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ABSTRACT
This paper proposes a technique of Aggregation Trees to
visualize the results of high-dimensional multiobjective op-
timization problems, or many-objective problems. The high-
dimensionality makes it difficult to represent the relation be-
tween objectives and solutions. Most approaches in the lit-
erature are based on the representation of solutions in lower
dimensions. The technique of Aggregation Trees proposed
here is based on iterative aggregation of objectives which
are represented in a tree. Besides, the location of conflict is
also calculated and represented on the tree. Thus, the tree
can represent which objectives and groups of objectives are
harmonic the most, what sort of conflict is present between
groups of objectives, and which aggregations would be more
interesting in order to reduce the problem dimension.

Categories and Subject Descriptors
G.1.6 [Optimization]: Stochastic programming; H.3 [In-
formation Storage and Retrieval]: Information Search
and Retrieval

Keywords
Aggregation Trees, Multiobjective Optimization, Many-Ob-
jective Optimization, Visualization, Objective Reduction

1. INTRODUCTION
Multiobjective optimization is a very important tool to

solve real-world problems. As the number of objectives
grow in those problems, we reach the field of Many-objective
Problems (Section 2). Visualizing the relation between ob-
jectives in those problems becomes more difficult as most
solutions become incomparable in relation to Pareto domi-
nance.

In this paper, we propose a method of Aggregation Trees
(Section 3) to represent the relation between objectives ac-
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cording to their reducibility in a way that we can represent
the relation between groups of objectives for a problem.

Thus, Aggregation Trees can be used to easily visualize
the results of Many-objective problems, group objectives ac-
cording to their reducibility, show the amount of conflict and
harmony between objectives. The technique is based on an
objective reduction algorithm.

Also, in the context of many-objective optimization, the
trees provide the decision maker with information on where
it could be convenient to restrict the preference area for the
next optimization round.

We then show results for some test problems (Section 6)
and conclude our paper with discussions about the method
and suggestions concerning possible future work (Section 7).

2. VISUALIZATION IN MANY-OBJECTIVE
OPTIMIZATION

A multiobjective optimization problem can be mathemat-
ically defined as:

min(f1(x), f2(x), . . . , fk(x)), x ∈ F (1)

where fi(x) is the i-th objective function to be minimized.
Each function fi(x) maps the optimization variables of a
candidate solution x to an objective value represented in
one dimension of the objective space. The set of all combi-
nations of possible values for optimization variables defines
the search space:

S = {x = {(x1, v1), . . . , (xn, vn)} : vi ∈ Di} (2)

where each variable xi assumes the value vi in its respective
domain Di.

If the problem has constraints, those constraint functions
define the feasible set of solutions:

F = {x ∈ S : gk(s) ≤ 0, k = 1, . . . , r} (3)

Thus, solving the optimization problem defined in Equa-
tion 1 means to find the set of solutions which are Pareto-
optimal, that is, solutions that cannot be improved in any
of the objectives without implying in a worse result for an-
other objective. In mathematical terms, a feasible solution
x1 ∈ F dominates another solution x2 ∈ F if the conditions
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below are attained:

fi(x
1) ≤ fi(x

2) for all i ∈ {1, 2, 3, . . . , k} (4)

fj(x
1) < fj(x

2) for at least one j ∈ {1, 2, 3, . . . , k} (5)

With a Pareto-based fitness assignment scheme, Evolu-
tionary Algorithms have been the most common strategy to
tackle Multiobjective Problems [7]. Those strategies usually
permit diversity control [3], real-time interaction with the
decision maker [34], and are elitist [8, 17].

However, the difficulty of the problem grows exponentially
with the number of objectives and problems with more than
three objectives have been called Many-objective Problems
[15]. Besides the memory cost of representing a multidimen-
sional Pareto-front, the convergence of Evolutionary Algo-
rithms is compromised because Pareto-based ranking does
not work as a good discriminator of solutions in those prob-
lems [16] as most solutions are non-dominated. Even when
we have a reasonable solution, the visualization of those so-
lutions in the objective space is also a difficult problem for
the Decision Maker.

Palliative solutions for those problems are (i) considering
more relaxed dominance relations to facilitate discrimina-
tion [3], (ii) modifying fitness measures [10, 2], (iii) opti-
mizing scalarized single-objective functions [33], and (iv) di-
mensionality reduction through identification of redundant
objectives [13].

Still in the category of objective reduction, the main ap-
proaches are (i) finding a minimum objective subset within a
given error and according to a dominance relation[5, 6], (ii)
Principal Component Analysis (PCA) or PCA techniques
adapted to handle non-linear relations between objectives
[27, 28], (iii) unsupervised feature selection [20], (iv) focus-
ing on the corners among non-dominated solutions [29], and
(v) mathematical formulation and aggregation of the most
harmonic objectives [13].

The results for problems with 2 or 3 dimensions can be
easily represented in 2 or 3 axis as in Figure 1. In that
Figure, we have the quality of many solutions, each repre-
sented by a point. The non-dominated solutions are the ones
marked with a number 1 in the first front and all the other
solutions are worse than at least one solution in the first
front. In most cases, the dominated solutions are not shown
in the graph in order to make the information clearer.

For visualizing non-dominated results in many-objective
optimization, the most common approach is parallel coor-
dinates, as represented in Figure 2 for 7 objectives. In this
graph, each line represents the quality of a solution and the
objective values are normalized. When there are many lines
crossing between 2 adjacent objectives, that means there is
conflict between those objectives. Problems with this rep-
resentation method are that (i) we can only see conflict be-
tween adjacent objectives; (ii) the representation can be-
come very confusing when the number of solutions or objec-
tives increase.

Other approaches for visualization of solution quality in
many-objective optimization are (i) trying to map the values
on lower dimensions with minimum loss of information [22,
18], (ii) cloud visualization [11], (iii) self-organizing maps
(SOM) [23, 35], (iv) Interactive Decision Maps [21], (v) a
Hyper-space Diagonal Counting method [1], (vi) level dia-
grams [4], and prosections [30].

In more recent approaches, Kurasova et al. [19] propose
an approach based on neural gas clustering and multidimen-
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Figure 1: Results for a 2-dimensional problem
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Figure 2: Representing the quality of solution for
Many-objective Problems

sional scaling dimension reduction to project the solution
onto a plane, where the points are marked with their dis-
tance to the ideal point.

Walker et al. [31] did an extensive review on methods
for Pareto-visualization and presented their own methods.
They use spectral seriation to rearrange the solutions and
objectives plotted on a heatmap. They also present two
methods to visualize solutions in a plane: one that maps a
set to the interior of a polygon on a plane, and another that
uses a measure of dominance distance between solutions to
yield visualizations in two dimensions.

Fieldsend and Everson [12] propose a method to visualize
Pareto relationships in two-dimensional scatterplots. They
attempt to create a two-dimensional projection with mini-
mal loss of dominance information. In their plot, points rep-
resent solutions and connecting lines represent dominance
relations.

In this context, we need visualization methods in which we
can visualize the relation between objectives and groups of
objectives with minimum loss of information. Besides, it is
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important to give relevant information to the decision maker
so that they can choose how to best restrict the preference
area until they get to a single solution.

3. AGGREGATION TREES
The Aggregation Trees presented on this paper are based

on a specific objective reduction algorithm [13] that mea-
sures harmony between objectives. The more harmonious
two objectives are the higher is their reducibility [24, 25].

In order to exemplify the utility of the proposed Harmony
Trees, consider the set of solutions represented in the Parallel
Coordinates of Figure 3. Objectives 1, 2, 4, 6, 8, 10, and 12
have the same values for all solutions and therefore are in
complete harmony.
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f(
x
)

Figure 3: A set of solutions with many sorts of con-
flict

The Aggregation Tree in Figure 4 represents the relation
between those objectives and their reducibility in the struc-
ture of a tree. The child nodes represent objectives and
parents represent aggregations of those objectives. The per-
centages on parent nodes represent the conflict between its
two children.

Parents represent a compound objective formed by the
aggregation of the child objectives and renormalization of
the values. Below every parent node, we have the children
that are aggregated in that node and the conflict between
its two direct children. For example, the node f11 + f3 −
25% represents a compound objective with the aggregation
of objectives f11 and f3 through summation. Those two
objectives have 25% of non-parametric conflict, which can be
used as a measure of the loss of information implied by this
aggregation on the representation of the Pareto front. Other
parent nodes represent higher order compound objectives
formed in a similar way but their value of conflict represent
only their direct children.

By visualizing objectives in the Aggregation Tree, it is
easy to see the relation between the objectives and in case
the decision maker wants to make compound objectives to
reduce their preference area, the nodes give information on
which would be the best ones to group. Instead of only
showing the conflict between every two objectives, the tree
also shows the conflict between groups of objectives that
could be put together.

f11+ f3 + f10+ f8 + f6 + f4 + f2 + f1 + f12+ f9 + f5 + f7 − 25%

f11 + f3 + f10+ f8 + f6 + f4 + f2 + f1 + f12+ f9 + f5 − 26%

f11 + f3 + f10+ f8 + f6 + f4 + f2 + f1 + f12+ f9 − 0%

f11+ f3 − 25%

f11 f3

f10+ f8 + f6 + f4 + f2 + f1 + f12+ f9 − 5%

f10+ f8 + f6 + f4 + f2 + f1 + f12− 0%

f10+ f8 + f6 + f4 − 0%

f10+ f8 − 0%

f10 f8

f6 + f4 − 0%

f6 f4

f2 + f1 + f12− 0%

f2 + f1 − 0%

f2 f1

f12

f9

f5

f7

Figure 4: Aggregation Tree on the set of solutions
from Figure 3

The order of aggregation of the objectives is according the
their harmony and distant leaf nodes in the tree are objec-
tives with little harmony. Thus, if we perform a depth-first
search on the child nodes of the tree, we can have a rec-
ommendation of a convenient way to choose good adjacent
objectives in parallel coordinates, such as the one in Figure
5, where it is easier to see the relation between the objectives
as the most harmonious objectives are grouped together.
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Figure 5: Parallel coordinates with the objectives
ordered by the tree.

Thus, an Aggregation Tree can help decision makers visu-
alize redundancy, conflict, and harmony between objectives
and groups of objectives. The source code in
MATLAB for all those algorithms is available from
http://www.alandefreitas.com/.
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4. OBJECTIVE AGGREGATION
Figure 3 represented many kinds of conflict and harmony

among many objectives in parallel coordinate graphs. When
good values for one objective imply bad values for another
objective, there is conflict between these objectives [25, 14].
When improvement in one objective leads to improvement
in another objective, there is harmony between these objec-
tives.

Harmonious objectives can be perceived in parallel coordi-
nates by non-crossing lines. This relation makes it related to
the possibility of reducing the number of objectives without
losing information in the Pareto front. According to those
definitions, we use a non-parametric metric of harmony [13]
to measure which pair of objectives should be aggregated
next and represented on the tree.

The non-parametric measure Hab of harmony between ob-
jectives fa and fb is defined in Equation 6. Xij is the value
of the solution i on the objective j and Rij is the rank of
Xij within X.j . Thus, X′

ij represents the values of Xij nor-
malized according to Rij . Cab is the non-parametric conflict
between the objectives fa and fb. This measure is equiva-
lent to Spearman’s footrule between the ranks in objectives
fa and fb. cmin = 0 is the minimum value possible of con-
flict between two objectives. cmax is the maximum value of
conflict for two objectives, being n the existing number of
points.

X′
ij = Rij

Cab =
∑
i

|X′
ia −X′

ib|

cmax =

n∑
i=1

|2i− n− 1|

Hab = 1− Cab

cmax

(6)

This measure of harmony is insensitive to any previous
non-disruptive normalization of the values, that is, insensi-
tive to any normalization that does not alter the order or
the values in the set of solutions. That means that the ob-
jectives can use different units. In fact, the measure reflects
how much the lines would be crossing between objectives
fa and fb on parallel coordinates. When we divide Cab by
cmax to get our measure of harmony, we guarantee that all
harmony values range from 0 to 1.

As mentioned before, the most harmonious two objectives
are the better candidates they are to be grouped into a new
compound objective and this fact is conveniently used by
the Aggregation Trees to represent the relationship between
objectives.

5. THE PSEUDOCODE
The construction of a tree is an iterative process in which

we aggregate two objectives at each iteration. In order to
aggregate two objectives, we calculate the harmony between
every pair of objectives. The process is described in Algo-
rithm 1.

A more detailed description is as follows:

• Line 1: structure of the tree is initialized with a root
node as the parent of all objectives.

Data: Set X of Points in the Objective Space
Result: Harmony Tree t

1 Initializes tree t with a root node and all objectives as
children;

2 while there are still objectives to be grouped do
3 X′ ← reduce(X);
4 X′ ← normalize(X′);
5 H← harmony matrix(X′);
6 a, b← leaf or compound objectives of X′ with the

most harmony;
7 c← conflict(X′, a, b);
8 t receives a new node nn;
9 nn receives a and b as children;

10 nn keeps the values (c);
11 a and b are grouped. Next iteration has one

objective less;

12 end
13 Plot the Harmony Tree t;
14 order ← leaf nodes of t in the order as they appear in t;
15 Plot the objective values in parallel coordinates

considering order;
Algorithm 1: Constructing an Aggregation Tree

• Line 2: the iterative loop begins. At each iteration,
the two most harmonious objectives will be aggregated
into a new parent node.

• Line 3: a new version of the objective values is created
for the iteration of the loop. That new version con-
siders all the aggregations done so far. Those aggre-
gations are performed by ranking the objective values
and summing them. This summation can lead to val-
ues that can go from 1 to 2n because the rank values of
two objectives are being considered in the summation.

• Line 4: this new version of X′ is normalized once more
on the aggregated objectives to find the ranking values
Rij from 1 to n.

• Lines 5-6: the pair of objectives with the most har-
mony is calculated.

• Line 7: the conflict between the two most harmonious
objectives is calculated.

• Line 8: a new node is included in the tree as a child of
the root node.

• Line 9: this new node receives the nodes that were
representing the most harmonious objectives so far.

• Line 10: the value of conflict for the most harmonious
objectives is also kept by this new node. The root
node has now one objective less and a new iteration of
algorithm begins in line 3.

• Line 13: we plot the resulting tree.

Briefly, the reduction algorithm aggregates the two most
harmonic objectives at each iteration until there is only one
objective left. The tree represents all the aggregations until
we form the single objective that represents the simple sum-
mation of all objective values and the values of conflict are
represented. The order of the elements in the tree suggests
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an order for the absolute objective values to be plotted on
parallel coordinates.

Being n the number of solutions and m the number of ob-
jectives, the normalization of the results is O(mn logn) at
the first iteration and O(n logn) at other iterations. Calcu-
lating the harmony matrix has cost O(nm2). Thus, being m
also the number of iterations, the final cost of the algorithm
is O(max(m3n,mn logn)). If we use a comparison-based
sorting algorithm O(n), we have a total cost O(m3n) at all
cases.

6. RESULTS ON TEST PROBLEMS
In order to show how the tree can represent the trade-offs

involved in the results of the optimization of many objec-
tives, we use the algorithm PICEA-g [32] to optimize solu-
tions for the test problem DTLZ2 [9].

This test function is useful to investigate the scalability
of MOEAs in the context of many-objectives. The function
is optimized for 20 objectives during 600 generations with
100 individuals each. Figure 6 shows the solutions in the
objective space. In order to facilitate visualization, the so-
lutions clustered with a PSA algorithm [26] into 7 clusters
and solutions in the same clusters have the same colors.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
min

max

Trade - off Graph

O
b
j
e
c
t
iv

e
v
a
lu

e

Ob j e c t iv e numb e r

Figure 6: DTLZ2 - Parallel Coordinates

As expected, it is difficult to notice the exact relation be-
tween the objectives. Thus, we analyse the relation between
objectives and show the resulting tree in Figure 7. The
two most harmonious objectives are f2 and f3, with only
18.172% of non-parametric conflict.

According to the tree and the harmony values, the next
consecutive aggregations involve objectives f1, f4, f11, f10,
respectively. As we know that the aggregations with lowest
conflict happen first, we can find all the aggregations be-
tween the objectives until we have only one objective, which
would be the normalized summation of all objective values,
represented by the root node.

By looking at intermediate parent nodes, we can also no-
tice the relation between groups of objectives. This relation
can be transferred back to parallel coordinates to give us
the representation of absolute objective values for all the
objectives. However, the position of leaf nodes in the tree

can suggest their position in parallel coordinates in such a
way that harmonious objectives are put together and the
contrast between conflicting groups is made clear. Figure 8
shows this rearranged representation of the solutions. The
solutions were also clustered by a PSA algorithm.

16 15 13 12 8 7 11 10 3 2 1 4 6 5 9 14 17 18 19 20
min

max

Trade - off Graph

O
b
j
e
c
t
iv

e
v
a
lu

e

Ob j e c t iv e numb e r

Figure 8: DTLZ2 - Rearranged Parallel Coordinates

In the rearranged graph it is easier to perceive the dif-
ference between groups recognized by the tree. Firstly, we
have a group with objectives 3, 2, 1, 4, 6, and 5 in the
middle of graph. Those are the most harmonious objectives
according to the tree. By looking at their objective values,
most solutions are very close to their minimum at each of
the objectives.

To the left and to the right of this middle group, there
are two conflicting groups separated by the tree. Solutions
with high values for the objectives on the left tend to have
low values for objectives on the right and vice-versa. Thus,
the combination of the tree with parallel coordinates can
give a better global understanding of the relation between
objectives and their values.

Due to space limitation, the results for all other DTLZ
test problems are available from www.alandefreitas.com.

7. DISCUSSION AND FUTURE WORK
In this paper we presented the Aggregation Trees. The

tree is a method for visualization of many-objective solu-
tions. Nodes represent aggregations of objectives which are
iteratively detected according to their harmony so the rela-
tion between groups of relevant objectives can be analysed.

Non-parametric measures of conflict and harmony are used
to build the tree. Therefore, the tree does not depend on
any implicit relation between the objectives to infer their re-
ducibility. Each node has also the value of conflict involved
in the last aggregation. This is useful for the decision maker
as they can understand the cost involved in each of those
reductions.

If the decision maker wants to reduce their preference area
to focus on a more specific set of solutions, the way in which
the tree represents iterative aggregations can show which
aggregation should happen first.

The trees can also include dominated solutions in the anal-
ysis. That makes the measure of harmony detect if objec-
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tives are correlated even for non-optimal solutions. However,
if the number of objectives is very high, most solutions will
tend to be non-dominated.

As future work, it is possible to study the effect of other
objective reduction techniques in the formation of the tree.
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