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ABSTRACT
It is well-known that Evolutionary Algorithms (EAs) are
sensitive to changes in their control parameters, and it is
generally agreed that too large a change may turn the EA
from being successful to unsuccessful. This work reports on
an experimental hybrid visualization scheme for the deter-
mination of EA stability according to perturbation of EA
parameters. The scheme gives a visual representation of
local neighborhoods of the parameter space according to a
choice of two perturbation metrics, relating perturbations
to EA performance as a variant of Kolmogorov distance.
Through visualization and analysis of twelve thousand case
study EA runs, we illustrate that we are able to distinguish
between EA stability and instability depending upon per-
turbation and performance metrics. Finally we use what we
have learnt in the case study to provide a methodology for
more general EAs.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures; G.1.6 [Optimization]; I.4.10
[Image Representation]: multidimensional

General Terms
Algorithms, Experimentation, Performance

Keywords
Evolutionary Algorithm; performance; perturbation; stabil-
ity; visualization

1. INTRODUCTION
Visualization exists to communicate data in a form un-

derstandable (by, or pleasing to) the eye, enabling the un-
derstanding of that data in such a way that the user is able
to strike conclusions or make decisions which would be more
difficult to make by other methods of communication. It is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
Copyright 2014 ACM 978-1-4503-2881-4/14/07 ...$15.00.
http://dx.doi.org/10.1145/2598394.2610549.

well-known that visualization has many applications, includ-
ing assisting the understanding of Evolutionary Algorithm
(EA) output, runs and states (which are all referred to as
data). EA data in practice tends to be vast and multidi-
mensional [13].

There are common techniques for static visualization of
EA data in at most four dimensions, such as contour maps
or heat maps, but for dimension numbers beyond four the
problem becomes difficult. One school of thought is in favor
of dimensionality reduction through statistical techniques.
For example, linear techniques such as Principal Compo-
nent Analysis (PCA) or Canonical Correlation Analysis, or
nonlinear techniques such as Kernel PCA or Local Linear
Embedding may be used (see [15] for a comparative review
of the above techniques). Alternatively, just part of the in-
formation may be presented through a simple projection.
Another school of thought favors judicious presentation of
statistics or consequences of the data. The popular taxon-
omy of this type of visualization is due to [12], which consid-
ers that the course and state of the EA may be separately
visualized.

Past work on visualization focussed mainly on summariz-
ing the EA course and state, where parameters and other
EA settings were assumed to be constants. In particular,
there seems to be an absence of work on visualizing what
happens to an EA when its parameters are changed, at ran-
dom or otherwise. The common EA paradigm of sensitivity
to parameter change is well known [4], it being generally
agreed that “bad” values of control parameters may render
the EA ineffective. Hence for effective EA performance it is
intuitively useful to find some way of measuring long-term
EA behavior given this sensitivity. Broadly this is referred
to as measuring EA stability. In this work we report on a
preliminary study concerning EA stability visualization.

There are various kinds of stability which may be mea-
sured, such as Lyapunov stability or Input-Output stability
for dynamical systems [14] which have well-known mathe-
matical treatments. However, there is a paucity of work
dealing with stability of EAs (for example, [9]) in general,
and via visualization in particular. We seek to character-
ize the long-run stability of EAs under perturbation of their
control parameters by using a parametric visualization, giv-
ing some examples of the visualization in action on twelve
thousand runs of a case study EA from previous work [3].
Specifically, we shall answer the following question:

If the control parameters are changed from a
“standard”set then how does the EA performance
change, visually speaking?
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Our visualization scheme provides information to deter-
mine whether a given EA is stable under change of control
parameters and, in particular, a boundary where the phase
transition between stability and instability occurs. This is
not always a simple transition, however, because “bad” pa-
rameter values may not be located on or close to a clear
boundary (that is, such values may occur in unexpected lo-
cations in parameter space).
This paper is organized as follows. In Section 2, we review

relevant work in EA visualization before specializing context
and preparing our case study in Section 3. In Section 4 we
give further details of the visualization and some results,
before concluding the work in Section 5.

2. PREVIOUS WORK IN EA VISUALIZA-
TION

In this section we review relevant work in EA visualiza-
tion. There are generally two separate well-known methods
of processing visualizations: online and offline. Online visu-
alization refers to visualization while the EA is running and
is more immediate. It may be useful in order to track the
behavior of runs, leading to possible conclusions before the
end of a run. Offline visualization is based on a summary of
EA run information, or statistics collected after completion
of the run. Some popular visualization works are as follows.
The work of [12] gives many examples of online EA visual-

ization and also details GEATbx, a GA toolbox forMatlab.
Another work is that of [7], where in their visualization pack-
age EAVis the authors used a so-called evolution map that
“holds various information about the evolution of a whole
system over the time”. The map is comprised of lines (repre-
senting mutations), boxes (inversion) and circles (crossover)
positioned at random. The work of [6] introduced GAVEL,
an offline Java package that assists in reverse tracking GA
runs in order to uncover the lineage of good solutions. This
enables generation of displays such as “number of chromo-
somes in the ancestry tree per generation” and “origin of
genes in final solution”.
The work of [2] exemplified the popular EA visualization

tool Gonzo which enables the generation of most common
visualizations (fitness-time graphs, basic search space visu-
alization, schema highlighting). Other visualizations of this
type have been performed, most notably those of [8] for
GraphDice which visualized EA solution space and [10] for
high-dimension fitness landscape analysis. The work of [8]
was later built upon, combining stochastic optimization with
GraphDice to produce EvoGraphDice [1]. EvoGraphDice
combines dimensions in an evolutionarily learned manner,
with user input, to facilitate dimensionality reduction.
In the work of [16], the authors visualized “mutually non-

dominating solutions”coming from a large number of dimen-
sions in the Multi-Objective Evolutionary Algorithm con-
text. Parameter space and objective space were visualized
with the help of heatmaps and the RadViz mechanism. Their
visualization was in the form of an n-vertex polygon, each
vertex corresponding to an objective of the problem at hand.
Finally, the work of [11] also considered visualizations of
clusters of EA outputs. The authors attempted to measure
solution sensitivity in an EA through a variation of standard
deviation, but control parameters were not considered.
The above visualizations aim to tell the user more about

the processes of the EA in an attempt to understand re-

sults. Distinct to the above works, we shall treat the EA
as a black box and thus will not consider the visualization
of process or objectives. We simply wish to determine EA
performance stability, through visualization, under control
parameter perturbation. Our visualization is presented as
a “fusion” of parameter and performance metrics, and was
borne out of an investigative approach to the mathematical
aspects of EA stability. We wish to use the visualization
to analyze the parameter space landscape, uncovering not
only whether a particular EA is stable or not but also at
what magnitude of parameter perturbation the EA makes a
transition from stability to instability.

3. CASE STUDY AND EA SETUP
In this section we consider the EA presented in [3] with

the intention of using it as a case study. The mentioned work
details an EA to solve a cryptographic problem in groups.
We shall not present a treatment of the mathematical prob-
lem here, but do direct the interested reader to the above
work for further details. The EA has input of a pair of n-
ary strings, output a choice of a pair of n-ary strings or “no
solution reached” and is set according to the values of its
control parameters. Each string represents a word in a par-
ticular group, G. To solve the problem, an exact solution is
required. If the problem is not solved within s generations
then the EA terminates.

Starting with a population size of q (in this work we take
q = 200) these parameters control the numbers of individ-
uals produced from the following operations (in this order):
crossover, mutation (of which there are three types), selec-
tion and random immigration. This yields a six-dimensional
parameter space, S =

{
(pi)

6
i=1 :

∑
pi = q, pi ≥ 0

}
, although

for EAs with n ≥ 6 parameters our resulting visualization
may, of course, be generalized. Below we summarize the
main notations, which are described in more depth in the
article [5], first covering the parameter space and the met-
rics over it and, second, the EA performance measure.

3.1 Parameter Space
We may represent a parameter set as an ordered vector

p = (p1, p2, . . . , p6) ∈ S. For example, the parameter vector
p = (22, 40, 21, 54, 39, 24) denotes that, out of each popula-
tion, twenty-two individuals were produced from the previ-
ous population by crossover, forty by the first type of mu-
tation, and so on. Given a parameter vector p (the base
vector) for which the EA achieves a given level of perfor-
mance we may define a perturbation in two ways. First we
may define the vector p′ that is produced from p. As we as-
sume the population size is constant, the sum of the vector
p′ will be preserved. Second, we may define the perturba-

tion itself as ε = (ε1, ε2, . . . , ε6) such that p + ε = p′ by

elementwise addition. It is easy to observe that
6∑

i=1

εi = 0.

We now may define metrics over S. Two examples of such
metrics producing non-negative integer outputs are the l1-
and l∞-norms over S. As perturbation metrics, these may
be written as

d1 (ε) =
6∑

i=1

|εi| , (1)

d∞ (ε) = max
i=1,...,6

|ε| . (2)
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We naturally define the parameter vector b−neighborhoods

N1,b

(
p
)
=

{
p′ ∈ S : p+ ε = p′, d1 (ε) ≤ b

}
(3)

N∞,b

(
p
)
=

{
p′ ∈ S : p+ ε = p′, d∞ (ε) ≤ b

}
(4)

to denote the set of all parameter vectors up to and including
a distance of b from the given base parameter vector p and
metric. These neighborhoods will be our search spaces.

3.2 EA Performance Metric
There are several well-known performance metrics for EA

runs, depending upon the structure of the problem at hand.
For example, we may wish to find the average objective
value, a solution within a specified tolerance of the opti-
mum or a solution achieving a given objective value. In
our work we take the EA performance to be the generation
count, which is simply the number of required generations
to find an exact solution to a given problem instance. From
the generation count, we define the EA performance metric
as an analogue of Kolmogorov distance

dK
(
p, p′

)
=

(
Er

(
p
)
− Er

(
p′
))2

, (5)

where p′ ∈ N•,b
(
p
)
is a parameter vector chosen from the

b-neighborhood of p. The mean generation count from r in-
dependent trials of the EA with the given parameter vector
is denoted Er (·) [4], with r the resolution. Given a bound
b > 1 and a parameter vector p, it is clear that the sizes
of the above neighborhoods become large relatively quickly.
For instance, for b = 30 we have

∣∣N1,30

(
p
)∣∣ = 1894007 and∣∣N∞,30

(
p
)∣∣ = 844596302, making sampling of whole neigh-

borhoods inefficient and thus justifying the sampling strat-
egy used in Section 4.1.

3.3 Setup
We used a short instance (instance (I1) of [3]), fixed for all

experiments. This particular instance was used for efficiency
purposes, as each figure in this paper is comprised of 1000r
EA runs. To provide a comparison, we used two base param-
eter vectors for our experiments (more details are given in
Section 4.2). In the next section we detail the visualization
of EA performance and give experimental results.

4. VISUALIZATION AND RESULTS
In this section we first give details of the parameter space

projection and describe the two distinct types of visualiza-
tion that will be performed using that projection. We follow
this with results of the EA runs, contrasted by parameter
base vector and including visual EA stability analysis.

4.1 Explanation of Visualization
In [5] we introduced a mathematical approach to EA sta-

bility determination, and in this work, focus upon the vi-
sualization and evaluation of it. The codes to produce the
visualization are implemented in Matlab. As the means
of evaluation of the visualization we introduce a visual no-
tion of EA stability, judging stability by sight rather than
by statistical methods. Our visualization is one of the EA
performance landscape rather than of the solution space or
objective functions, and is achieved through a projection

π : G2 × S → R+ × C, (6)

where S is the parameter space, G2 is the direct product
of two copies of the group G (each containing one word of
the instance) and C is the color space. The color space in
Matlab is a collection of 64 colors mapped to values in the
range 0,1,. . .,63. We elected to use the standard heatmap,
with small values in the range mapped to blue colors and
large values to red colors.

We take the codomain of the projection π to be a section of
EA output. From this we term our visualization to be one of
parameter-output space. The visualization is with respect to
distance of perturbation (rather than the perturbation itself,
which would not be representable) and size of performance
effect, combined in a 2-D representation. The first factor
of the codomain of π is associated to the distance from the
origin of the plot. We have the two choices of either mapping
d• (ε) or mapping dK

(
p, p′

)
onto R+. In the former case its

image is restricted to the set of all positive integers. The
second factor of the codomain of π, the color space, has the
alternate metric mapped to it. In other words, we have two
types of visualization, where each given parameter vector is
represented by a colored dot.

Type 1: The distance of the dot from the center repre-
sents the size of perturbation under the parameter metric d1
or d∞. The Kolmogorov distance is represented by a color.

Type 2: The distance of the dot from the center rep-
resents the scaled Kolmogorov distance, and the color rep-
resents the size of perturbation with respect to the given
parameter metric.

On the visualization there are concentric circles provided
for ease of visualization and for convenience (the circles are
not intended to convey a sense of location in the neigh-
borhood). The samples depicted in each visualization are
produced by repeated EA trials with the sampling being
uniformly at random, without replacement, in the neighbor-
hood. We fixed the sample size to N = 1000 output distance
measurements (and so 1000r EA runs per visualization). To
produce each diagram we fixed a base parameter vector p
and a perturbation bound b and then sampled N − 1 pa-

rameter vectors
{
p
i

}N−1

i=1
in the neighborhood N•,b

(
p
)
. As

above, we may use either metric such that the metric is
fixed throughout the runs that produce the visualization.

The value of the Kolmogorov (output) metric dK
(
p, p

i

)
was

then calculated via performing EA runs as described.

4.2 Results of Runs
The following two subsections give examples of visualiza-

tions under both the l1 and l∞ metrics, comparing the type
1 and type 2 outputs under an example of a, so-called, ef-
ficient parameter base vector and an inefficient parameter
base vector. Both vectors were chosen by experimentation
on account of encouraging distinct EA performance in terms
of mean generation count and the standard deviation (see
subsections 4.2.1 and 4.2.2). In all figures we chose the
bound b = 50 and resolution r = 3, omitting other plots
for smaller bounds and smaller resolutions. We shall ob-
serve that changing the base parameter vector affects the
output produced, and by extension, the visualization.

4.2.1 An Efficient Parameter Base Vector
The “efficient” parameter vector was chosen to be p =

(5, 33, 4, 128, 30, 0), giving a mean generation count over ten
independent EA runs of 179 for the instance, and for which
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an EA termination constant of s = 1500 was used. This was
chosen as the EA performance was relatively consistent; over
ten runs the standard deviation was 51.8 generations [5].

(a) EA performance differences under the l1 metric as the
radius.

(b) EA performance differences under the l∞ metric as the
radius.

Figure 1: Typical type 1 plots for an efficient param-
eter vector, showing colored EA performance differ-
ences under the l1 metric and l∞ metric. Each plot
uses a distinct set of EA runs.

Fig. 1 presents two type 1 plots. In this figure we ob-
serve that the smaller perturbations encourage only small
performance differences (blue colors) in the EA when com-
pared to the base performance using parameter vector p.
As the perturbation size (radius) increases, other colors be-
gin to appear. This is more noticeable on the l∞ metric
plot (Fig. 1(b)). The different clustering behaviors be-
tween Figs 1(a) and 1(b) correspond to the distinct defi-
nitions of the l1 and l∞ metrics. For example, if we take
the parameter vector p′ = (5, 23, 7, 135, 25, 5) we see that

ε = p′ − p = (0,−10, 3, 7,−5, 5), and so d1 (ε) = 30 while
d∞ (ε) = 10. We may see this difference as greater informa-
tion loss under the l∞ than the l1 metric. That is, under the
l∞ metric the dots have a closer clustering behavior towards
the center of the plot, as a large value of the l1 metric is
likely to be much smaller under the l∞ metric.

For the l1 metric (Fig. 1(a)) we notice that non-blue dots
begin to appear at around radius 30-40. Correspondingly
on the l∞ metric (Fig. 1(b)), non-blue dots appear to occur
appreciably earlier, at around radius 20. This shows that
outside the given bounds for each metric the EA begins to
exhibit instability (with respect to the base parameter vec-
tor). Thus the visualization shows where the zone of EA sta-
bility ends, something difficult to predict from repeated EA
runs alone. We include only the resolution r = 3 but note
that, for r = 1, fewer dots are in the blue range (that is, there
is more performance variation, which should be expected).
This indicates that as r increases the EA performance is less
variable under perturbation of the base parameter vector p.
Examples of type 2 plots are given in Fig. 2.

(a) EA performance differences under the l1 metric as the
color.

(b) EA performance differences under the l∞ metric as the
color.

Figure 2: Typical type 2 plots for the same sets
of runs as Fig. 1 under an efficient parameter vec-
tor. Now, the radius denotes a performance measure
rather than perturbation size (denoted by color).

The type 2 visualization displays a much more intuitive
picture of stability. The values given on the axes may be ig-
nored (we clearly do not have negative output distance dK)
on the grounds of it being purely a diagrammatic represen-
tation. In Fig. 2 there is clear clustering behavior around
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the center for each metric, which is expected and this result
is in accordance with those of Fig. 1. The majority of the
dots are within the circle denoting a Kolmogorov distance
of approximately 5× 105. However, for the l∞ metric (Fig.
2(b)) there seems to be a greater variety of colors within
that clustering, showing that there is a smaller correlation
between performance and perturbation size with that met-
ric. There is a wider spread of the dots, the majority of
which are within a Kolmogorov distance of approximately
3.2×106, approximately one order of magnitude larger than
the spread with the l1 metric. Next we consider visualiza-
tions of the EA with an inefficient parameter vector.

4.2.2 An Inefficient Parameter Base Vector
Our second base vector was p′ = (22, 40, 21, 54, 39, 24),

giving a mean generation count of 1060 over ten independent
EA runs. This was chosen because the EA performance was
rather variable: the standard deviation over those runs was
480.9 generations. Because of the relatively high standard
deviation we increased the termination constant to s = 3000.

(a) EA performance differences under the l1 metric as the
radius.

(b) EA performance differences under the l∞ metric as the
radius.

Figure 3: Type 1 plots for an inefficient parameter
vector. The upper subfigure shows the distribution
under the l1 metric, and the lower the l∞ metric.

In Fig. 3, it is clear there is far wider variation in EA
performance for both parameter metrics than in Fig. 1.
For the l1 metric (Fig. 3(a)) there are already many more
lighter colors compared to Fig. 1(a), which had an efficient
base parameter vector. There is still a reasonable radius of
stability, although this does not seem to be clear (due to
the color variation even within a small radius). However,
for the l∞ metric (Fig. 3(b)) the effect is starkly apparent.
There seems to be a small zone of stability (for example, to
radius 10 at most) but this contains many perturbations that
produce large changes in EA performance (light blue colors).
There are also a preponderance of red colors and thus large
EA performance differences. As the radius increases, large
changes in EA performance become apparent. Hence the
radius of stability is smaller than that of an efficient base
parameter vector, if such a radius exists at all.

(a) EA performance differences under the l1 metric as the
color.

(b) EA performance differences under the l∞ metric as the
color.

Figure 4: Type 2 plots for an inefficient parameter
vector, corresponding to the type 1 plots of Fig. 3.

Fig. 4 displays type 2 plots for an inefficient parameter
vector. Compared to Fig. 2, on each subfigure there is a
much wider spread of dots (as the EA performance differs
more). An intuitive conclusion from this figure is that an
inefficient parameter vector is likely to induce a type of less
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controllable randomness in the EA. This is supported by the
counterpart plots of Fig 4, where this increased randomness
is illustrated by a large variety of colors.
For the l1 metric plot of Fig. 4(a), even the outer circle de-

noting a Kolmogorov distance of approximately 4×106 has a
large number of dots on or outside it. As we should expect in
the l∞ metric case (Fig. 4(b)), the visualization seemingly
has no central clustering with respect to Kolmogorov dis-
tance, a conclusion also supported by its counterpart Fig.
3(b). In the next section we summarize our findings and
conclude the work.

5. CONCLUSIONS
In this work we presented a novel experimental visualiza-

tion of EAs under control parameter perturbation, using a
case study of a published EA in cryptography. The visualiza-
tion was a hybrid, representing a combination of projections
of two metrics. The first metric was on the parameter space
and the second was an EA performance metric based upon
Kolmogorov distance. This enabled us to achieve a more
substantial picture of EA stability than would be possible
by basic statistical methods.
Our visualization captures the radius of stability under a

typical efficient parameter vector and also the step change
which occurs when the parameter vector is changed to an
inefficient one. We observed when running the EA repeat-
edly with an efficient parameter vector that there was a clear
radius of stability. This is given by type 1 plots where we
have a preponderance of dark blue colors and by type 2 plots
where there was an identifiable radius with the majority of
dots inside it. This was certainly true for the l1 metric, al-
beit the conclusion was weaker for the l∞ metric. Contrary
to the above findings are the conclusions for when an inef-
ficient parameter vector is used. In this case there does not
seem to exist such a clear radius of stability for type 1 visu-
alizations under the l1 metric. For the l∞ metric there is no
identifiable radius of stability. These conclusions are rein-
forced by the type 2 visualizations of Fig. 4. This provides
a positive evaluation of the visualization; that is, we may
distinguish between EA stability and instability depending
upon perturbation and performance metrics.
We may thus answer the question posed in the introduc-

tion as follows. If the standard set of control parameters
is efficient then there is a clear bound on EA performance
change (in terms of the defined output metric) given by an
identifiable radius of stability with little variation outside
this radius. This is illustrated by both type 1 and type 2
visualizations. If the standard set of control parameters is
inefficient then there often does not exist a clear bound on
EA performance change. The key part of our visualization
is that we may visualize why exactly this does not occur
and also the performance distribution with respect to per-
turbation size. This performance distribution assists in the
identification of parameter vectors which encourage atypical
EA behavior and are worth investigating further. This fur-
ther investigation may entail approximating the objective
landscape and runtime analysis calculations. It may also
assist as a method of nonlinear stochastic parameter opti-
mization, with the identification of “sweet spots” (and the
converse!) in the parameter distribution.
Turning to generalized EAs, our visualization may be eas-

ily generalized. If we have a general EA with parameter
vector p = (p1, p2, . . . , pn) for n > 1 then the metrics we

used for the case study are still suitable. Our treatment
makes the assumption that the sum of a parameter vector
is constant, using that assumption in the definition of the
neighborhoods. As the visualization is created through pro-
jection of only part of the EA output, it may offer an insight
into parameter spaces of arbitrary finite dimension.

Our visualization has the feature that there is no informa-
tion loss. The visualization is created from a log file gener-
ated by the repeated EA runs, which contains the pertinent
information. Thus the original information may be recov-
ered. The advantage of our offline visualization is that it
may be customized to any number of EA runs. However,
the visualization also has the clear disadvantage that con-
clusions are difficult to reach until the end of a set of runs.
This gives several sources of further work which we intend
to pursue:

1. We wish to extend the visualization to an online vi-
sualization in order to enable further human interven-
tion after a comparatively small number of runs. The
update speed of visualization would depend upon the
instance and resolution chosen.

2. This paper chronicles just two of the possible parame-
ter metrics that may be used. It is also clear that the
chosen parameter space metric dramatically affects the
visualization. Hence we should like to attempt other
parameter and performance metrics in an integrated
approach.

3. Finally, we intend to pursue research in other types of
visualization, including those giving some indication
of the “direction” of the perturbation in the parameter
space.

Due to time constraints other EA instances were not con-
sidered, but the visualizations (and the conclusions on EA
stability therein) are not expected to radically change. From
experience [4], the majority of runs under our setup are on
the same performance spectrum of parameters (from which
we have chosen two parameter vectors at opposite ends of
the spectrum and so have presented two opposing visual-
izations). Overall, then, we have shown an interesting and
novel visualization which proposes some interesting and po-
tentially fruitful directions for EA performance analysis and
research.
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