
A Quantitative Analysis of the Simplification Genetic
Operator

Haoxi Zhan
Hampshire College

Amherst, MA, 01002
hz12@hampshire.edu

ABSTRACT

The simplification function was introduced to PushGP as a
tool to reduce the sizes of evolved programs in final reports.
While previous work suggests that simplification could re-
duce the sizes significantly, nothing has been done to study
its impacts on the evolution of Push programs. In this paper,
we show the impact of simplification as a genetic operator.
By conducting test runs on the U.S. change problem, we
show that using simplification operator with PushGP, lexi-
case selection and ULTRA could increase the possibility to
find solutions in the short term while it might remove some
useful genetic materials for the long term.

Categories and Subject Descriptors

I.2.2 [Automatic Programming]: Program modification

General Terms

Experimentation

Keywords

Genetic Programming; Genetic Operator; Push; Clojush;
Simplification

1. INTRODUCTION
Programs produced by genetic programming systems are

often filled with unused instructions. Some of them are use-
less while the others might provide some useful genetic ma-
terials for future generations. These redundant instructions
increase the sizes of programs and make them complex. Not
only might they prevent the genes from evolving, they slow
down the evolutionary processes significantly.

Simplification was introduced to counteract the negative
impacts of the redundancy. Usually, the simplification func-
tion is applied after the evolution to remove such instruc-
tions. A recent study has shown that the simplification func-
tion in PushGP could reduce the sizes of programs signifi-
cantly[3]. However, simplifying programs after the evolution

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2881-4/14/07 ...$15.00.

http://dx.doi.org/10.1145/2598394.2605684.

could only improve the readability of the final programs in
the reports. In order to reduce the program sizes and to
speed up the evolution, we need to apply simplification dur-
ing the evolution. Although this approach has been studied
in the past[6], its impact on PushGP is still unknown.

Push is a stack-based programming language which is
especially designed for evolutionary computation[1, 5]. In
Push, there’s a stack for each data type. The instructions
take their inputs from relative stacks and then push the out-
puts to the specific stacks. If the input stack is empty when
an instruction is being executed, the instruction will be “no-
op”ed and it will do nothing. Thus, the only requirement on
syntax is the balance of parenthesis, which could be easily
fixed. As a result, we are able to do arbitrary modifications
to Push programs without worrying about syntax.

PushGP is a Genetic Programming system based on Push.
While mutation, crossover and tournament selection are still
available, a few new methods has been developed in PushGP
recently. Lexicase selection is a new selection method based
on multiple fitness cases[2]. When selecting parents, all fit-
ness cases will be randomly sorted. Individuals who per-
formed the best in the first case will survive and join the
competetion of the next case until there’s only one candi-
date or one case. ULTRA, which stands for “Uniform Linear
Transformation with Repair and Alternation”, is a new ge-
netic operator which travels the linearized parents, produces
children and then repairs them[4].

In this paper, we analyze the impact of the simplification
genetic operator on evolution which is based on PushGP, lex-
icase selection and ULTRA. By dividing the evolution into
several phases, we examine the performances in each phase.
Then we compare the success rates, program sizes, running
times and fitness values with and without simplification.

2. METHODS

2.1 The Problem
The problem we chose in this research is the U.S. change

problem. The input is a specific amount of money in the in-
teger stack and the evolved programs are supposed to return
the minimum number of U.S. coins to make a change.

2.2 Fitness Evaluation
For each individual generated during the evolution, a fit-

ness test is performed. Due to the employment of lexicase
selection[2], the fitness evaluations are based on 150 different
test cases. In each test case, an error value is calculated and

1077

then stored in the error vector. The error vector is defined
as:

Vec[ǫ] = (ǫ1, ǫ2, · · · , ǫ150)

If a program fails to produce a number in test case n, an
error score of 1000 is assigned. Thus, ǫn = 1000. Otherwise,
the error value is the difference between the solution and the
output:

ǫn = |solution− output|

2.3 Simplification
The simplification operator we used in this study is based

on hill climbing algorithm. For each simplification step, it
removes a pair of parenthesis or several instructions. There’s
a 20% probability to remove a pair of parenthesis while the
probability to remove instructions is 80%. The maximum
number of instructions to remove is 2. After each step, a
fitness evaluation will be performed. Only if the new pro-
gram’s error vector is exactly the same as the error vector
of the original program, the new program will be kept.

2.4 Parameters
To test the impacts of the simplification operator, we con-

ducted 2 experiments on U.S. Change problem. In order to
guarantee moderate success rates, the parameters we used is
based on our previous experiments. Experiment NO-SIMP
was solely based on ULTRA and lexicase selection. In exper-
iment SIMP-1, there’s a 10% probability to use the simpli-
fication operator while the probability of ULTRA was 90%.
After several tests, we decided to use only 1 simplification
step as it’s already enough to counteract the code growth.

To ensure the fairness, we made the total number of fitness
evaluations equal. As the use of simplification will increase
the number of fitness tests per individual, the population
size of SIMP-1 was reduced to 1818. The calculation of the
moderate population size is based on probability.

1001× s+ 1000× s× 0.1 = 2000× 1001 ⇒ s ≈ 1818

Notice that due to the existence of the initial generation,
fitness tests will be performed to a total of 1001 generations.

The details of our parameters are listed in Table 1.

Table 1: The parameters we used for our experi-

ments
Experiment NO-SIMP SIMP-1

Basic parameters
Number of Runs 100 100
Max Generations 1000 1000
Population Size 2000 1818
Max Size 500 500
Selection lexicase lexicase

Genetic Operators
ULTRA Probability 1 0.9
Simplification Probability 0 0.1
Simplification Step N/A 1
Instruction Remove Limit N/A 2

3. RESULTS AND DISCUSSIONS
We conducted 100 runs for each experiment. Table 2

presents the general performances of our experiments. No-
tice that the average sizes in the table are based on the
program sizes of each run’s last generation.

Table 2: general performances

Runs NO-SIMP SIMP-1
Success Rate 82% 75%
Average Sizes 338.2 31.13
Average Time(h) 15.305 3.238
Average Generations 548.63 541.78

The average size of NO-SIMP runs is 338.2 whereas SIMP-
1 runs have an average size of only 31.3. The huge difference
in average program size indicates that the simplification ge-
netic operator successfully controlled the code growth. As
expected, the introduction of simplification significantly re-
duced the running time. However, 82 runs succeeded in the
NO-SIMP experiment while only 75 SIMP-1 runs succeeded
(p = .067). The success rate of SIMP-1 runs is 7% lower
than the one of NO-SIMP runs. Surprisingly, while SIMP-1
runs have a lower success rate, their average number of gen-
erations is still lower. This implies that successful SIMP-1
runs might tend to find the solution faster. Hence we divided
the evolution process into several phases and analyzed the
performances of each phase.

3.1 Performance by phase

 0

 5

 10

 15

 20

 25

 30

0-100 100-300 300-500 500-1000 Failed

NO-SIMP

SIMP-1

Figure 1: Performances by phases

As shown in Figure 1, SIMP-1 runs tend to find the so-
lution faster. In the first 500 generations, 58% of SIMP-1
runs succeeded while only 53% of NO-SIMP runs found the
solution. Among those who didn’t terminate in the first 500
generations, 61.7% NO-SIMP runs returned the correct pro-
gram in 1000 generations while only 40.5% SIMP-1 runs suc-
ceeded. The detailed success rates by phase are presented in
Table 3. For each phase, the precentages reveal how many
runs that didn’t terminate before the phase succeeded in
that specific phase.

1078

Table 3: Success rates by phase

Phase NO-SIMP SIMP-1
0-100 0% 1%
100-300 26% 27.3%
300-500 36.5% 41.7%
500-1000 61.7% 40.5%

3.2 Average size by generation

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 200 400 600 800 1000

A
v
e

ra
g

e
 S

iz
e

Generation

NO-SIMP
SIMP-1

Figure 2: Average size by generation

Figure 2 presents the average program size by generation.
As all initial programs were generated by the same function,
both NO-SIMP runs and SIMP-1 runs started at around
250. Both experiments reveal a dramatic drop after the be-
ginning of the evolution. Then the average size of NO-SIMP
runs started to rise steadily, nearly reaching the maximum
program size 500 in the last 100 generations. Meanwhile,
the average size of SIMP-1 runs leveled off since the 200th

generation.

3.3 Median error by generation

 500

 1000

 1500

 2000

 2500

 3000

 0 200 400 600 800 1000

A
v
e

ra
g

e
 M

e
d

ia
n

 E
rr

o
r

Generation

NO-SIMP
SIMP-1

Figure 3: Median error by generation

Because average error is easily influenced by extreme indi-
viduals, median error is considered to be a better represen-

tation of the whole population’s fitness. As shown in Figure
3, after a rapid decrease at the beginning, the median error
of NO-SIMP runs grew steadily until the 400th generation.
Then it gradually dropped. Finally it reached a low level
at the end of the evolution. The change of SIMP-1 runs’
median error is slightly different. It kept growing slowly for
the remaining generations.

The information provided by Table 3 and Figure 3 is con-
sistent. For instance, during the generation 300-500, NO-
SIMP runs had a slightly higher median error. Meanwhile,
it also has a lower success rate in that phase.

3.4 Best fitness by generation

 0

 50

 100

 150

 200

 250

 300

 0 200 400 600 800 1000

A
v
e

ra
g

e
 B

e
s
t

F
it
n

e
s
s

Generation

NO-SIMP
SIMP-1

Figure 4: Best fitness by generation

While the median error represents the fitness of the whole
population, the best fitness, which is shown in Figure 4,
represents the elite group of each generation. Notice that as
our fitness scores are represented by error values, the lower
the value is, the better the program performs. For both
the experiments, the best fitness dropped immediately after
the beginning of evolution. Then SIMP-1 runs maintained
a stable best fitness value, whereas for NO-SIMP runs the
decrease continued. An unpaired t-test shows that p = .084
for the difference in best fitness.

Interestingly, SIMP-1 runs experienced no improvements
on both median error and best fitness since the 200th gener-
ation. This implies that the evolution of the programs was
kept stagnant due to the employment of simplification.

3.5 Number of unique programs by
generation

One conjecture we had about the previous fact is that the
diversity of programs is reduced by simplification. However,
the number of unique programs, which is shown in Figure 5,
disproved it. SIMP-1 runs show a fall in number of unique
programs within the first 400 generations, followed by stable
sizes around 1700. For NO-SIMP runs, most programs in the
populations were unique in the first 400 generations. Then
more and more duplicated programs were produced. In the
last generation, only a bit more than 1300 programs were
unique.

One possible reason for the rapid decrease experienced by
NO-SIMPs runs is that the alternation of programs was lim-
ited by the size. When the parents had difficulty producing

1079

 1300

 1400

 1500

 1600

 1700

 1800

 1900

 2000

 0 200 400 600 800 1000

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
U

n
iq

u
e

 P
ro

g
ra

m
s

Generation

NO-SIMP
SIMP-1

Figure 5: Number of unique programs by generation

children without exceeding the maximum size limit, one par-
ent will be directly copied to the next generation. On the
other hand, it’s also possible that the population was gradu-
ally approaching the solution. This conjecture is supported
by the data on median error and best fitness.

4. CONCLUSIONS, CONJECTURES AND

FUTURE WORK
In this research we studied the impact of the simplifica-

tion genetic operator in a PushGP environment with lexicase
selection and ULTRA operator. The phase-based analysis
revealed that the introduction of simplification operator will
benefit the evolution in short term while it’s harmful for the
long run. By analyzing the data on median error and best
fitness, we showed that in the runs with simplification, the
evolution was actually almost stagnant. Then we used the
diagram of the number of unique programs to prove that
stagnancy was not caused by the lost of diversity.

Although we’ve got some interesting results, there are still
many unknowns. Here we list the two major open problems:
(1) How do the runs with simplification achieve a higher
success rate in the short term? (2) Why is the simplification
operator harmful in the long run?

Based on our data and analyzes, we have several conjec-
tures on these problems. For problem 1, we conjecture that
there are two reasons. Firstly, as the program sizes are suc-
cessfully controlled by the simplification operator, the com-
binatorial search space is much smaller. Thus, the possibil-
ity to find a solution by luck is higher. Secondly, it’s pos-
sible that the majority of the unused instructions will only
be turned into useful ones in the long run. Thus, by sim-
plifying the programs, most short-term-useless instructions
are removed. For problem 2, we conjecture that many use-
ful genetic materials are removed by simplification. While
the populations of NO-SIMP runs are evolving towards the
right direction, the evolution in runs with simplification re-
lies more on randomness due to the lack of genetic materials.

In the future, we plan to develop a tracking system which
is able to track the behavior of each individual in the popu-
lation and conduct more experiments for a deeper research.

5. ACKNOWLEDGMENTS
We thank Lee Spector and Thomas Helmuth for creat-

ing Clojush, which is the PushGP implementation used in
this research. We also appreciate Josiah Erikson for main-
taining the Hampshire College Cluster Computing Facility.
This research is based upon work supported by National
Science Foundation under Grant No. 1017817 and 1129319.
Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and
do not necessarily reflect the views of the National Science
Foundation.

6. REFERENCES
[1] L. Spector. Autoconstructive evolution: Push, pushgp,

and pushpop. In L. Spector, E. Goodman, A. Wu,
W. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo,
S. Pezeshk, M. Garzon, and E. Burke, editors,
Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO-2001, pages
137–146, San Francisco, CA, USA, July 2001. Morgan
Kaufmann.

[2] L. Spector. Assessment of problem modality by
differential performance of lexicase selection in genetic
programming: a preliminary report. In K. McClymont
and E. Keedwell, editors, 1st workshop on
Understanding Problems (GECCO-UP), pages 401–408,
Philadelphia, Pennsylvania, USA, July 2012. ACM.

[3] L. Spector and T. Helmuth. Effective simplification of
evolved push programs using a simple, stochastic
hill-climber. In Proceeding of the sixteenth annual
conference companion on Genetic and evolutionary
computation conference companion.

[4] L. Spector and T. Helmuth. Uniform linear
transformation with repair and alternation in genetic
programming. In R. Riolo, J. H. Moore, and
M. Kotanchek, editors, Genetic Programming Theory
and Practice XI.

[5] L. Spector, J. Klein, and M. Keijzer. The push3
execution stack and the evolution of control. In H.-G.
Beyer, U.-M. O’Reilly, D. V. Arnold, W. Banzhaf,
C. Blum, E. W. Bonabeau, E. Cantu-Paz, D. Dasgupta,
K. Deb, J. A. Foster, E. D. de Jong, H. Lipson,
X. Llora, S. Mancoridis, M. Pelikan, G. R. Raidl,
T. Soule, A. M. Tyrrell, J.-P. Watson, and E. Zitzler,
editors, Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2005), volume 2,
pages 1689–1696, Washington DC, USA, June 2005.
ACM Press.

[6] M. Zhang, P. Wong, and D. Qian. Online program
simplification in genetic programming. In T.-D. Wang,
X. Li, S.-H. Chen, X. Wang, H. A. Abbass, H. Iba,
G. Chen, and X. Yao, editors, Simulated Evolution and
Learning, Proceedings 6th International Conference,
SEAL 2006, pages 592–600. Springer, October 2006.

1080

