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ABSTRACT 
The paper introduces a Case Based Approximation method to 
solve large scale Traveling Salesman Problems in a short time 
with a low error rate. It is useful for domains with most solutions 
being similar to solutions that have been created. Thus, a solution 
can be derived by (1) selecting a most similar TSP from a library 
of former TSP solutions, (2) removing the locations that are not 
part of the current TSP and (3) adding the missing locations of the 
current TSP by mutation, namely Nearest Insertion (NI). This way 
of creating solutions by Case Based Reasoning (CBR) avoids the 
computational costs to create new solutions from scratch. 

Categories and Subject Descriptors 
D.2.6 [Evolution Support Environment]: Evolutionary 
Computation – Genetic Algorithms, Case Based Reasoning, 
fitness, diversity 

General Terms 
Algorithms 

Keywords 
Traveling Salesman Problems (TSP), Genetic Algorithm (GA), 
Heuristics, Case Based reasoning (CBR), Knowledge 
Maintenance 

1. INTRODUCTION 
The efficiency of product distribution in Japan is low compared to 
other industrialized countries. This inefficiency also causes social 
problems and economical losses. Namely, we are facing the 
necessity of urgently reducing the volume of car exhaust gases to 
meet environmental requirements as well as curtailing transport 
expenses in Japan. Thus, it should be optimized. 

A round delivery comprises more than several tens or hundreds of 
different locations. The optimization of a delivery route can be 
modeled as a large-scale of Traveling Salesman Problem (TSP). 

The TSP is a combinatorial problem that causes computational 
explosion due to the n! order of combinations for an n-city TSP. 
Thus, to practically obtain an efficient delivery route of such a 
distribution system, a near optimal solving method of TSP is 
indispensable. Moreover, the practical use of such a solving 
method on an actual site needs human confirmation (which is 
difficult to formulate) of the solution, since social and human 
conditions are involved. Human users should verify the 
practicability of a solution. Users sometimes need to adjust 
manually or select an alternative solution to meet miscellaneous 
technical and social side conditions. Therefore, the TSP solving 
methods are required to ensure a response time necessary for the 
above human interaction. Moreover, it is necessary to use 
comparatively simple strategies (heuristics) that users and human 
specialists can optimize the delivery schedule. 

Interestingly, solutions generated by domain experts may have 2-
3% of deviation from the mathematical optimal solution, but they 
never generate worse solutions, which may cause practical 
problems. On the other hand, conventional approximate methods 
for solving the TSP [13][7][3] may generate even mathematically 
optimal solutions in particular cases but cannot ensure that the 
amount of errors is below 2-3%. 

Simple strategies to create a delivery schedule are repeated 
methods such as stepwise inserting new delivery locations near 
the roughly imaged delivery route until the route includes all 
delivery locations, and modifying the traveling order of the 
delivery locations in order to decrease the total traveling distance. 
This is a method called “Nearest Insertion” (NI). Another strategy 
is repeating exchanges of combinations of routes in the delivery 
schedule. This is a method called “2-opt”. 

Complex strategies such as the Lin-Kernighan (LK) [8] method or 
Karp’s partitioning [6] are not considered as practical methods 
from the above-mentioned viewpoint. This is because these 
methods are not familiar to field experts though theoretically their 
way of modification matched to deliverer's convenience. 

In our former work, we proposed some types of Genetic 
Algorithms (GAs) [9]. These GA incorporated simple heuristics 
aiming at interactive real-time response as well as avoiding 
significant errors for any kinds of delivery location patterns. 

A simple GA incorporating 2-opt type heuristics tends to fall into 
a local optima with certain delivery location patterns though it 
performs well for others. Therefore, we proposed a multi-outer-
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world GA (Mow-GA) [10], which overcomes some 2-opt type 
GA’s drawbacks by cascading NI type GA to 2-opt type GA. 

However, the Mow-GA has also some defects. It starts NI type 
GA from the first generation without inheriting the information of 
the elite individuals generated in the 2-opt type GA. It cannot 
have enough performance for large scale problems within about 3 
seconds. Moreover, the complementary effects caused by 
combination of such heuristics did not work [10]. 

As an improved version of the Mow-GA, Multi-inner-world 
Genetic Algorithm (Miw-GA) was proposed [11]. It improved the 
search efficiency through complementary effects that supplement 
the weak points mutually by processing two types of heuristics (2-
opt and NI) in each generation. 

To simplify the searching processes, the searching operator of our 
GA was limited to the mutation to improve individuals. The Miw-
GA can obtain high accurate solutions for various kinds of 
delivery location patterns within interactive response time. 
However, when the number of cities in TSP became more than 
200, the average error rate from the optimal solution exceeded 4% 
in some cases. 

Therefore, we proposed a so called Backtrack and Restart GA 
(BR-GA) [12], which maintains a population’s diversity by 
conducting random restart and fostering new children. It achieves 
below 3% error rate for less than 1000 cities TSPs within 3 
seconds. 

Even the world’s fastest exact algorithms called Concorde [1] 
needs 10- 100 seconds to solve the same size of TSPs. As to 
approximation algorithms, LKH [8][4] can solve below 1000 
cities TSPs within about 3 seconds. This marks the world’s top 
level accuracy and speed in solving TSPs by implementing an 
effective branch & cut in the search process. 

Our BR-GA can also solve below 2000 cities TSPs within 10 
seconds. However, LKH is an improved version of the fairly 
complex method called LK. This is not easy for application 
domain engineers to understand and to modify a solution 
depending on field social conditions, and to practically use. 

An exact solution or too much accuracy is not valuable since 2-
3% error is not recognizable for field users. Moreover, complex 
methods have problems in flexibility. Application field engineers 
have difficulties in modifying the method to derive solutions 
suitable for the deliverer’s convenience. 

However, in practice, new TSPs distinguish from formerly solved 
ones very slightly. The changes in the locations to visit are less 
than 10 – 30 % and about 5 % in average. 

Here, we introduce an alternative method to solve TSPs by Case 
Based Reasoning (CBR) [5]. In CBR, former solutions of a 
problem are collected in a case base (CB) and new problems are 
solved by (1) retrieving the most appropriate case from the CB, 
(2) mutating its solution towards a solution of the actual TSP, (3) 
validating or revising the solution, and (4), if applicable, adding 
the created solution to the CB. 

This paper is organized as follows. In the next section, the 
delivery route optimization problem and its technical problems 
are described. Section three introduces our method for solving the 
problem. In section four, experiments to validate this method are 
shown and section six concludes the paper. 

2. DELIVERY ROUTE OPTIMIZATION 
A delivery network is represented by a weighted complete graph 
G = (V, E, W). V is a node set. A node vi  V (i =1, … , n) 
represents a location (address) for delivery. N=|V| is the number 
of nodes. E  V×V is a set of edges. An edge eij represents a route 
from vi to vj. W is an edge weight set. An edge weight dij 
represents a distance (or the costs to go) from vi to vj. Here, we 
presume dij = dji. The problem to find the minimal-length 
Hamilton path in such a graph G = (V, E, W) is called Traveling 
Salesman Problem (TSP). 

Delivery zones that are covered by one vehicle are different 
according to the region. Delivery locations are comparatively 
overcrowded in the urban area, whereas scattered in the rural area. 
Therefore, the number of locations for delivery differs - over 
several tens or hundreds up to 2000 or so - depending on the 
region and period of time. 

It is necessary to compose and optimize a new delivery route for 
each round delivery since delivery locations change frequently. 
Though human or social factors should be considered, this is a 
problem to search the shortest path or route, modeled as a famous 
“Traveling Salesman Problem (TSP)”. 

The computer support by nearly optimal solving methods is quite 
useful even though the method is an approximation algorithm. 
This reduces the burden and time loss of workers as well as costs 
and car exhaust gases in distribution networks. 

3. PROPOSED TECHNIQUE 
CBR is a usual problem solving method in fields, were creating a 
new solution to a problem from scratch is expensive and solutions 
to similar problems are available: justice, architecture, and even 
bigger programming projects are partially done in such a way. 

CBR holds a CB with pairs [problem, solution] of formerly 
solved problems and consists of the steps (1) case retrieval, (2) 
case reuse, (3) case revision, and (4) case retaining. 

In the case retrieval step, a case of the CB needs to be identified, 
which is “most similar” to the present case.  An appropriate ways 
to define “similarity” for our application and not losing the 
attention to fitness issues at the same time needs to be found. 

In the reuse step, the solution of the retrieved case needs to be 
adapted to the needs of the current problem. 

The revision step aims at validating the adapted solution in the 
real world application and revising it according to the results of 
the real world application. In some application fields, there are 
good reasons to omit or just simulate this step, namely (1) in case 
the application in the real world bags risks according security or 
safety of people or other important goods, but also (2) in case the 
reuse technology already includes a check, whether or not a 
potential change can improve the solution. 

The retain step a crucial issue. The question, whether or not a new 
case should be included as a new case into the CB, may be easy to 
answer in most application fields. Also, adding new cases without 
considering the removal of (other) cases (1) “blows up” the CB 
and (2) bags the risk to “sponsor” old solutions that are 
outperformed by more recent solutions. 

3.1 Case Retrieval 
If a new problem has to be solved, a “most similar” TSP needs to 
be retrieved from the CB. Here, we define similarity as the 
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fraction of locations (cities) in the actual TSP, which are also in 
TSP of the CB. For example, if we have to solve a TSP with the 
scale 200 and 180 out of these 200 cities are in a TSP solution of 
the CB, its similarity is 180 / 200 = 0.9. If there are several 
solutions with the same highest degree of similarity, the fittest one 
will be defined as “most similar”. 

However, a less similar TSP solution may be appropriate, too, in 
case its fitness is better than the fitness of the most similar one. 
There might be a TSP in the CB, which even covers all locations 
(cities) of the current TSC, i.e. with a similarity of 1, but the scale 
of this “very similar” TSP is 10 times bigger and thus, it is not a 
good candidate to derive a solution for the actual TSP from it. 

Therefore, we consider fitness, too. We retrieve the case with the 
next lower degree of similarity (respective the fittest one among 
them, if there are several ones) and look, whether this case has a 
higher fitness than the most similar case. 

We define the fitness gain of a TSP solution s1 with the fitness f1 
related to a solution s2 with a fitness f2 as (1 – f2/ f1). For example, 
if the most similar solution s1 has a fitness of f1 = 100 (units of 
length for the complete distance of the tour) and the solution with 
the next better degree of similarity s2 has a fitness of f2 = 80, the 
fitness gain of s2, related to solution s1 is (1 – 80/100) = 0.2. 

Also, we define the similarity loss of a TSP solution s1 with a 
similarity sim1 to the actual TSP, related to the solution s2 with the 
next lower degree of similarity to the actual TSP of sim2 as (sim1 
– sim2). For example, if the most similar solution s1 has a 
similarity of 0.9 to the actual TSP and the solution with the 2nd 
highest similarity s2 has a similarity of 0.8 to the actual TSP, the 
similarity loss is 0.1. 

In our case retrieval strategy, we continue considering the next 
similar TSPs (to the currently considered one in the CB) as long 
as the fitness gain is higher than the similarity loss. When we 
come to a point, at which the next similar solution has a higher 
similarity loss then fitness gain (or even has a negative fitness 
gain), we refuse the next similar solution and retrieve the 
currently considered solution. 

3.2 Case Reuse and Revision 
After retrieving a solution from the CB, the redundant places 
(locations that are not in the current TSP) are removed from it. 

After removal, the deficient locations (locations of the actual TSP, 
which are not in the TSP retrieved from the CB) are added by the 
Nearest Insertion (NI) technique. This technique finds the position 
of a new location to insert, at which the increment of the complete 
tour length is minimal. 

Since this reuse method already includes optimization issues by 
finding the optimal place for each inserted location, there is no 
explicit revision of this result in our CBR application here. 

3.3 Case Retaining and CB Maintenance 
First, we determined a reasonable number of TSP solutions in the 
CB. This number should be related to the scale n of the largest 
TSP to be solved. By some experiments we found that 

(1) in CBs with less than n/2 TSP solutions there is not much 
hope to retrieve an appropriate case, 

(2) in CBs with around n TSP solutions we always found an 
appropriate  case in a reasonable time of 50 – 100 ms, which 

is negligible, compared to the permitted solution time 3 s, 
and 

(3) in CBs 2n cases and more the search time for an appropriate 
case  is not acceptable any more (9 s, in some cases). 

There are two important CB maintenance issues, namely (1) it 
should contain the fittest individuals (shortest TSP tours), but also 
(2) diversity, i.e. individuals, which are not too similar to each 
other to ensure not to fall into local optima. 

We are still in the process to collect cases for the CB. Therefore, 
we currently add all solutions created by our technique to the CB. 

Later, we have to come up with a concept for CB maintenance, 
which ensures that the size of the CB (and thus, the computational 
costs for finding a most similar case in it) stays limited and the 
cases in the CB are “useful” in terms of fitness and diversity. 

4. EXPERIMENTS AND RESULTS 
We compared the proposed method with our former one, namely 
BR-GA. The comparison experiments were done by solving two 
TSPLIB problems. 

The experiments were conducted under the following 
computation environment. Namely, the CPU is an AMD Athlon 
64 X2 3800+ 2GHz processor. It is almost the same performance 
as Athlon 64 3200+ 2GHz, because of its execution performance 
on the single core mode with 1 GB memory. 

The programs were written in C language, compiled by Microsoft 
Visual C++ .NET 2003 ver. 7.1.3091 with the /02 option 
(directing the execution speed preference), and executed on 
Windows XP Professional. 

Table 1 shows the error rates of our former approach BR-GA and 
the method proposed here for 2 instances of large scale TSP 
benchmarks, namely u1432+30 and rl1889+30. 

By error rate, we define the percentage of the TSP solution’s total 
distance being longer that the optimal solution, which we also 
computed – of course with much more computation cost – for this 
evaluation purpose. These results are pretty convincing that 
deriving new TSP solutions from a good former solution of a 
similar TSP, is a good idea. The error rate is about 10 times better 
that it was with our former approach. 

Table 1. Experimental results 

TSP 
Worst error rate after 3 seconds runtime 

BR-GA proposed method 
u1432+30 5.92 0.68 
rl1889+30 10.26 0.88 

 
The search of the most similar case in the CB took between 50 
and 100 ms. 

The performance regarding computational complexity (run time) 
is theoretically that of n/5 of BR-GA, since a maximum of 20 % 
of a solution is created, the rest of the solution is just adopted 
from its “parent”, a former TSP solution. 

5. SUMMARY AND OUTLOOK 
We introduced a Case Based approximation method to solve up to 
2000 cities TSP problems in a required maximal response time of 
3 seconds with a required maximum error rate of 3 %. 
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This method is based on the insight, that most solutions are very 
similar to solutions that have been created. Thus, in many cases a 
solution can be derived from former solutions (1) selecting a most 
similar TSP from a library of former TSP solutions, (2) removing 
the locations that are not part of the current TSP and (3) adding 
the missing locations of the current TSP by mutation, namely 
Nearest Insertion (NI). 

This way of creating solutions by Case Based Reasoning (CBR) 
avoids the computational costs to create new solutions from 
scratch. 

In our former work, we tried to keep diversity in terms of 
solutions and defined common subsequences of TSP solutions by 
a pattern set. We feel, for creating new solutions that are required 
to be different enough from a current population’s majority, this is 
a good idea, but for case base maintenance the computational 
costs are very high. Therefore, we shifted from the idea of 
considering diversity of solutions towards the idea of promoting 
diversity of problems, for which a CB provides a solution. For the 
solutions, we now here consider fitness as a more important point 
then diversity.   

The evaluation of this new method revealed remarkable results 
according the error rate of the derived solutions within a run time 
that is just 20% of the time to create a new solution from scratch 
plus 50-100 ms for searching the most similar case in the library 
of former TSP solutions. 

For future work, we aim at reaching the following objectives. 

For adapting a former solution toward an actual one, we extend 
the simple NI method towards a multiple NI in parallel. After that, 
we extend it by also including edges assembly crossover (EAX). 
This way, new TSP can adopt useful properties (fitness, being 
divers from others in the population) from two parents and utilize 
the best of each parent. We hope to stay within the required limit 
of computational costs by these extensions and think about using 
parallel computation to still meet this requirement. 

Our maintenance technique for the CB is still rudimentary, 
because we are still suffering from haven too few. We think about 
extending it concept that ensures a well-balanced trade-off 
between fitness and diversity within the TSP solutions of the case 
base. 

Moreover, we investigate ways to extend the class of TPS 
problems towards practical requirements from field experts, who 
like to include one-way traffic (asymmetric TSPs), road 
conditions (instead of just considering the distance as fitness), and 
other issues to make the system more practicable. 
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