTRODUCTION
Group living provides significant benefits in nature, rang-

ing from increased protection from predators to increased
foraging success [13]. The flocking of birds [6], schooling of
fish [5], and mass herds of migrating wildebeests [2] are just
some of the examples of large-scale aggregation and coordi-
nation that have been observed and studied in nature. The
same is true in artificial systems, such as robot swarms where
robustness, flexibility, and scalability are beneficial [11]. To
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maintain these benefits, collective decision-making and the
associated coordination are necessary [8].

Collective behavior is usually viewed as a benefit for those
involved, but what if the cost of the consensus was greater
than that of the individuals’ preferences? Conflict, however,
is commonly treated as an inhibitor of collective behavior.
One of the most common effects of conflict on collective be-
havior is to increase the time taken to complete the group’s
goal, sometimes to the point of even causing the group to fail
to complete their goal. This work uses a biologically-based
model to explore the positive effects of conflict on collective
movements. Results show that conflict can increase individ-
ual goal completion percentage while still allowing for group
cohesion, with a small average time difference to complete
the first consensus goal.

2. METHODS
The simulations used for this work were performed using a

modified version of a collective movement model developed
through observations of collective movement attempts in a
group of white-faced capuchin monkeys [4, 9]. The model
was later confirmed in observations of sheep [10]. To inte-
grate conflict and spatial movement into the model, signif-
icant modifications were required, including converting the
model from the usage of continuous time to discrete time.

2.1 Collective Movement Model
The collective movement model uses three rules to govern

the decision-making process involved in starting collective
movements [4, 9]. The first rule assumes that all individuals
within the group are identical and can initiate a collective
movement attempt with a rate of 1/τo.

The second rule describes the rate at which followers join
the collective movement attempt and is calculated by 1/τr.
The time constant τr for the following rate is calculated
using the following:

τr = αf + βf
N − r
r

(1)

where αf and βf are constants determined through direct
observation, N is the number of individuals in the group, and
r is the number of individuals following the initiator. As the
number of individuals following the initiator increases, the
rate at which individuals join the movement also increases.

Not all initiation attempts are successful as initiators often
cancel and return to the group. The third rule calculates this
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cancellation rate using the following:

Cr =
αc

1 + (r/γc)εc
(2)

where αc, γc, and εc are constants determined through direct
observation, and r is the number of individuals following the
initiator.

2.2 Integrating Conflict
To investigate the effects of altering the rate at which indi-

viduals initiate, follow an initiator, and cancel a movement,
Gautrais added an individual-specific constant, referred to
as a“k factor,” to the rate calculations of the collective move-
ment model [4]. Initiation attempts were now calculated at
the constant rate of k/τo, and the following and canceling
rate calculations were modified as follows:

τr =
1

k

(
αf + βf

N − r
r

)
(3)

Cr = k

(
αc

1 + (r/γc)εc

)
(4)

where the variables are the same as before. Since this k fac-
tor can either increase or decrease the three decision-making
rates, it was an ideal means with which the effects of conflict
could be incorporated into the model.

Like other work involving conflicts of interest [1], conflict
was introduced into the group by giving individuals different
preferred goal destinations. To maximize the costs associ-
ated with conflict, equal numbers of individuals were given
different goals, thus ensuring that the group as a whole
would encounter high levels of conflict, regardless of the
current initiator’s destination. However, unlike other work
on conflict, individuals were considered homogeneous, other
than their different preferred destinations, and did not posses
an individual “degree of assertiveness.” This decision was
made for two reasons. First, it minimized the number of
confounding variables in the system, thus simplifying the
analysis of results. Second, it was consistent with other work
in the area of robot swarms in which swarm members are
assumed to be identical [11].

The conflict value ci for individual i in following a po-
tential leader was calculated using the angle θ between the
leader’s observed direction of movement ~vl and the direction
~d to the individual’s preferred destination from the leader’s
current position as follows:

ci =
|θ|
π

(5)

with θ having a range of [−π, π] and calculated using the

dot product of the vectors ~vl and ~d. If a potential leader
was not moving, θ was defined to be π, resulting in maxi-
mum conflict. Although neither the original model, nor the
observations on which the model was based, discussed con-
flicts of interest for the individual animals involved, we as-
sumed that the observed individuals encountered moderate
conflict. Therefore, the integration of conflict incorporated
the concept of moderate conflict (ci = 0.5) which produced
the same results as the original model. Also, the magnitude
with which low conflict affected the model was designed to
be the same as high conflict so as not to bias the model
towards one conflict value over another. As a result, the
conflict value ci was then used to calculate k, as follows:

k = 2ci (6)

where the variables were the same as before. Since k had
a non-inclusive lower limit of zero, the non-inclusive upper
limit of two was chosen to ensure balance. In the simulations
described below, conflict was limited to the range [0.1 : 0.9]
to ensure these limits were satisfied.

2.3 Conversion to Discrete Time
The collective movement model originally used continuous

time events. However, such an approach was not practical
for simulating spatial movement with discrete time require-
ments. As a result, significant modifications were made to
the implemented algorithm to use discrete time.

First, instead of using the individual decision rates to gen-
erate decision times from an exponential distribution, the
decision rates were used to calculate the probability of the
decision being made at a given time step. This was straight-
forward since the inverse of the decision rate is the instan-
taneous probability.

Second, because it was possible that an individual could
make a new decision at every time step, a “do nothing” deci-
sion was added to the decision-making process. This allowed
the individual to continue executing a decision it had previ-
ously made (e.g., following a leader or continue initiating).
However, there were situations in which a decision to “do
nothing” was not valid. For example, if a leader canceled
its movement or instead decided to follow another leader, a
follower was required to make a new decision to either fol-
low a new leader or initiate its own movement. With this
restriction, an agent would not be forced to follow a leader
in the decision to join the group.

2.4 Numerical Implementation
Numerical simulations of the collective movement model

were implemented in Java1 using the original algorithm as a
starting point [4]. However, as noted above, the algorithm
was converted to use discrete time events, instead of the
continuous time events in the original.

The original model only used a group size of 10, but other
work has shown that the success of collective movement ini-
tiations increases as the group size is increased, with most
differences present in group sizes of 50 or less [3]. As such,
evaluating different group sizes presents an opportunity to
evaluate the effects of conflict with different group dynamics.
For each evaluation environment, 2, 000 simulations, each
with a different random seed, were performed using group
sizes from 10 to 50. Each simulation constituted a single
attempt for individuals to move to their preferred destina-
tion and had a maximum of 20, 000 time steps. Unlike the
original model, multiple initiators were allowed at any given
time step and a cancellation was not classified as an imme-
diate failure. The model parameters used were the same as
those used in the original model [4, 9].

The results that follow were from a simulation environ-
ment that was used to evaluate the effect of conflict on con-
sensus costs when the group began a movement with mod-
erate initial conflict. In this environment, two destinations
were located at an equivalent distance from where the group
began. These destinations were separated by a 74o angle.
Since there was no bias in the simulations towards one des-
tination over another, the analysis of the simulations took

1Simulation source code and data analysis scripts are
available for download from https://github.com/snucsne/
bio-inspired-leadership.
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Figure 1: The percentage of the total number of
agents moving towards their preferred destination
are shown for groups of size N = 10 and N = 50.

Group Conflict
Size With Without

10 9.9 ±0.3 5.6 ±1.1
20 19.9 ±0.2 11.7 ±2.6
30 29.9 ±0.2 17.8 ±4.1
40 39.9 ±0.7 24.3 ±5.8
50 49.9 ±0.3 30.5 ±7.1

Table 1: The mean number of agents that arrived
at their preferred destination in each simulation are
shown (mean ± std. deviation). All results for sim-
ulations with conflict are statistically significantly
larger (p << 0.0001).

into account that the identity of the destinations was not
important. Simulation results were organized into first and
second destination categories, as determined by the median
times in which the destinations were reached in a given sim-
ulation. Individuals evaluated in this environment initially
experienced moderate conflict in deciding to follow a leader
moving towards the non-preferred destination.

3. RESULTS & ANALYSIS
Three treatments were used to determine the effects of

conflict on consensus decision-making: a) individuals pre-
ferred one of two destinations and conflict was used; b) two
destinations were used, but not conflict; and c) a baseline
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Figure 2: The median number of timesteps and the
interquartile range needed for agents to reach their
preferred destination are shown for groups of size
N = 10 and N = 50. Percentages indicate the frac-
tion of agents that reached a particular, preferred
destination. Horizontal dashed lines represent the
minimum, mean, and maximum times for baseline
simulations. Times for agents not reaching their pre-
ferred destination were truncated at the maximum
number of timesteps.

treatment in which all individuals preferred the same des-
tination and conflict was not used. Two metrics were used
to measure the effects of conflict on collective movements.
The mean percentage of individuals that reached their pre-
ferred destination was used to determine the consensus costs
incurred by individuals in the swarm. This was done by
comparing the results from the treatments with conflict and
without conflict to observe the difference in percentage of
agents moving towards their preferred destination. The sec-
ond metric that was the mean time taken for individuals
to reach their preferred destination. To properly use this
metric, times for agents that failed to reach their goal were
truncated at the maximum number of timesteps.

Figure 1 shows the mean percentage of individuals mov-
ing towards their preferred destination during a simulation
for each treatment. Simulations in the baseline treatment,
as expected, had on average more individuals moving to-
wards their goal at every time step (see Figure 2a and Fig-
ure 2b). By 10, 000 time steps, simulations using conflict had
comparable percentages to the baseline simulations, while
simulations without conflict had approximately only 50% of
the individuals moving towards their preferred destination.
Increasing the group size from 10 to 50 resulted in fewer
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timesteps before the simulations with conflict had compara-
ble percentages to the baseline system. However, the larger
group size only had minor effects on the simulation without
conflict.

Table 1 lists the mean number of individuals that arrived
at their preferred destination by the end of the simulation.
When conflict was used, nearly 99% of the individuals that
preferred the second goal were able to reach their goal for
groups 10, and the 100% of individuals were able to reach
their goal for groups of 50. Without conflict, the percent-
age that reached the second destination ranged from 4% for
groups of 10 to 11% for groups 50 (see Figure 2).

4. DISCUSSION
In simulations without conflict, an agent that had a pre-

ferred destination that was different than that of the con-
sensus was highly unlikely to be able to reach its goal. By
integrating conflict, these agents were able to reach their
goal destination with only minor increases to the time for
the group to reach the first goal destination.

The median time required for agents to reach their pre-
ferred destination decreased as the size of the group was
increased. Figure 2 illustrates this and shows the interquar-
tile range of these times for groups of 10 and 50. This was
consistent with baseline simulations in which increasing the
group size decreased the mean time for agents to reach their
preferred destinations.

These simulations made the assumption that consensus
costs were too high and thus, individual goals must be ful-
filled. There are times in which cohesion of a group is more
important than individual preferences. For example, group
cohesion is essential to the hunting success of a group of li-
ons, regardless of individual goals. In this case, larger groups
complicate this cohesion. On the other hand, larger fish
shoals are a more effective defense against predation than
smaller groups. Cohesion also reduces the negative effects
of incorrect information on the success of the group. In an
environment where consensus is not the primary objective
of the swarm, conflict could provide a balance between con-
sensus costs and individual preference.

5. CONCLUSIONS AND FUTURE WORK
This work has two significant contributions. First, these

results show that the simple addition of conflict can balance
consensus costs with individual preferences in a manner that
still allows group level success, while significantly improv-
ing individual success. Second, these results show that the
consensus costs in swarms with differing preferences can be
significant if cohesion is enforced, even to the point where
individuals are unable to meet their goals.

This work is part of a larger research project on collec-
tive decision-making. In the future, we plan to implement a
more comprehensive concept of a “level of dissatisfaction” in
place of the simplified conflict model used here. This would
include situations such as too many individuals in a group,
a dependence on resources, and the notion of time. Evolu-
tionary approaches would be particularly effective in com-
bining the various components. One particularly interesting
approach would be to use grammatical evolution to evolve
decision rules for determining conflict [7]. Furthermore, the
current model is not very tunable. We plan on transitioning
to an alternative model [12] that allows for more customiza-

tion of the decision rates, particularly for tasks other than
collective movements. Evolutionary approaches would again
be particularly effective in finding the appropriate parame-
ters for each task.
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