
Scripting and Framework Integration in Heuristic
Optimization Environments

Andreas Beham, Johannes Karder, Gabriel Kronberger,
Stefan Wagner, Michael Kommenda, Andreas Scheibenpflug

University of Applied Sciences Upper Austria
Heuristic and Evolutionary Algorithms Laboratory

Softwarepark 11, 4232 Hagenberg, Austria
(abeham, jkarder, gkronber, swagner,

mkommend, ascheibe)@heuristiclab.com

Johannes Kepler University Linz
Institute for Formal Models and Verification
Altenberger Straße 69, 4040 Linz, Austria

(andreas.beham, michael.kommenda)
@students.jku.at

ABSTRACT

Rapid prototyping and testing of new ideas has been a major
argument for evolutionary computation frameworks. These
frameworks facilitate the application of evolutionary com-
putation and allow experimenting with new and modified
algorithms and problems by building on existing, well tested
code. However, one could argue, that despite the many
frameworks of the metaheuristics community, software pack-
ages such as MATLAB, GNU Octave, Scilab, or RStudio are
quite popular. These software packages however are associ-
ated more closely with numerical analysis rather than evo-
lutionary computation. In contrast to typical evolutionary
computation frameworks which provide standard implemen-
tations of algorithms and problems, these popular frame-
works provide a direct programming environment for the
user and several helpful functions and mathematical opera-
tions. The user does not need to use traditional development
tools such as a compiler or linker, but can implement, exe-
cute, and visualize his ideas directly within the environment.
HeuristicLab has become a popular environment for heuris-
tic optimization over the years, but has not been recognized
as a programming environment so far. In this article we will
describe new scripting capabilities created in HeuristicLab
and give information on technical details of the implementa-
tion. Additionally, we show how the programming interface
can be used to integrate further metaheuristic optimization
frameworks in HeuristicLab.

Categories and Subject Descriptors

I.2.5 [Artificial Intelligence]: Programming Languages
and Software

General Terms

Algorithms, Experimentation

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2881-4/14/07 ...$15.00.

http://dx.doi.org/10.1145/2598394.2605690.

Keywords

HeuristicLab; Evolutionary Computation Frameworks;
Metaheuristic Optimization Frameworks; Scripting

1. INTRODUCTION
The behavior and performance of metaheuristic optimiza-

tion methods is often influenced by small details. To avoid
confusion such methods are often shared with the commu-
nity as a concrete implementation, for example in a given
programming language. Because of the requirement to com-
pare new algorithms with existing ones and an explosion of
different metaheuristic algorithms, metaheuristic optimiza-
tion (MOP) frameworks have emerged that contain imple-
mentations of such methods [9]. But while frameworks aim
to provide mostly a well-designed API, software environ-
ments go one step further and define not only extension
points for concrete applications, but provide a run-time en-
vironment in which the user can prototype and test new
ideas.

HeuristicLab1 has evolved over the years as an environ-
ment for heuristic optimization and became a popular tool
for researchers and practitioners [10, 11]. Extensibility is
a strong requirement of such an environment so that tools
and methods to answer new research questions can be im-
plemented. The benefit of the API and the reuse of existing
methods, analysis and visualizations often outweighs the in-
tegration effort and can compensate for disadvantages such
as a steeper learning curve [8]. Software environments at-
tempt to mitigate the use of traditional development envi-
ronments, i.e. IDE, compiler and linker. In HeuristicLab
tasks such as algorithm prototyping, running and analyzing
experiments can be performed in the run-time environment.
Still, often when finding answers to new research questions,
it is required to use traditional development tools to extend
the functionality.

The ability to write and execute code while running
HeuristicLab has been present since the release of version
3.3.0, but was restricted to operators that were executed
inside an algorithm. Starting from HeuristicLab 3.3.10 pro-
gramming directly within the environment has been signif-
icantly improved. This allows to prototype and test new
ideas faster, especially for those users that are familiar with
programming languages and the Microsoft .NET Frame-
work. Additionally, tasks such as advanced experiment cre-

1http://dev.heuristiclab.com

1109

ation could be more complex than what is already featured
in the environment. Sometimes such advanced tasks can
be integrated into the UI easily, but sometimes the addi-
tions would make the UI complex and confusing. With the
addition of a scripting interface the user is able to imple-
ment a customized experiment generator that handles more
complex requirements. Users are able to quickly write new
algorithms for existing problems and reuse existing visu-
alization and analysis features. An additional option that
arises and which is further looked at in this paper concerns
the integration of further MOP frameworks in HeuristicLab.
Features, algorithms, and problems available in other frame-
works are valuable and we aim to make these available within
the HeuristicLab optimization environment.

1.1 Related Work
To the best of the authors’ knowledge the integration of

different MOP frameworks and direct reuse of algorithms
and problems has not yet been described before. There have
been some attempts at a generic and open data exchange
between problem specific and algorithm specific parts. For
instance, in the PISA project2 an exchange was realized us-
ing text files, in GenOpt3 a file-based exchange was real-
ized to interconnect optimization and simulation, and also in
HeuristicLab protocol-based data exchange has been imple-
mented to communicate with external evaluation processes
[1]. However, data exchange is only one aspect of intercon-
nection. The ability to execute code written in other MOP
frameworks requires an integration at the programming lan-
guage level. Fortunately, a lot of progress has been made
here by at least two projects that we aim to introduce and
evaluate their usefulness in the context of bringing together
different MOP frameworks. However, first we want to de-
scribe the scripting capabilities and how we allow writing
and executing code within the running HeuristicLab appli-
cation.

2. SCRIPTING IN HEURISTICLAB
A script in HeuristicLab can be created similar to how a

problem or an algorithm would be created. Once a script is
created three aspects of the script are presented in the GUI
as can be seen in Figure 1:

• Script code

• Store for variables

• Console output log

Different scripts do not share these elements, so each
script has access to its own console and variable store. The
user can however use drag and drop to copy or link variables
in the variables store from one script to another. Thus, dif-
ferent scripts can be created and applied to the same data.
Unlike running algorithms in a typical MOP framework all
variables remain present after the script has finished execut-
ing. These variables might then be stored together with the
script code.
The language that is available for scripting as of version

3.3.10 is C#, which is natural for those familiar with the
HeuristicLab API. Furthermore, a script type based on the

2http://www.tik.ee.ethz.ch/sop/pisa/
3http://simulationresearch.lbl.gov/GO/

Python programming language, which is popular among sci-
entists, is under development and will be part of a future
release. It is certainly desirable to include more script types
with further languages, however the limitation is that all
of these languages need to be compiled to or interpreted in
the Microsoft Intermediate Language (MSIL) of the .NET
Framework. We take a look at some options in Section 3.

C#-based Scripting

The class diagram that supports creating C# scripts is
shown in Figure 2. The code is dynamically compiled to
a class which derives from CSharpScriptBase. When the
script is to be run, an object is instantiated, the variable
store is passed to the instance, wrapped inside Variables
and the Main() method of the CSharpScript is called.

Figure 2: Two main classes provide scripting sup-

port: Script is the “design-time” class that contains

the code, its subclass CSharpScript additionally con-

tains the VariableStore, while CSharpScriptBase is

the “run-time” class from which the compiled script

derives.

Script Code

The code in a HeuristicLab script is presented as a simple
string object. This object is updated through a code editor
window that is based on SharpDevelop 34. The editor fea-
tures syntax highlighting and code completion for C# which
are very valuable functions when developing scripts.

When the script is run it is compiled through the use of the
Microsoft.CSharp.CSharpCodeProvider and further classes
in the System.CodeDom namespace. Compile errors will be
listed in a separate tab together with line and column num-
ber, and the compile error message. The script is executed
in a separate thread which can be aborted in the case the
user wants to prematurely terminate the script. When the
user presses the stop button, the common language runtime

4http://www.icsharpcode.net/opensource/sd/

1110

Figure 1: Screenshot of a C# script that executes a genetic algorithm on an instance of the quadratic

assignment problem. The quality progress chart is shown in a separate window in the lower right.

throws a ThreadAbortException. Scripts can catch this ex-
ception in critical parts of the script in order to terminate
gracefully, but care should be taken in order to terminate
quickly. There is no method to force a thread to abort, a
hanging thread can therefore only be stopped if the whole
environment is restarted.

Variable Store

The variable store makes use of the dynamic language run-
time (DLR) introduced in the Microsoft .NET Framework
4.0. This greatly facilitates access to variables as they can
be defined by simply assigning a value to a name. In the
background the variable store will create a new or overwrite
an existing entry in a dictionary. The variable store can be
accessed in scripts through the field vars. For instance, if
the user writes vars.x = 1, a new variable x will be cre-
ated in the store or if it already exists the value of x will be
overwritten. The store displays the value of each variable as
returned by the ToString() method.
Each variable has to have a unique name and a certain

value. The value can be anything from primitive types such
as int, double, DateTime, etc. to complex types such as
DataTable or problem instances. Since basically any .NET
object can be added as a variable, a problem with the serial-
ization mechanism emerges. Any item in HeuristicLab and
many .NET items can be written to a file, however instances
of e.g. a Thread class cannot be serialized. Thus the vari-
able store will indicate if it contains types which may not be
serialized by an error icon next to the variable.
The variable store allows drag and drop behavior, so that

an item in HeuristicLab can be dragged onto the variable

store. The user could thus configure a problem instance
in the GUI, drag it into the variable store and execute the
script. When using drag and drop the user is given the
option to name that variable, otherwise a default name is
chosen.

If there is a default view for an item present in the variable
store, that variable can be double clicked and the respective
view for the value will open. Any changes made in that view
will be applied to the variable’s value. Items for which there
is no view, ie. int, double, etc. cannot be changed in the
GUI. However HeuristicLab has wrappers for these types
such as IntValue or DoubleValue which may be viewed and
edited [11].

Console Output

Scripts that need to output information to a console can
write to the Console property. Although this property
doesn’t have the same functionality as the corresponding
System.Console, it shares the write methods. We wanted
to make it very similar so that existing pieces of code that
should be run inside HeuristicLab can be quickly adapted.
The console however does not feature input, therefore it is
not possible to write interactive scripts.

Python-based Scripting

The Python Script in HeuristicLab is very similar to the
C# script described above in that the variable store and the
classes for handling console output are reused. The only
difference is that the code is not compiled using .NET’s
CodeDom features, but executed with the help of the Iron-

1111

Python5 project. When the script is executed a PyEngine
is instantiated. All HeuristicLab plugins are loaded into the
engine and a PyScope is created which contains the variable
store as variable vars. Thus, the access to the variable store
is completely identical to the C# script. The user writes
code which writes to or reads from vars or with the help
of local variables that do not leave the PyScope. Console
output redirection is achieved by adding an event handler
to the engine’s output PyConsoleStream. This raises an-
other event of the PythonScript class to which the Python-
ScriptView listens. Python support via IronPython is added
to HeuristicLab through a plugin which makes this feature
generally available within the environment. The integration
need not be performed for each script separately.

from System import *
from System.Linq import *
from HeuristicLab.Encodings.PermutationEncoding import *
from HeuristicLab.Problems.QuadraticAssignment import *
from HeuristicLab.Random import *

if not vars.Contains("qap"):
print "qap is not defined!"

Variables
N = vars.qap.Weights.Rows
w = vars.qap.Weights
d = vars.qap.Distances
popSize = 100
maxGen = 10000
mutRate = 0.05
rng = MersenneTwister()
start = DateTime.UtcNow
bestQuality = Double.MaxValue
bestQualityGeneration = 0
bestSolution = None

Population Initialization
pop = [Permutation(PermutationTypes.Absolute, N, rng)] * popSize
qual = []
for i in range(0, popSize):
qual.append(QAPEvaluator.Apply(pop[i], w, d))
if qual[i] < bestQuality:

bestQuality = qual[i]
bestSolution = pop[i]

Main Loop
for g in range(0, maxGen):
par = Enumerable.ToArray(RandomEnumerable.SampleProportional(

pop, rng, 2 * popSize, qual, True, True))
for i in range(0, popSize):

pop[i] = PartiallyMatchedCrossover.Apply(
rng, par[i*2], par[i*2+1])

if rng.NextDouble() < mutRate:
Swap2Manipulator.Apply(rng, pop[i])

qual[i] = QAPEvaluator.Apply(pop[i], w, d)
if qual[i] < bestQuality:
bestQuality = qual[i]
bestQualityGeneration = g
bestSolution = pop[i]

Display Results
vars.elapsed = DateTime.UtcNow - start
vars.bestQuality = bestQuality
vars.bestQualityGeneration = bestQualityGeneration
vars.bestSolution = bestSolution

Figure 3: Genetic algorithm sample that solves a

quadratic assignment problem written in Python

and using the .NET and HeuristicLab API.

5http://ironpython.net/

3. FRAMEWORK REVIEW AND INTE-

GRATION
In a well-received survey on evolutionary computation

frameworks ten different MOP frameworks are compared [8].
A large number of features are being analyzed in that study
and an extensive comparison is being performed. Apart from
the differences between frameworks, it is also obvious that
many frameworks share features and algorithms are imple-
mented many times anew. It is certainly understandable
that an algorithm that is adapted to the peculiarities of a
certain framework is easier to use and can make use of all the
features, but at the same time we have to raise the question
if it would not be possible to reuse features of one framework
in another. We think that a promising future direction, at
least for the HeuristicLab environment, would be the inte-
gration of different frameworks and to provide a develop-
ment environment in which it is possible to run and experi-
ment with algorithms of various frameworks. In this section
we want to review and evaluate two frameworks, namely
the Python-based DEAP[5] framework and the Java-based
jMetal[4] framework. Both frameworks are licensed under
the LGPL enabling an integration in HeuristicLab which is
licensed under GPLv3.

Benefits of Framework Integration

The integration of frameworks is especially helpful when
considering the need for comparison of different methods
with each other. Methods that are implemented in a certain
framework will have to be reimplemented in another frame-
work for comparison purposes. Often this process takes a
lot of time and is subject to certain coding standards en-
forced by the framework. This creates a barrier for com-
paring against a range of alternatives. Often the experi-
menting API and statistical evaluation of the results differs
from framework to framework which makes it an arduous
task to compare methods of different frameworks. There
have been attempts at unifying parameterization of experi-
ments [3], however this approach requires that the individ-
ual frameworks agree to a common description. So far, it
has been difficult to enforce a standard in this context. In
contrast, if the algorithms can be started and their results
can be queried from a single framework, then the experi-
ment analysis can also be unified in that framework. For
instance, in HeuristicLab, each run of an optimization algo-
rithm is stored in a Run object that contains dictionaries for
the parameters and the results. It is possible to script the
execution of an algorithm from a different framework, but
generate and then compare those Run objects as results. Ad-
ditionally, if the script produces the set of experiments that
are calculated, this script can be shared together with the
publication and the results can be reproduced by a reviewer.

DEAP

DEAP6 1.0.0, which was released in February 2014, is a rel-
atively young framework developed at the Computer Vision
and Systems Laboratory (CVSL) in the Faculty of Science
and Engineering at Laval University, Québec, Canada. The
first tag in the source tree dates back to 2010. It is imple-
mented in Python which makes it attractive for prototyping
new ideas as the IPython shell also provides a run-time envi-
ronment. DEAP includes several algorithms such as genetic

6http://code.google.com/p/deap/

1112

algorithms with arbitrary representations, genetic program-
ming, evolution strategies, multi-objective algorithms such
as NSGA-II[2] and SPEA2[12], co-evolution approaches, and
many others.

jMetal

The jMetal 4.5 framework7, which was releaed in January
2014, is implemented by Antonio J. Nebro and Juan J.
Durillo from the Universidad Málaga. The framework is
a bit more mature in that developments already started in
2004. It is a framework written in Java and which is espe-
cially targeted for solving multi-objective optimization prob-
lems. It includes a very large range of multi-objective algo-
rithms which include NSGA-II variants, SPEA2, PAES[6],
AbYSS[7], and many other algorithms. There are also a
number of multi-objective problems implemented with and
without constraints that are often used in testing as well as
multi-objective quality indicators such as hypervolume met-
ric, spread and generational distance. jMetal also features
single-objective algorithms and problems such as genetic al-
gorithms, evolution strategies, and many more.
We think that these, as well as many other frameworks are

well suited for conducting research as they are created and
maintained by researchers with a high visibility in the field of
evolutionary computation. We think that new developments
can be sparked in an attempt to bring these frameworks
together. That is, we aim to provide the possibility to use
the API of other metaheuristic frameworks from within the
HeuristicLab optimization environment.
A major problem that we have to overcome in this goal

is to cross the “language barrier”. As described in [8],
HeuristicLab is the only framework that is based on the
.NET Framework. From the other considered frameworks
in their study three are written in C++ and six frameworks
are written in Java. This means that we cannot directly ref-
erence other frameworks and include them in a HeuristicLab
plugin. However, a number of projects exist which make it
easier to integrate different languages.

Dynamic Language Runtime

Microsoft laid the foundation for the integration of dynam-
ically typed languages with the .NET Framework 4.0 and
the inclusion of the dynamic language runtime (DLR). The
DLR and the included hosting infrastructure is the base of
the IronPython project. IronPython is an implementation
of Python 2.7 for the .NET framework. IronPython was
initially started and developed at Microsoft, but has been
released to the public and is maintained by volunteers. The
developments for IronPython 3 have started only recently.
IronPython is available under the Apache 2.0 license which
is compatible to the GPLv3 license.
Integration of the DEAP framework can be achieved by

creating a transport plugin for the IronPython assemblies as
well as the Microsoft.Scripting and Microsoft.Dynamic as-
semblies. When creating a python script the path to DEAP
and the path to the IronPython Libs directory have to be
added to the list of search paths before importing DEAP
modules and running DEAP examples. Of course it is also
possible to use the PythonEngine in a C# script to execute
Python code. Data exchange between the Python code and
the C# part can be achieved through the PyScope object

7http://jmetal.sourceforge.net/

which represents the global scope of the Python script and
which can be read after executing the PyEngine.

We also encountered some problems in using these
projects to integrate different frameworks. Using the fa-
mous Python libraries NumPy8 and SciPy9 in IronPython is
rather experimental. We encountered several problems when
trying to run DEAP algorithms that depend on NumPy us-
ing a .NET port of NumPy.

.NET Java Virtual Machine

A further project that is of high interest for our goals is
the IKVM10 project which is an implementation of Java for
the .NET Framework. IKVM provides the ability to convert
Java class and jar files to .NET assemblies. These assemblies
then reference a port of OpenJDK to the .NET Framework
which provides the Java API. IKVM allows both .NET de-
velopers to use Java classes and Java developers to use .NET
classes. However, Java developers that seek to link against
.NET assemblies first have to create stub classes against
which Java can compile against. IKVM however does not
provide a Java compiler, so e.g. Oracle’s Java SDK has to
be used. IKVM is public software that is free to use and free
to modify. OpenJDK is licensed under GPL and LGPL.

Integration of jMetal could be achieved using IKVM. First
we created a .NET assembly using the ikvm compiler ikvmc.
We excluded classes with external references and which were
not necessary for programming against the framework such
as the NUnit tests. Then we created a transport plugin for
the IKVM and OpenJDK assemblies and also for the gener-
ated jMetal assembly. This plugin is available as an add-on11

to the HeuristicLab development trunk and may be part of
a future release. It shall be noted that this enables users
only to program against the API of jMetal. The algorithms
in jMetal are not available as HeuristicLab algorithms so
far. This would require a much deeper integration which is
beyond the scope of this article.

C and C++

The integration of C code is generally possible in C# by
using platform invoke (PInvoke). Methods of C DLLs can
be called by defining those methods in C# as extern and
attributing them with DLLImport. This requires that the
method signature given in C# is the same as in the DLL.
However, PInvoke cannot be used to marshal native C++
classes and also the use of PInvoke is not without dangers.
We have experienced, that an exception inside a native func-
tion cannot be catched in managed code and the whole envi-
ronment crashes immediately and without error notification.

To make native C++ code available within HeuristicLab
one would need to write a managed C++ wrapper class for
all the native classes. The managed C++ DLL could then be
referenced in a C# project, i.e. a HeuristicLab plugin. An-
other option would be to create extern ”C”wrapper functions
for creating and destroying objects and all of its public meth-
ods. An excellent article is available on codeproject12. Of
course this is much more effort than the approaches stated

8http://www.numpy.org/
9http://www.scipy.org/

10http://www.ikvm.net/
11http://dev.heuristiclab.com/trac/hl/core/browser/
branches/jMetal

12http://www.codeproject.com/Articles/18032/
How-to-Marshal-a-C-Class

1113

ManualResetEvent mutex = new ManualResetEvent(false);

public override void Main() {
var ga = new GeneticAlgorithm();
ga.MaximumGenerations.Value = 50;
ga.PopulationSize.Value = 10;
ga.Problem = new TravelingSalesmanProblem();

var experiment = new Experiment();
for (int i = 0; i < 5; i++) {

experiment.Optimizers.Add(new BatchRun() {
Optimizer = (IOptimizer)ga.Clone(),
Repetitions = 10 });
ga.PopulationSize.Value *= 2;

}

experiment.ExecutionStateChanged += OnStateChanged;
experiment.Start();
mutex.WaitOne();
MainFormManager.MainForm.ShowContent(experiment);
MainFormManager.MainForm.ShowContent(experiment.Runs,

typeof(RunCollectionTableView));
}

private void OnStateChanged(object sender, EventArgs e) {
if (((IExecutable)sender).ExecutionState

== ExecutionState.Stopped) mutex.Set();
}

Figure 4: Part of a script that shows GUI automa-

tion capabilities. It runs an experiment and displays

the relevant results in a bubble chart.

above as the wrappers would need to be written for each
framework anew.

Framework Design for Integration

In experimenting and evaluating the interplay of different
frameworks we already noticed a few design decisions that
make it difficult for frameworks to interoperate. In this sec-
tion we want to state two specific points that are worth
considering. The discussion may seem shallow, but an in-
depth examination would require an article of its own. The
aim here is to spark a discussion on framework design from
the point of view of reuse in other frameworks.

Custom Data Types

The use of custom data types on the one hand eases ma-
nipulation in one framework, but is a stumbling block for
the integration. Data has to be converted from one data
type to the other which requires lengthy pieces of code and
challenges run-time performance. In jMetal 4.5 the Solution
class is a data type that links various parts of the framework
such as the Problem, SolutionType, and Variable class. This
class is often used in public interfaces of operators. There-
fore in an integrated approach one would have to provide an
additional implementation of, e.g. the problem, as exten-
sions to jMetal objects. The public interfaces cannot be used
unless the solution is reconstructed. In DEAP 1.0.0 there
is a creator for dynamically creating classes which many al-
gorithms use to create a class Individual. This individual is
then the expected contract of many operators also impeding
data reuse. In HeuristicLab there are also objects, but often
they wrap a single simple datatype such as the RealVector
or DoubleMatrix. Additionally, there are static methods in
many places which provide a very simple API. In Figure 3
it can be seen that the problem variable qap only encapsu-
lates the weights and distance matrices, but does not contain

any logic. Proportional selection is implemented for ‘IEnu-
merable‘ which is the base of arrays, lists, dictionaries, etc.
However, there are also parts in HeuristicLab that still need
to be improved. Historically, the objects in HeuristicLab
have been designed around the operator paradigm. Some
of these operators provide a static interface as well as an
interface to the operator execution API, others lack a static
API and therefore cannot be used as easily in a script. Rec-
ommendation: Create APIs that use the most basic data
types available. Compose objects into classes, but decom-
pose them before handing them to relevant functions. This
enables better reuse of those functions in other frameworks.

Composition of Algorithms

Additionally, when integrating frameworks, extension by
composition is probably the more promising approach than
by inheritance. If a framework provides only an algorithm
which implements most of the code in a single method it
is difficult to inject code from other frameworks and alter
or analyze the behavior. The more algorithms can be com-
posed of modular parts of the framework, the more possi-
bilities for combining parts from different frameworks. In
DEAP 1.0.0 the algorithms are mostly combinations of sim-
pler operations. The operations are implemented as meth-
ods and some of them provide more or less functionality.
The methods are linked into operations through a toolbox
which combines the method reference and several parame-
ters into a partial function. In contrast in jMetal 4.5 and
HeuristicLab 3.3.9 there is an Algorithm class that is used
for representing algorithms. While the algorithms in jMetal
are rather monolithic, the algorithms in HeuristicLab again
are composed of smaller operators and can be adapted by
modifying the operator graph. Still, it would currently be
difficult to integrate a crossover of another framework into
a HeuristicLab algorithm. In jMetal, most of the code is
grouped within an execute() method which is not optimal
with respect to code reuse. Recommendation: Use inheri-
tance or sub-classing only when necessary. Instead of deep
inheritance hierarchies it would be better to create a shallow
layer of full-featured classes that can be extended through
composition.

4. EXAMPLES
Not only can scripts be used to perform small tasks or

prototype entire algorithms, scripts can also be used to open
views and show them to the user. Figure 4 shows a script
which creates a new experiment, runs it and displays the
results in a table view.

Other kind of automated tasks, which do not require to
use the MainForm API could be to load a set of files from a
directory, perform some calculation and save that file again.
This could be useful if a certain value should be calculated in
a run, e.g. the parameter of exponential growth or decay in
the quality progress chart. If the quality chart is contained
within the run, but this value was not calculated, a script
could be used to calculate it later on.

Figure 3 shows an example of a genetic algorithm writ-
ten in Python that uses the HeuristicLab API to be applied
to the quadratic assignment problem (QAP). The code calls
static methods which perform the necessary operations for a
genetic algorithm: selection, crossover, mutation, and eval-
uation. We also compared the run-time difference between
the Python script and a C# script implementation of that

1114

Table 1: Time measured in seconds to run a genetic

algorithm with 10,000 generations and a population

size of 100 on different QAP instances.

Problem Size C# Script Python Script Difference
19 4.65 6.51 +40.0%
25 6.92 8.80 +27.2%
36 13.08 14.97 +14.4%
50 24.16 26.45 +9.5%

100 95.12 97.39 +2.4%
150 208.89 211.58 +1.3%

algorithm. The algorithm in Figure 3 was used in the given
configuration and applied to problems of different sizes. It
can be seen in Table 2 that the Python engine is a little
bit slower, but as the problem dimension increases the dif-
ference vanishes. All performance tests in this article were
conducted on an Intel Core i7 with 2.6 Ghz, the run-times
are given in seconds and averaged over 10 executions.
Figure 5 shows an example of using the SPEA2 algorithm

defined in the jMetal framework to solve a multi-objective
test function problem. The algorithm is executed inside a
C# script which will create a new run object after every ex-
ecution. Again it is interesting to evaluate the performance
when that algorithm is executed inside HeuristicLab, when it
is executed using IKVM’s Java Virtual Machine (JVM) and
when using Oracle’s JVM. We modified the algorithm given
in Figure 5 and measured the time before settings.configure()
and after algorithm.execute().
Table 2 shows the results of this performance test. In-

terestingly, a fast way to execute the jMetal SPEA2 algo-
rithm on the ZDT1 multi-objective test function is using
the jMetal plugin in HeuristicLab and running it with a C#
script. Using Oracle’s JVM (version 1.7.0u55 and 1.8.0u5) is
comparable to using the IKVM.NET virtual machine (ver-
sion 7.2.4630.5).

Table 2: Time measured in seconds to execute the

SPEA2 algorithm implementation in jMetal 4.5 on

the ZDT1 problem using a maximum of 50,000 eval-

uated solutions.
PopSize HeuristicLab IKVM JVM 1.7 JVM 1.8

100 6.20 6.82 6.67 6.55
500 8.66 9.32 9.34 9.25

1000 13.36 14.16 14.41 14.26

5. CONCLUSIONS
We have described the integration of scripting in

HeuristicLab and have evaluated possibilities of integrating
metaheuristic optimization frameworks in the HeuristicLab
optimization environment which may be a highly interest-
ing path for future development. The reuse of algorithms
of different frameworks is still an experimental task which
may raise many questions regarding a suitable design of
those frameworks. Each framework itself is certainly a well-
rounded package, but there is a big potential in combining
the strengths of these frameworks in one environment. We
have evaluated two frameworks that allow interoperation of
C# with Python and Java so that algorithms implemented
in these languages can be reused in HeuristicLab. We have

using System;
using System.Linq;
using HeuristicLab.Analysis;
using HeuristicLab.Common;
using jmetal.core;
using jmetal.experiments.settings;
using jmetal.qualityIndicator.fastHypervolume;

public class UserScript
: HeuristicLab.Scripting.UserScriptBase {
public override void Main() {
var settings = new SPEA2_Settings("ZDT1");
settings.maxEvaluations_ = 50000;
settings.populationSize_ = 200;
settings.crossoverProbability_ = 0.8;
settings.mutationProbability_ = 0.1;
var algorithm = settings.configure();
var numObj = algorithm.getProblem().getNumberOfObjectives();
var solutionSet = algorithm.execute();

var solutionIterator = solutionSet.iterator();
var front = new ScatterPlot();
var row = new ScatterPlotDataRow();
front.Rows.Add(row);

while (solutionIterator.hasNext()) {
var solution = (Solution)solutionIterator.next();
var objectives = Enumerable.Range(0, numObj)
.Select(x => solution.getObjective(x)).ToArray();

row.Points.Add(
new Point2D<double>(objectives[0], objectives[1]));

Console.WriteLine(string.Join("; ", objectives));
}
vars.front = front;
vars.HV = new FastHypervolume()

.computeHypervolume(solutionSet);
}

}

Figure 5: SPEA2 that solves the ZDT1 problem us-

ing both the jMetal and HeuristicLab API.

further made two performance comparisons, which on the
one hand show that for higher dimensional problems the per-
formance difference between C# and Python becomes irrel-
evant and on the other hand show that compiling the jMetal
library with IKVM.NET and running algorithms from a C#
script in HeuristicLab is not a slow solution at all. This
would make it a feasible option to do performance and re-
sults comparison in a common framework.

6. ACKNOWLEDGMENTS
The work described in this paper was done partly

within the Josef Ressel Centre for Heuristic Optimization
(Heureka!) sponsored by the Austrian Research Promotion
Agency (FFG).

7. REFERENCES
[1] A. Beham, E. Pitzer, S. Wagner, M. Affenzeller,

K. Altendorfer, T. Felberbauer, and M. Bäck.
Integration of flexible interfaces in optimization
software frameworks for simulation-based
optimization. In Companion Publication of the 2012
Genetic and Evolutionary Computation Conference,
GECCO’12 Companion, pages 125–132, Philadelphia,
PA, USA, July 2012.

[2] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm:
NSGA-II. Evolutionary Computation, IEEE
Transactions on, 6(2):182–197, 2002.

1115

[3] F. Dobslaw. Input: The intelligent parameter
utilization tool. In Companion Publication of the 2012
Genetic and Evolutionary Computation Conference,
GECCO’12 Companion, pages 149–156, Philadelphia,
PA, USA, July 2012.

[4] J. J. Durillo and A. J. Nebro. jMetal: A java
framework for multi-objective optimization. Advances
in Engineering Software, 42:760–771, 2011.

[5] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner,
M. Parizeau, and C. Gagné. DEAP: Evolutionary
algorithms made easy. Journal of Machine Learning
Research, 13:2171–2175, jul 2012.

[6] J. Knowles and D. Corne. The pareto archived
evolution strategy: A new baseline algorithm for
pareto multiobjective optimisation. In Evolutionary
Computation, 1999. CEC 99. Proceedings of the 1999
Congress on, volume 1. IEEE, 1999.

[7] A. J. Nebro, F. Luna, E. Alba, B. Dorronsoro, J. J.
Durillo, and A. Beham. Abyss: Adapting scatter
search to multiobjective optimization. Evolutionary
Computation, IEEE Transactions on, 12(4):439–457,
2008.

[8] J. A. Parejo, A. Ruiz-Cortés, S. Lozano, and
P. Fernandez. Metaheuristic optimization frameworks:
a survey and benchmarking. Soft Computing,
16(3):527–561, 2012.

[9] S. Voß and D. L. Woodruff. Optimization software
class libraries. Springer, 2002.

[10] S. Wagner. Heuristic Optimization Software Systems -
Modeling of Heuristic Optimization Algorithms in the
HeuristicLab Software Environment. PhD thesis,
Johannes Kepler University, Linz, Austria, 2009.

[11] S. Wagner, G. Kronberger, A. Beham, M. Kommenda,
A. Scheibenpflug, E. Pitzer, S. Vonolfen, M. Kofler,
S. Winkler, V. Dorfer, and M. Affenzeller. Advanced
Methods and Applications in Computational
Intelligence, volume 6 of Topics in Intelligent
Engineering and Informatics, chapter Architecture
and Design of the HeuristicLab Optimization
Environment, pages 197–261. Springer, 2014.

[12] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2:
Improving the Strength Pareto Evolutionary
Algorithm for Multiobjective Optimization. In
K. Giannakoglou et al., editors, Evolutionary Methods
for Design, Optimisation and Control with Application
to Industrial Problems (EUROGEN 2001), pages
95–100. International Center for Numerical Methods
in Engineering (CIMNE), 2002.

1116

