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ABSTRACT 

Multi-modal problems with multiple local/global optima are 

ubiquitous in real-world application. Many multi-modal 

optimization algorithms have been developed to search as many 

local/global optima as possible. However, to locate and maintain 

many optima simultaneously, both the search quality and 

efficiency of these algorithms may be influenced. Here, we 

propose a new niching genetic algorithm that attempts to improve 

both the search quality and efficiency. To the end, we incorporate 

two mechanisms into the algorithm: cumulative population 

technique and an evaluated probability of new individuals. The 

first mechanism is designed to keep the found solutions by storing 

all known information, whilst the second is responsible for 

exploiting unexplored space effectively by guiding the exploration 

process. The proposed approach is compared with five different 

niche genetic algorithms on six well known multimodal functions 

of different characteristics. Empirical results indicate that the 

proposed approach outperforms other algorithms. It not only 

increases the probability of finding both global and local optima, 

but also reduces the average number of function evaluations. 

Categories and Subject Descriptors 

G.1.6 [Numerical Analysis]: Optimization; I.2.8 [Artificial 

Intelligence]: Problem Solving, Control Methods and Search 

General Terms 

 Algorithms 

Keywords 

Niching Genetic Algorithms; Fitness Evaluation; Multimodal 

Optimization; Cumulative population; Evaluated Probability  

1. INTRODUCTION 
The problems of interest in scientific and engineering field are or 

can be advantageously formulated as optimization problems. Due 

to physical (and/or cost) constraints, these problems may contain 

several high quality global or local solutions which have to be 

identified and the most appropriate solution should be chosen [1]. 

These problems are known as multimodal optimization problems. 

Many Evolutionary Algorithms(EAs) introducing niching 

technique [2-5] have recently been proposed and attempt to solve 

the multimodal optimization problem. Niching technique can 

maintain diversity of population and converge in parallel to 

multiple solutions by restrictive reproduction. Various niching 

techniques were proposed in the past few decades, such as 

crowding [6, 7], fitness sharing [8, 9], clearing [10], clustering 

[11], Multi-Niche Crowding [12], etc. 

However, these niching algorithms need take more computing 

efforts to locate and maintain many optima. Therefore, many 

algorithm [4, 13] incorporating local search technique, known as 

memetic algorithms, greatly improve the ability of evolutionary 

algorithms to accurately locate optimal solutions. But, these 

approaches usually need a large number of fitness evaluations to 

find high quality solutions, which might not always be an 

effective approach especially for problem with very expensive 

function evaluation. To reduce the number of fitness evaluation, 

M. Hall [14] proposed that new individual should be evaluated 

according to its cumulative local information. But, it needs to set a 

distance threshold which can depends on prior knowledge about 

optimization problem. Improper setting may make the algorithm 

get into the repeated check.  

Motivated by these observations, a new niching genetic algorithm 

is developed to improve the search quality and efficiency. It 

introduces two mechanisms: cumulative population technique and 

an evaluated probability of new individual. The first mechanism 

can keep the found solutions by storing all known information, 

whilst the second is responsible for exploiting unexplored space 

effectively.  

The remainder of the paper is organized as follows. Some related 

works are briefly described in Section 2. Implementing details of 

the proposed algorithm is presented in Section 3. In section 4, we 

evaluate the proposed algorithm and discuss its outcomes based 

on experiment results. The paper ends in section 5 with a brief 

discussion. 

2. RELATED WORK 

2.1 Crowding 
Crowding was proposed by De Jong to preserve population 

diversity and prevent premature convergence. Crowding is applied 

in the replacement step of GAs in order to decide which 

individuals and their offspring will remain in the population 

according to a similarity metric which is based on the number of 

matching alleles. Depending on the replacement strategies, 

crowding approach is classified as Deterministic crowing [6] and 

Probabilistic crowding [7]. Deterministic Crowding selects the 

fittest individual in the replacement step. Probabilistic Crowding 
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selects the surviving individual based on a probabilistic formula 

that takes fitness into account. 

The Multi-Niche Crowding, propose by Cede [12], differs from 

the above crowding approaches by implementing the crowding 

concept in the selection rules and replacement rules. In crowding 

selection, each individual in the population has the same chance 

for mating in every generation. First, an individual is selected for 

mating sequentially or randomly. Secondly, other individual is 

selected from a group of individuals of size , picked at random 

from the population. The other individual chosen must be the one 

who is the most "similar" to the first individual. In the 

replacement rules, MNC uses a replacement policy called worst 

among the most similar. Its goal is to pick replacement individual 

which is the worst in similar individuals to offspring. Its 

disadvantage need also set some parameters by prior knowledge. 

2.2 Fitness Sharing  
Fitness sharing, proposed by Goldberg and Richardson, alter the 

fitness of each individual according to its neighboring individuals. 

It is based on the penalization of the areas of the searching space 

with more solutions within the population. The detail can be found 

in [8]. Fitness sharing maintains the diversity of population by 

adjusting the fitness of the individuals according to sharing 

function. The shortcoming of this approach is that sharing 

function and the niche radius, which are related to optimization 

problem, need be set firstly. Clearing proposed by Petro ski [10] is 

a special fitness sharing method. By comparing all individuals in 

the niche radius and setting the capacity of each niche, several 

best individuals survive and the others are all cleared. Dynamic 

niche sharing also belongs to fitness sharing method in [9]. It 

identifies niche by niche radius and the number of peaks to 

identify. At the same time, the disadvantage of clearing and 

dynamic niche sharing is similar to that of fitness sharing. 

2.3 Dynamic Niche Clustering  
Dynamic niche clustering [11] proposed by Gan and Warwick 

combines clustering and fitness sharing. For each generation, a 

clustering operation is executed with a dynamically updated 

cluster number. Next, fitness sharing is implemented with the 

niche radius provided by clustering. But it is not an easy task to 

calculate the cluster number, which will affect the quantity and 

quality of identified optimal solutions greatly. 

3. Niching Cumulative Genetic Algorithm 

with Evaluated Probability (EPNCGA) 
Based on niching genetic algorithms(NGAs), the EPNCGA use 

cumulative population and evaluated probability to implement 

multimodal function optimization. We know that all information 

may help us solve the problem, the cumulative population can 

prevent the loss of useful information or redundant fitness 

evaluation by storing all evaluated information; on the other hand, 

we can also determine if new individual is evaluated by evaluated 

probability to reduce the number of fitness function evaluation. 

The algorithmic flow of the proposed algorithm can be depicted in 

Algorithm 1. After the initial population is created, every 

individual is evaluated by special problem. Next, the proposed 

niche identification method (NIM) is implemented to find all 

interesting area of peak. Selection, crossover, and mutation are 

then performed. Finally, evaluated probability of new individual is 

calculated to determine if new individual from crossover and 

mutation is evaluated and add to population. The evolutionary 

process is repeated until the stopping criterion is satisfied. The 

detail steps are described in the algorithm 1. 

Algorithm 1. Algorithmic Flow of EPNCGA 

1. pop=GenerateInitialPopulation(pop_size); 

2. Evaluate(pop); 

3. while the stopping criterion not met do 

3.1 niches=NIM(pop); 

3.2 crossoveroffspring = Select(niches,pop) ; 

3.3 Crossover(crossoveroffspring); 

3.4 Evaluate_and_Add(crossoveroffspring); 

3.5 repeat 3.2-3.4 until add Nc individuals 

3.6 mutationoffspring=randselect(pop); 

3.7 Mutate(mutationoffspring); 

3.8 Evaluate_and_Add(mutationoffspring);  

3.9 repeat 3.6-3.8 until add Nm individuals 

3.10 end while  

3.1 Niche Identification Method 
Niching technique is an effective approach which can locate and 

maintain many solutions. A niche can be defined as a subspace in 

the search space which includes a global or local optima. 

Therefore, accurate identification of niches is the key to 

improving the accuracy and efficiency of these solutions. Standard 

fitness sharing requires a unified sharing radius, but it doesn't suit 

for the multimodal problems where niches have different shape 

and range. Dynamic niche cluster methods [11] can determine 

clusters of different size, but two further parameters need be set 

firstly. Lin et al. [15] proposed a niche identification method 

which can determine the center location and radius of each of 

existing niches based on fitness topographical information of 

individuals. It also set one parameter by prior knowledge. Hill-

climbing function [13] was used to identify niche, but it need to 

evaluate the positions between two individuals. By modifying the 

method proposed by [15], a new niche identification method is 

proposed.  

Empirically, if two closer niches   and   satisfy the following 

condition, we should merge these two niches. This condition 

expresses that all individuals of niche   far away from    than   .  

                                                                

Here, for convenience,    denotes the optimum individual in a 

niche  , which also is referred as niche center;         denote the 

Euler distance between two individuals   and  ;      denotes the 

fitness of the individual x .  

Using condition 1, the complete niche identification procedure can 

then be defined as follows. 

1. The individual   with the highest fitness in the population is 

selected as the center  C  of the first niche  C   C 1 , and this 

individual is then marked. 

2. Calculate the distances between    and all other individuals, 

and construct an individual's sequence          ...  such that 

      C     
   C     

   C  ... . 

3. Sequentially check the fitness       and        of the adjacent 

two individuals            until               . Mark all 

individuals         ...    in niche C. 

4. The individual with the highest fitness in all unmarked 

individuals is selected as the center of new niche C  C C 1  and 

repeat process 2) and 3) until all individuals are marked. 

5) Check all niches the algorithm will merge two closer niches 

which satisfy condition 1. 
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3.2 Evaluated probability of new individual 
Each new individual should help improve the accuracy of 

solutions or maintain diversity of population. Empirically, if the 

density of evaluated individuals in one niche meets the normal 

distribution rather than uniform distribution, or, the density nearby 

niching center is higher, search quality and efficiency of the 

algorithm may be greatly improved. Inspired by these, we design 

an evaluated probability function of new individual. 

Suppose optimization problem meets continuity, new individual's 

feature is similar to the nearest. At   generation, we can calculate 

evaluated probability              of new individual   by the 

nearest   in niche  .               relates the distance         and 

the fitness difference   between   with   .  
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is the minimum fitness in niche N , ( ) (1/ )  n is increasing 

function,  denotes the average density of individuals in the 

search space . 

The complete evaluating procedure can be defined as follows. 

1. Finding the nearest individual y  and niche N  by x ； 

2. Calculating f and ( , , , )p x y n N  by formula(1); 

3. Generating a random number r  between 0 and 1; 

4. If ( , , , )r p x y n N , then x is evaluated and inserted to 

population. 

3.3 Selection, Crossover and Mutation 
To make sure that the algorithm can locate and maintain many 

optima simultaneously, we use fitness-proportionate selection to 

select a niche according to the average space of each individual in 

niche. Then, Tournament selection operator is applied to the 

current niche to generate two offspring. Next, random single point 

crossover operator is used. The mutation operator may maintain 

the diversity of population and prevent the genetic algorithm from 

premature convergence. The algorithm adopts random selection 

operator to select a offspring and random mutation operator to 

generate a new individual. 

4. Performance Evaluation 

4.1 Experiment Setting and Measures 

4.1.1 Benchmark Function 
To assess the performance of the proposed approach, we compare 

its result with those obtained by five other NGAs, Clearing 

(CPGA)[10], Dynamic Niche Sharing(DNSGA) [9], Deterministic 

Crowding(DCGA) [6], Multi-niche Crowding (MNCGA) [12] and 

CMNGA [14]. We adopted 6 multimodal benchmark functions, 

namely F4, F5, F6, F7, F8 and F9 from [16]. They have different 

characteristics, such as multiple even and uneven niche, multiple 

equal and unequal maxima. Their detail can be found in [16]. 

4.1.2 Evaluation Measures 
We use peak ratio (PR) and peak accuracy (PA) measure [17] to 

judge convergence speed and the ability to locate and maintain all 

fitness function peaks. The details can be found in [17]. 

 
Number of the found peaks

PR
Total number of peaks

    (2) 

1

| ( ) ( ) |
peaksN

i i

i

PA f x f peak


        (3) 

4.1.3 Parameter Setting 
   denotes the population size;    denotes the probability of 

crossover;    denotes the probability of mutation;      denotes 

the max number of generations. In DNSGA and CPGA,     

denotes a niche radius.       denotes the number of peak in 

DNSGA;        denotes the capacity of niche in CPGA;    

denotes the crowding selection size,    denotes Crowding factor, 

and   denotes the crowding factor group size in MNCGA; 

   denotes initial the population size,    denotes the max number 

of evaluation,    denotes the number of crossover, and    

denotes the number of mutation in CMNGA and EPNCGA; 

       denotes the crowding selection size, and      denotes the 

number of the nearest neighbors in CMNGA. The following is 

Parameter Setting. 

Table 1. Parameter Setting 

Method Parameter F4 F5 F6 F7 F8 F9 
CPGA 

DNSGA 
DCGA 

MNCGA 

   50 50 50 50 100 100 

   0.9 0.9 0.9 0.9 0.9 0.9 
   0.01 0.01 0.01 0.01 0.01 0.01 

     500 500 500 500 1000 1200 

CPGA     0.2 0.2 0.2 0.2 2 0.5 
      6 6 6 6 8 10 

DNSGA     0.2 0.2 0.2 0.2 2 0.5 
       9 9 9 9 10 12 

MNCGA 

   15 15 15 15 25 30 
   3 3 3 3 3 4 

  15 15 15 15 25 30 

CMNGA 
EPNCGA 

   30 30 30 30 50 50 
   600 600 600 600 1500 1500 
   5 5 5 5 8 8 
   10 10 10 10 20 20 

CMNGA        10 10 10 10 10 10 

     5 5 5 5 8 8 

4.2 Experiment result 
Convergence speed of the algorithm is determined by the number 

of fitness evaluations that the algorithm requires to locate all 

optima, within a fixed accuracy level  . We evaluate their 

performance in two accuracy level, {1 2,1 3}E E    . Table 2 

shows the average performance of the algorithm (mean) and its 

standard deviation(std). we can clearly observe that the proposed 

approach produces faster convergence speed in the majority of 

benchmark functions. Though all approach almost can locate all 

peaks within 1500 fitness evaluations in the accuracy level 

1 2E   , the EPNCGA and CMNGA show remarkable 

performance. They can locate and maintain all peaks within 550, 

but EPNCGA performs better in the majority of the functions. 

These data illustrate the EPNCGA improve the search efficiency 

by evaluated probability. Figure 1 presents the value of PR and 

PA during the run of each approaches( mean of 100 independent 

runs) for 2D function F8. Again, the EPNCGA exhibits better 

performance with respect to locating the peaks and fine-tuning the 

solutions found. Within 200 fitness evaluations, the EPNCGA can 

locate all peaks and has the best peak accuracy. This figure also 

illustrates that the EPNCGA can improve both the search quality 

and efficiency. Figure 2 shows contour plots of 2D function F9 

and the positions of all individuals evaluated by the EPNCGA. 

The number of individuals is 600. The red symbol △*  denotes the 

position of peak and the black point denotes evaluated individual. 
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Figure 2 presents the distribution of individuals. The more 

individuals concentrate on the area nearby peaks, the fewer are on 

the area far away from peaks. Also, the distribution of individuals 

is similar to the normal distribution. Overall, the EPNCGA can 

identify and maintain most peaks in the multimodal function. 

Table 2. Convergence speed in two accuracy level 

Method 
Accuracy 

level 

F4 F5 F6 F7 F8 F9 

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std 

EPNCGA 1E-2 62 16 72 40 64 18 66 20 64 18 547 276 

1E-3 142 36 204 102 139 28 208 85 139 28 1240 8 

CMNGA 
1E-2 70 30 70 21 80 61 80 76 80 61 485 190 

1E-3 195 98 221 92 180 88 254 150 180 88 1199 287 

DNSGA 1E-2 167 85 189 120 180 119 299 284 181 120 * * 

1E-3 772 290 13352 7099 754 351 15860 5160 754 351 * * 

CPGA 1E-2 348 456 1002 1533 296 336 1047 1664 296 336 * * 

1E-3 1754 1407 16284 4708 1864 1222 17173 3353 1864 1222 * * 

DCGA 1E-2 1923 2358 703 2775 1152 3877 3142 6832 1152 3877 * * 

1E-3 8955 4371 17611 6311 8893 8192 18232 5456 8893 8192 * * 

MNCGA 
1E-2 691 1824 927 2153 1021 2533 523 845 1021 2533 * * 

1E-3 3357 2534 14263 8582 7393 8467 15673 7553 7393 8467 * * 

*:the algorithm only finds part of all optima. 

 
Figure 1. Peak Accuracy and Peak Radio of F8 function 

 
Figure 2. Contour Plot of F9 by EPNCGA 

5. CONCLUSION 
Multi-modal optimization algorithms need locate and maintain 

many optima simultaneously, so both the search quality and 

efficiency of these algorithms may be influenced. Here, we 

attempt to overcome these influence by introducing two 

mechanisms into the algorithm: cumulative population technique 

and an evaluated probability of new individuals. The first 

mechanism is designed to keep the found solutions by storing all 

known information, whilst the second is responsible for exploiting 

unexplored space effectively by guiding the exploration process. 

Comparing experimental results with 5 different NGAs on 6 well 

known multimodal functions of different characteristics, show that 

the proposed approach outperforms other algorithms. Among 

most benchmark functions, the proposed approach not only 

increases the probability of finding both global and local optima, 

but also reduces the average number of function evaluations.  

In the future, we will apply the proposed algorithm to study the 

higher dimensions and the expensive multimodal problem. 
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