
A Case Based Approach for an Intelligent Route
Optimization Technology

Masaki Suzuki, Takaaki
Motomura, Taro Matsumaru

and Setsuo Tsuruta
School of Information Environment

Tokyo Denki University
2-1200 Muzai Gakuendai

Inzai, Chiba, 270-1382, Japan
+81 476 46 8493

13jkm15@ms.dendai.ac.jp

Rainer Knauf
Faculty of Computer Science and

Automation
Ilmenau University of Technology

PO Box 10 05 65
98684 Ilmenau, Germany

+49 3677 69 1445
rainer.knauf@tu-ilmenau.de

Yoshitaka Sakurai
School of Interdisciplinary
Mathematical Sciences

Meiji University
4-21-1 Nakano Nakano-ku
Tokyo, 164-8525, JAPAN

+81 3-5343-8307
sakuraiy@meiji.ac.jp

ABSTRACT
The paper introduces a Case Based Approximation method to
solve large scale Traveling Salesman Problems in a short time
with a low error rate. It is useful for domains with most solutions
being similar to solutions that have been created. Thus, a solution
can be derived by (1) selecting a most similar TSP from a library
of former TSP solutions, (2) removing the locations that are not
part of the current TSP and (3) adding the missing locations of the
current TSP by mutation, namely Nearest Insertion (NI). This way
of creating solutions by Case Based Reasoning (CBR) avoids the
computational costs to create new solutions from scratch.

Categories and Subject Descriptors
D.2.6 [Evolution Support Environment]: Evolutionary
Computation – Genetic Algorithms, Case Based Reasoning,
fitness, diversity

General Terms
Algorithms

Keywords
Traveling Salesman Problems (TSP), Genetic Algorithm (GA),
Heuristics, Case Based reasoning (CBR), Knowledge
Maintenance

1. INTRODUCTION
The efficiency of product distribution in Japan is low compared to
other industrialized countries. This inefficiency also causes social
problems and economical losses. Namely, we are facing the
necessity of urgently reducing the volume of car exhaust gases to
meet environmental requirements as well as curtailing transport
expenses in Japan. Thus, it should be optimized.

A round delivery comprises more than several tens or hundreds of
different locations. The optimization of a delivery route can be
modeled as a large-scale of Traveling Salesman Problem (TSP).

The TSP is a combinatorial problem that causes computational
explosion due to the n! order of combinations for an n-city TSP.
Thus, to practically obtain an efficient delivery route of such a
distribution system, a near optimal solving method of TSP is
indispensable. Moreover, the practical use of such a solving
method on an actual site needs human confirmation (which is
difficult to formulate) of the solution, since social and human
conditions are involved. Human users should verify the
practicability of a solution. Users sometimes need to adjust
manually or select an alternative solution to meet miscellaneous
technical and social side conditions. Therefore, the TSP solving
methods are required to ensure a response time necessary for the
above human interaction. Moreover, it is necessary to use
comparatively simple strategies (heuristics) that users and human
specialists can optimize the delivery schedule.

Interestingly, solutions generated by domain experts may have 2-
3% of deviation from the mathematical optimal solution, but they
never generate worse solutions, which may cause practical
problems. On the other hand, conventional approximate methods
for solving the TSP [13][7][3] may generate even mathematically
optimal solutions in particular cases but cannot ensure that the
amount of errors is below 2-3%.

Simple strategies to create a delivery schedule are repeated
methods such as stepwise inserting new delivery locations near
the roughly imaged delivery route until the route includes all
delivery locations, and modifying the traveling order of the
delivery locations in order to decrease the total traveling distance.
This is a method called “Nearest Insertion” (NI). Another strategy
is repeating exchanges of combinations of routes in the delivery
schedule. This is a method called “2-opt”.

Complex strategies such as the Lin-Kernighan (LK) [8] method or
Karp’s partitioning [6] are not considered as practical methods
from the above-mentioned viewpoint. This is because these
methods are not familiar to field experts though theoretically their
way of modification matched to deliverer's convenience.

In our former work, we proposed some types of Genetic
Algorithms (GAs) [9]. These GA incorporated simple heuristics
aiming at interactive real-time response as well as avoiding
significant errors for any kinds of delivery location patterns.

A simple GA incorporating 2-opt type heuristics tends to fall into
a local optima with certain delivery location patterns though it
performs well for others. Therefore, we proposed a multi-outer-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
permissions@acm.org.
GECCO'14, July 12–16, 2014, Vancouver, BC, Canada.
Copyright © 2014 ACM 978-1-4503-2662-9/14/07…$15.00.

1069

world GA (Mow-GA) [10], which overcomes some 2-opt type
GA’s drawbacks by cascading NI type GA to 2-opt type GA.

However, the Mow-GA has also some defects. It starts NI type
GA from the first generation without inheriting the information of
the elite individuals generated in the 2-opt type GA. It cannot
have enough performance for large scale problems within about 3
seconds. Moreover, the complementary effects caused by
combination of such heuristics did not work [10].

As an improved version of the Mow-GA, Multi-inner-world
Genetic Algorithm (Miw-GA) was proposed [11]. It improved the
search efficiency through complementary effects that supplement
the weak points mutually by processing two types of heuristics (2-
opt and NI) in each generation.

To simplify the searching processes, the searching operator of our
GA was limited to the mutation to improve individuals. The Miw-
GA can obtain high accurate solutions for various kinds of
delivery location patterns within interactive response time.
However, when the number of cities in TSP became more than
200, the average error rate from the optimal solution exceeded 4%
in some cases.

Therefore, we proposed a so called Backtrack and Restart GA
(BR-GA) [12], which maintains a population’s diversity by
conducting random restart and fostering new children. It achieves
below 3% error rate for less than 1000 cities TSPs within 3
seconds.

Even the world’s fastest exact algorithms called Concorde [1]
needs 10- 100 seconds to solve the same size of TSPs. As to
approximation algorithms, LKH [8][4] can solve below 1000
cities TSPs within about 3 seconds. This marks the world’s top
level accuracy and speed in solving TSPs by implementing an
effective branch & cut in the search process.

Our BR-GA can also solve below 2000 cities TSPs within 10
seconds. However, LKH is an improved version of the fairly
complex method called LK. This is not easy for application
domain engineers to understand and to modify a solution
depending on field social conditions, and to practically use.

An exact solution or too much accuracy is not valuable since 2-
3% error is not recognizable for field users. Moreover, complex
methods have problems in flexibility. Application field engineers
have difficulties in modifying the method to derive solutions
suitable for the deliverer’s convenience.

However, in practice, new TSPs distinguish from formerly solved
ones very slightly. The changes in the locations to visit are less
than 10 – 30 % and about 5 % in average.

Here, we introduce an alternative method to solve TSPs by Case
Based Reasoning (CBR) [5]. In CBR, former solutions of a
problem are collected in a case base (CB) and new problems are
solved by (1) retrieving the most appropriate case from the CB,
(2) mutating its solution towards a solution of the actual TSP, (3)
validating or revising the solution, and (4), if applicable, adding
the created solution to the CB.

This paper is organized as follows. In the next section, the
delivery route optimization problem and its technical problems
are described. Section three introduces our method for solving the
problem. In section four, experiments to validate this method are
shown and section six concludes the paper.

2. DELIVERY ROUTE OPTIMIZATION
A delivery network is represented by a weighted complete graph
G = (V, E, W). V is a node set. A node vi V (i =1, … , n)
represents a location (address) for delivery. N=|V| is the number
of nodes. E V×V is a set of edges. An edge eij represents a route
from vi to vj. W is an edge weight set. An edge weight dij
represents a distance (or the costs to go) from vi to vj. Here, we
presume dij = dji. The problem to find the minimal-length
Hamilton path in such a graph G = (V, E, W) is called Traveling
Salesman Problem (TSP).

Delivery zones that are covered by one vehicle are different
according to the region. Delivery locations are comparatively
overcrowded in the urban area, whereas scattered in the rural area.
Therefore, the number of locations for delivery differs - over
several tens or hundreds up to 2000 or so - depending on the
region and period of time.

It is necessary to compose and optimize a new delivery route for
each round delivery since delivery locations change frequently.
Though human or social factors should be considered, this is a
problem to search the shortest path or route, modeled as a famous
“Traveling Salesman Problem (TSP)”.

The computer support by nearly optimal solving methods is quite
useful even though the method is an approximation algorithm.
This reduces the burden and time loss of workers as well as costs
and car exhaust gases in distribution networks.

3. PROPOSED TECHNIQUE
CBR is a usual problem solving method in fields, were creating a
new solution to a problem from scratch is expensive and solutions
to similar problems are available: justice, architecture, and even
bigger programming projects are partially done in such a way.

CBR holds a CB with pairs [problem, solution] of formerly
solved problems and consists of the steps (1) case retrieval, (2)
case reuse, (3) case revision, and (4) case retaining.

In the case retrieval step, a case of the CB needs to be identified,
which is “most similar” to the present case. An appropriate ways
to define “similarity” for our application and not losing the
attention to fitness issues at the same time needs to be found.

In the reuse step, the solution of the retrieved case needs to be
adapted to the needs of the current problem.

The revision step aims at validating the adapted solution in the
real world application and revising it according to the results of
the real world application. In some application fields, there are
good reasons to omit or just simulate this step, namely (1) in case
the application in the real world bags risks according security or
safety of people or other important goods, but also (2) in case the
reuse technology already includes a check, whether or not a
potential change can improve the solution.

The retain step a crucial issue. The question, whether or not a new
case should be included as a new case into the CB, may be easy to
answer in most application fields. Also, adding new cases without
considering the removal of (other) cases (1) “blows up” the CB
and (2) bags the risk to “sponsor” old solutions that are
outperformed by more recent solutions.

3.1 Case Retrieval
If a new problem has to be solved, a “most similar” TSP needs to
be retrieved from the CB. Here, we define similarity as the

1070

fraction of locations (cities) in the actual TSP, which are also in
TSP of the CB. For example, if we have to solve a TSP with the
scale 200 and 180 out of these 200 cities are in a TSP solution of
the CB, its similarity is 180 / 200 = 0.9. If there are several
solutions with the same highest degree of similarity, the fittest one
will be defined as “most similar”.

However, a less similar TSP solution may be appropriate, too, in
case its fitness is better than the fitness of the most similar one.
There might be a TSP in the CB, which even covers all locations
(cities) of the current TSC, i.e. with a similarity of 1, but the scale
of this “very similar” TSP is 10 times bigger and thus, it is not a
good candidate to derive a solution for the actual TSP from it.

Therefore, we consider fitness, too. We retrieve the case with the
next lower degree of similarity (respective the fittest one among
them, if there are several ones) and look, whether this case has a
higher fitness than the most similar case.

We define the fitness gain of a TSP solution s1 with the fitness f1
related to a solution s2 with a fitness f2 as (1 – f2/ f1). For example,
if the most similar solution s1 has a fitness of f1 = 100 (units of
length for the complete distance of the tour) and the solution with
the next better degree of similarity s2 has a fitness of f2 = 80, the
fitness gain of s2, related to solution s1 is (1 – 80/100) = 0.2.

Also, we define the similarity loss of a TSP solution s1 with a
similarity sim1 to the actual TSP, related to the solution s2 with the
next lower degree of similarity to the actual TSP of sim2 as (sim1
– sim2). For example, if the most similar solution s1 has a
similarity of 0.9 to the actual TSP and the solution with the 2nd
highest similarity s2 has a similarity of 0.8 to the actual TSP, the
similarity loss is 0.1.

In our case retrieval strategy, we continue considering the next
similar TSPs (to the currently considered one in the CB) as long
as the fitness gain is higher than the similarity loss. When we
come to a point, at which the next similar solution has a higher
similarity loss then fitness gain (or even has a negative fitness
gain), we refuse the next similar solution and retrieve the
currently considered solution.

3.2 Case Reuse and Revision
After retrieving a solution from the CB, the redundant places
(locations that are not in the current TSP) are removed from it.

After removal, the deficient locations (locations of the actual TSP,
which are not in the TSP retrieved from the CB) are added by the
Nearest Insertion (NI) technique. This technique finds the position
of a new location to insert, at which the increment of the complete
tour length is minimal.

Since this reuse method already includes optimization issues by
finding the optimal place for each inserted location, there is no
explicit revision of this result in our CBR application here.

3.3 Case Retaining and CB Maintenance
First, we determined a reasonable number of TSP solutions in the
CB. This number should be related to the scale n of the largest
TSP to be solved. By some experiments we found that

(1) in CBs with less than n/2 TSP solutions there is not much
hope to retrieve an appropriate case,

(2) in CBs with around n TSP solutions we always found an
appropriate case in a reasonable time of 50 – 100 ms, which

is negligible, compared to the permitted solution time 3 s,
and

(3) in CBs 2n cases and more the search time for an appropriate
case is not acceptable any more (9 s, in some cases).

There are two important CB maintenance issues, namely (1) it
should contain the fittest individuals (shortest TSP tours), but also
(2) diversity, i.e. individuals, which are not too similar to each
other to ensure not to fall into local optima.

We are still in the process to collect cases for the CB. Therefore,
we currently add all solutions created by our technique to the CB.

Later, we have to come up with a concept for CB maintenance,
which ensures that the size of the CB (and thus, the computational
costs for finding a most similar case in it) stays limited and the
cases in the CB are “useful” in terms of fitness and diversity.

4. EXPERIMENTS AND RESULTS
We compared the proposed method with our former one, namely
BR-GA. The comparison experiments were done by solving two
TSPLIB problems.

The experiments were conducted under the following
computation environment. Namely, the CPU is an AMD Athlon
64 X2 3800+ 2GHz processor. It is almost the same performance
as Athlon 64 3200+ 2GHz, because of its execution performance
on the single core mode with 1 GB memory.

The programs were written in C language, compiled by Microsoft
Visual C++ .NET 2003 ver. 7.1.3091 with the /02 option
(directing the execution speed preference), and executed on
Windows XP Professional.

Table 1 shows the error rates of our former approach BR-GA and
the method proposed here for 2 instances of large scale TSP
benchmarks, namely u1432+30 and rl1889+30.

By error rate, we define the percentage of the TSP solution’s total
distance being longer that the optimal solution, which we also
computed – of course with much more computation cost – for this
evaluation purpose. These results are pretty convincing that
deriving new TSP solutions from a good former solution of a
similar TSP, is a good idea. The error rate is about 10 times better
that it was with our former approach.

Table 1. Experimental results

TSP
Worst error rate after 3 seconds runtime

BR-GA proposed method
u1432+30 5.92 0.68
rl1889+30 10.26 0.88

The search of the most similar case in the CB took between 50
and 100 ms.

The performance regarding computational complexity (run time)
is theoretically that of n/5 of BR-GA, since a maximum of 20 %
of a solution is created, the rest of the solution is just adopted
from its “parent”, a former TSP solution.

5. SUMMARY AND OUTLOOK
We introduced a Case Based approximation method to solve up to
2000 cities TSP problems in a required maximal response time of
3 seconds with a required maximum error rate of 3 %.

1071

This method is based on the insight, that most solutions are very
similar to solutions that have been created. Thus, in many cases a
solution can be derived from former solutions (1) selecting a most
similar TSP from a library of former TSP solutions, (2) removing
the locations that are not part of the current TSP and (3) adding
the missing locations of the current TSP by mutation, namely
Nearest Insertion (NI).

This way of creating solutions by Case Based Reasoning (CBR)
avoids the computational costs to create new solutions from
scratch.

In our former work, we tried to keep diversity in terms of
solutions and defined common subsequences of TSP solutions by
a pattern set. We feel, for creating new solutions that are required
to be different enough from a current population’s majority, this is
a good idea, but for case base maintenance the computational
costs are very high. Therefore, we shifted from the idea of
considering diversity of solutions towards the idea of promoting
diversity of problems, for which a CB provides a solution. For the
solutions, we now here consider fitness as a more important point
then diversity.

The evaluation of this new method revealed remarkable results
according the error rate of the derived solutions within a run time
that is just 20% of the time to create a new solution from scratch
plus 50-100 ms for searching the most similar case in the library
of former TSP solutions.

For future work, we aim at reaching the following objectives.

For adapting a former solution toward an actual one, we extend
the simple NI method towards a multiple NI in parallel. After that,
we extend it by also including edges assembly crossover (EAX).
This way, new TSP can adopt useful properties (fitness, being
divers from others in the population) from two parents and utilize
the best of each parent. We hope to stay within the required limit
of computational costs by these extensions and think about using
parallel computation to still meet this requirement.

Our maintenance technique for the CB is still rudimentary,
because we are still suffering from haven too few. We think about
extending it concept that ensures a well-balanced trade-off
between fitness and diversity within the TSP solutions of the case
base.

Moreover, we investigate ways to extend the class of TPS
problems towards practical requirements from field experts, who
like to include one-way traffic (asymmetric TSPs), road
conditions (instead of just considering the distance as fitness), and
other issues to make the system more practicable.

6. ACKNOWLEDGMENTS
This work was sponsored by KAK ENHI (23500288) and the
Research Institute for Science and Technology of Tokyo Denki
University

7. REFERENCES
[1] http://www.math.uwaterloo.ca/tsp/concorde/index.html.

[2] Proc. IEEE Symp. Computational Intelligence in Scheduling
(SCIS 07), IEEE Press, 57-64.

[3] Gutin, G., Punnen, A. P. 2007. The Traveling Salesman
Problem and its Variations, Springer, NY, USA.

[4] Helsgaun, K. 2009. General k-opt submoves for the Lin–
Kernighan TSP heuristic. Mathematical Programming
Computation, 1, 119-163.

[5] Huellermeier, E. 2007. Case-Based Approximate Reasoning.
Springer, Berlin.

[6] Karp, R. M., 1977. “robabilistic analysis of partitioning
algorithms for the traveling-salesman problem in the plane.
Math. Oper. Res., 2, 3, 209–224.

[7] Ken, H., Kokolo, I., Jun, S., Isao, O., and Shigenobu, K.
2006. Hybridization of Genetic Algorithm with Local Search
in Multiobjective Function Optimization : Recommendation
of GA then LS. Transactions of the Japanese Society for
Artificial Intelligence, 21, 482-492.

[8] Lin, S., Kernighan, B. W. 1973. An Effective Heuristic
Algorithm for the Traveling-Salesman Problem. Operations
Research 21 (2), 498–516.

[9] Nguyen, H. D., Yoshihara, I., Yamamori, K., Yasunaga, M.
2007. Implementation of an Effective Hybrid GA for Large-
Scale Traveling Salesman Problems. IEEE Transactions on
Systems, Man and Cybernetics, Part B, 37, 1, 92-99.

[10] Sakurai, Y., Onoyama, T., Kubota, S., Nakamura, Y.,
Tsuruta, S. 2006. A Multiworld Intelligent Genetic
Algorithm to Interactively Optimize Largescale TSP. Proc.
of the 2006 IEEE International Conference on Information
Reuse and Integration (IEEE IRI2006), 248-255.

[11] Sakurai, Y., Onoyama, T., Kubota, S., Tsuruta, S. 2008. A
Multi-inner-world Genetic Algorithm to Optimize Delivery
Problem with Interactive-time. Proc. of 4th IEEE Conf. on
Automation Science and Engineering (CASE 2008), 583-590.

[12] Sakurai, Y., Takada, K., Tsukamoto, N., Onoyama, T.,
Knauf, R. 2011. A Simple Optimization Method based on
Backtrack and GA for Delivery Schedule. Proc. of the IEEE
Congress on Evolutionary Computation 2011 (CEC 2011),
2790-2797.

[13] Yamamoto, Y., and Kubo, M. 1997. Invitation to Traveling
Salesman Problem. Asakura Syoten, Tokyo.

1072

