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ABSTRACT
The genetic programming tool EDDIE has been shown to be a
successful financial forecasting tool, however it has suffered from
an increase in execution time as new features have been added.
Speed is an important aspect in financial problems, especially in
the field of algorithmic trading, where a delay in taking a deci-
sion could cost millions. To offset this performance loss, EDDIE
has been modified to take advantage of multi-core CPUs and ded-
icated GPUs. This has been achieved by modifying the candidate
solution evaluation to use an OpenCL kernel, allowing the parallel
evaluation of solutions. Our computational results have shown im-
provements in the running time of EDDIE when the evaluation was
delegated to the OpenCL kernel running on a multi-core CPU, with
speed ups up to 21 times faster than the original EDDIE algorithm.
While most previous works in the literature reported significantly
improvements in performance when running an OpenCL kernel on
a GPU device, we did not observe this in our results. Further in-
vestigation revealed that memory copying overheads and branching
code in the kernel are potentially causes of the (under-)performance
of the OpenCL kernel when running on the GPU device.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search—Heuristic methods

General Terms
Algorithms

Keywords
Genetic Programming, OpenCL, financial forecasting, GPU

1. INTRODUCTION
EDDIE is a Genetic Programming algorithm that makes predic-

tions about potential opportunities in the stock market. Recently
additional features have been added to EDDIE, which significantly
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further improved its predictive performance. However, these fea-
tures also led to a greatly increased execution time [13, 11], making
the algorithm impractical to run in big scale experiments.

Speed can be an important aspect in financial trading. For exam-
ple, in the field of algorithmic trading, the trading orders take place
electronically, by using pre-programmed trading strategies. There-
fore, slow algorithms can have devastating effects on a traders’
profitability, as other, faster, algorithms might place an important
order first, and thus attract all financial gain.

Our aim in this paper to develop an EDDIE implementation that
can take advantage of multi-core CPUs and GPUs providing ED-
DIE with a substantial performance increase. A number of routes
could be taken to improve the execution time of EDDIE. GPUs
have already been used to perform general purpose computing. Ad-
ditionally, they have also been successfully used in the area of evo-
lutionary algorithms. A number of different architectures exist for
GPGPU including NVIDIA’s CUDA and OpenCL. OpenCL has an
advantage of working over a number of platforms including both
CPUs and GPUs. For the purposes of this work, OpenCL was cho-
sen, as it provides a platform agnostic view through a hardware
abstraction, allowing programs to be developed that can run on dif-
ferent hardware with minimal changes.

The paper is structured in the following way: Section II will
present the genetic programming tool EDDIE including a brief his-
tory. Section III will summarise relevant works that have been car-
ried out in the field of GPUs. Section IV provides a description of
the OpenCL implementation added to EDDIE. Finally in sections
V and VI we will present our results and conclusions.

2. EDDIE

2.1 Description of the Algorithm
EDDIE is a Genetic Programming (GP) [14, 18] financial fore-

casting algorithm, which learns and extracts knowledge from a set
of data. The question EDDIE tries to answer is ‘will the price in-
crease within the n following days by r%?’ The user first feeds
the system with a set of past data; EDDIE then uses this data and
through a GP process, it creates and evolves Genetic Decision Trees
(GDTs), which make recommendations of buy (1) or not-to-buy
(0).

The set of data used is composed of three parts: (i) daily closing
price of a stock, (ii) a number of attributes, and (iii) signals. Stocks’
daily closing prices can be obtained online on websites such as
http://finance.yahoo.com and also from financial statistics
databases like Datastream.1 The attributes are indicators commonly
1Available at: http://thomsonreuters.com/datastream-
professional/
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<Tree> ::= If-Then-Else <Condition> <Tree> <Tree> |
Decision
<Condition> ::= <Condition> AND <Condition> |

<Condition> OR <Condition> |
NOT <Condition> |
<VarConstructor> <RelationOperation> Threshold

<VarConstructor> ::= MA period | TBR period | FLR period | Vol
period

|M period |MMA period
<RelationOperation> ::= “>” | “<” | “=”
Terminals:

MA, TBR, FLR, Vol, Mom, MomMA are function sym-
bols

Period is an integer within a parameterized range, [MinP,
MaxP]

Decision is an integer, Positive or Negative implemented
Threshold is a real number

Figure 1: The Backus Normal Form of EDDIE

used in technical analysis [6]; which indicators to use depends on
the user and his belief of their relevance to the prediction. The
technical indicators that are used in this work are: Moving Aver-
age (MA), Trade Break Out (TBR), Filter (FLR), Volatility (Vol),
Momentum (M), and Momentum Moving Average (MMA).2

The signals are calculated by looking ahead of the closing price
for a time horizon of n days, trying to detect if there is an increase
of the price by r% [20]. In other words, the GP is trying to use
some of the above indicators to forecast whether the daily closing
price is going to increase by r% within the following n days.

After feeding the data to the system, EDDIE creates and evolves
a population of GDTs. Figure 1 presents the Backus Normal Form
(BNF) [4] (grammar) of EDDIE. As we can see, the root of the
tree is an If-Then-Else statement. The first branch is either a
boolean (testing whether a technical indicator is greater than/less
than/equal to a value), or a logic operator (AND, OR, NOT), which
can hold multiple boolean conditions. The Then and Else bran-
ches can be a new GDT, or a decision, to BUY or NOT-BUY (de-
noted by 1 and 0, respectively).

A sample GDT of EDDIE is presented in Figure 2. As we can
see, if the 2 days MMA is greater than 127.994 and the 17 days M
is less than 152.158, then the user is advised to not-buy; otherwise,
the user is advised to buy.

Depending on the classification of the predictions, we can have
four cases: True Positive (TP), False Positive (FP), True Negative
(TN), and False Negative (FN). As a result, we can use the metrics
presented in Equations 1, 2 and 3:

Rate of Correctness

RC =
TP + TN

TP + TN + FP + FN
(1)

Rate of Missing Chances

RMC =
FN

FN + TP
(2)

Rate of Failure

RF =
FP

FP + TP
(3)

2We use these indicators because they have been proved to be quite
useful in developing GDTs in previous works like [16], [1] and
[3]. Of course, there is no reason not to use other information like
fundamentals or limit order book. However, the aim of this work is
not to find the ultimate indicators for financial forecasting.

If − Then − Else

vv �� ((
AND

uu ))

NotBuy(0) Buy(1)

GT

zz ""

LT

uu ((
Indicator

yy $$

127.994 Indicator

xx ))

152.158

MMA 2 M 17

Figure 2: A sample EDDIE Tree generated by executing ED-
DIE, when it is executed the first branch of the If-Then-Else
statement, if it evaluates true then the first branch is taken
and it then follows that a false evaluation will take the second
branch.

The above metrics combined give the following fitness function,
presented in Equation 4:

ff = w1 ∗RC − w2 ∗RMC − w3 ∗RF (4)

where w1, w2 and w3 are the weights for RC, RMC and RF respec-
tively. These weights are given in order to reflect the preferences
of investors. For instance, a conservative investor would want to
avoid failure; thus a higher weight for RF should be used.

2.2 Brief History
EDDIE was originally created from a horse prediction algorithm,

which was then adapted to predict the stock markets [20]. One of
the latest EDDIE versions is EDDIE 8. This version is the one
presented in the previous section. The advantage of this version is
that the algorithm is not constrained to pre-specified periods, as is
usually the case in industry.3 As a consequence, it is up to the GP
and the evolutionary process to look for the optimal periods values
from the period range provided. For instance, if this range is 2 to 65
days, then EDDIE can create Moving Averages with any of these
periods, e.g., 20 days MA, 25 days MA, and so on.

However, while the above approach returned positive predictive
results [13, 12], it also dramatically increased the search space of
EDDIE. This then led the algorithm to occasionally miss good solu-
tions, due to ineffective search. To address this issue, local search
algorithms were applied to the period leaf nodes of the trees, by
means of hyper-heuristic frameworks [10, 11]. These frameworks
used a number of different hill climbers and mutators at every gen-
eration, and made marginal changes to the period leaf nodes of the
trees of the population. As a result, the search became more effec-
tive, as more exploitation was taking place.

While the fitness of the trees produced by EDDIE further in-
creased thanks to the hyper-heuristics, the execution time also in-
creased dramatically. Initial EDDIE 8 versions would have aver-
age single run times of around 3 minutes. With the introduction
of hyper-heuristics, however, this increased to 12 minutes per run
[11].
3In the literature, the users of similar algorithms pre-specify certain
periods that they consider useful. For instance, 20 days MA, and 50
days MA. The indicators (e.g., MA) together with their respective
period (e.g., 20) are treated by the GP as a single leaf node. Thus,
the numbers 20 and 50 cannot change during the evolutionary pro-
cess. In our previous work [13, 12], we questioned this approach,
because nobody can guarantee that, for instance, a 20 days MA is
better than a 25 days MA. To address this issue, we created EDDIE,
which is able to search in the space of technical indicators and their
periods.
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Figure 3: Comparison of NVIDIA graphics cards and
Intel x86 CPUs in single and double precision float-
ing point operations. Figure is reproduced from:
http://hemprasad.wordpress.com/2013/07/18/cpu-vs-gpu-
performance/.

As we can observe, the addition of the hyper heuristic frame-
work slowed EDDIE down significantly. This was because of the
increased number of fitness evaluations that were taking place. Ef-
fectively, every time a marginal change would take place in a leaf
node of a tree, the fitness would have to be re-calculated and com-
pared to the old one. Since this was taking place multiple times
per generation (in addition to the typical GP fitness evaluations)
the execution time was affected, slowing down the algorithm. This
thus led us to consider ways of parallelising the process, especially
since the additional computational times were due to the same pro-
cess (i.e., fitness evaluation) happening multiple times.

3. RELATED WORK
The performance of GPUs has massively increased in recent ye-

ars. Floating point performance of GPUs is now an order of magni-
tude higher than those found in high-end CPUs. Figure 3 shows that
while CPU performance has increased over the last 10 years to 150
GFlops/second, GPUs now operate at over 4000 GFlops/second,
illustrating how powerful GPUs have become when compared to
CPUs.

This performance has been utilised in many computational in-
telligence applications, including neural networks and ant colony
optimisation algorithms [15]. Delevacq et al [5] created a solution
that used GPUs to speed up an ant colony optimisation algorithm.
This was accomplished by deploying parallel ants in two separate
modes: one where each ant has its own stream processor; the sec-
ond gives each ant a block (group of stream processors). The first
strategy has the advantage of allowing a huge number of ants to be
evaluated at the same time. The second strategy allows the eval-
uation of each ant to take advantage of parallelism in finding the
optimum path. Speed ups of between 5 and 15 times are observed,
with a greater improvement seen when using the second strategy
[5].

Moving on to parallelism in genetic programming application,
Langdon [15] describes a method of using stacks and RPN (Reverse
Polish Notation) to create a stack based SIMD (Single Instruction,
Multiple Data) interpreter, which will leave the results on the top of

Figure 4: The process involves flattening and copying data from
host to GPU, then the evaluation can be performed. The second
kernel is required to reduce the amount of data returned from
the kernel. Finally the data is copied back to the host platform.
Figure is reproduced from [7].

the stack at the end. This method does require the tree to be stored
in an appropriate format or converted to one [15].

An alternative approach to an interpretor is to compile each tree,
since historically interpreter based platforms in computer science
are regarded to be slower than compiled solutions. This is due to the
benefits gained when the compiled code is run many times. How-
ever, as the programs created by a Genetic Programming tool are
only evaluated a few times, interpreted based methods are usually
faster due to compilation overhead [15].

Franco et al. [7] have implemented a GPU based fitness evalua-
tion for the BioHEL evolutionary learning system. The implemen-
tation uses the CUDA platform with a two stage kernel solution.
Figure 4 shows the stages of the fitness evaluation [7]. First, mem-
ory requirements are calculated to ensure all data will fit on the
GPU or if multiple evaluations are required. The structure is then
flattened to become compatible with GPUs. Flattening is the pro-
cess of converting data structures from a many dimensional struc-
ture such as a tree or 2+ dimensional array into a one dimensional
array. This is important as GPUs will only accept one dimensional
arrays as kernel arguments. The data is then copied on to the GPU,
where two kernels are executed: the first is to calculate the fitness
function; the second is to reduce the amount of data that is read
back from the GPU. The results are then read back to the host plat-
form.

Franco et al. [7] achieved very large speed ups in their imple-
mentation, with a maximum speed up of 52.4x when compared to
the original speed ups. This was achieved when the testing data
was between 25,000 and 50,000. It is hypothesized that for values
lower than 25,000, the serial method can keep all of the data in its
fast cache, while the peak in performance and drop off over 50,000
may be due to the transfer of larger amounts of data.

It was also found that experiments that contained more decisions
were slowed down compared to those that were linear. This is to be
expected as the SIMD architecture of GPUs is heavily penalised by
divergent code, where many threads may be idling when the other
branches are being evaluated [7].

Data transfer times are a key overhead that occurs when attempt-
ing to use GPUs. This has also been discussed by Franco et al.
[7], who executed an additional kernel that would reduce the data
that was sent back to the host device. This is a known issue and
as such, NVIDIA have released plans for reduction algorithms that
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have a higher bandwidth than the PCI Express bus, allowing a more
efficient kernel to be utilised [8].

While early attempts to use GPUs mainly used NVIDIA’s CUDA
platform, successful implementations using the OpenCL platform
do exist. Augusto and Barbosa achieved this with GPOCL [2].
The implementation was built from scratch with the intention to
use OpenCL. This enabled the authors to implement a linear pre-
fix stack based structure which is inherently suitable to evaluation
using OpenCL. This allows the flattening stage seen in [7] to be
avoided; instead, an interpretor-based kernel could then be used
to evaluate the genetic programming programs. GPOCL achieved
impressive results, where a 12-core Intel Xeon can evaluate 1.590
Billion GPop/s while a Nvidia GTX-285 achieved 10.75 billion
GPop/s, representing a speed up of over 5 times.

Augusto and Barbosa [2] investigated optimisation techniques
that can be applied to OpenCL programs. These include various
memory optimisations, such as the use of constant memory where
the GPU can detect and optimise multiple reads to the same mem-
ory location. Local memory usage is very fast and can be shared
across all process elements. GPOCL caches genetic programming
programs prior to execution and performs a reduction inside the
local memory before copying the result back to global memory.
Native function usage can also increase performance. OpenCL pro-
vides a number of mathematical functions in three flavours, IEEE-
754 float, IEEE-754 half float and native. While the native func-
tions can violate the IEEE standard, they do provide increased per-
formance [2].

The previous literature identifies the fitness calculation perfor-
med by genetic programming algorithms as the most computation-
ally expensive. This operation requires many calculations on dif-
ferent data independently,. For the reasons listed above a parallel
approach becomes obvious. For these reasons it is the first part that
is normally implemented on a GPU [15].

Pusniakowski and Bednarczyk [19] proposed an implementation
that executes the entire genetic algorithm on the GPU using the
OpenCL platform. The algorithm has been split into a number of
different kernels, which are then called in the appropriate order.
The first kernel called will create the initial population. As has been
discussed earlier, the fitness function will be calculated in a second
kernel. This kernel uses private memory so it can take advantage of
the increased performance of this fast memory.

One difference between this implementation than those discussed
previously is the parallelism of the genetic operations. The authors
implemented two algorithms: the roulette wheel which is a fitness
weighted method; and tournament selection, which takes n indi-
viduals (where n is equal to two or greater) and uses the fitness
to determine the winner. While both implementations were effec-
tive and gave reasonable gains, it was found that the roulette wheel
operation was much less efficient, taking considerably longer to
produce very fit populations.

4. OPENCL IMPLEMENTATION
Previous work identifies that the biggest gains are found when

using an OpenCL or CUDA platform to calculate the fitness func-
tion, since many solutions’ fitnesses can be calculated in paral-
lel. Given that EDDIE calls the fitness function many times, an
straightforward OpenCL-enabled implementation will simply re-
place these multiple calls by a singe call to the OpenCL kernel.

The OpenCL enhancement in EDDIE can be split into a sequence
of steps: the first is the process of flattening of trees from an object-
orientated tree to a flatter GPU friendly structure; the second step
is the OpenCL environment preparation; and the third is the fitness
evaluation (kernel) that needs to be queued ready for execution on

the OpenCL device. The OpenCL kernel can then be executed be-
fore the results are read back from the OpenCL device and analysed
to produce a fitness for each tree.

4.1 Tree Flattening Into Byte Arrays
Before trees can be executed on the OpenCL device, they need

to be prepared into a data structure that can be used in an OpenCL
environment. OpenCL can only use a limited set of data structures
as inputs due to its ability to run on a number of different hardware
architectures. The flattening process must be quick to ensure that
the speed improvements gained by executing the fitness function
on the device are not wasted at this stage.

The Java API provides a ByteBuffer data structure in the
java.nio package [17]. This data structure allows the construc-
tion of arrays containing multiple data types, as longer primitives
are split into bytes and their bit representations are then written to
the array. This also allows the programmer to retrieve the values
stored in the array as long as they know the underlying data struc-
ture. The advantage of a byte buffer is the decreased size of the
flattened data structure. This decreases the overall memory size re-
quired to store the GP population, which in turn decreases the time
taken to transfer the population to the OpenCL device.

The tree-based structure used by EDDIE can be split into nodes,
which are based around a boolean test. The test takes two argu-
ments, an indicator and a constant. The result of this test will then
determine the next action to be taken. In the array structure this
will involve jumping to a new location (a new index in the array)
in the ByteBuffer. Jump can either be positive, when the test
evaluates to true, and negative, when the test evaluates to false.

The general node layout is shown in Table 1. All jumps in the
byte array are absolute jumps expressed in the number of bytes
since the beginning of the array. Figure 5 shows an example ED-
DIE tree and the corresponding nodes stored in the byte array (each
line of the table in Figure 5 corresponds to a node). The total size
of the array for this tree is 48 bytes (4 times the size of a single
node), where the size using a float array would have been 96 bytes.
Therefore, the trees produced using a byte array are half the size of
the float array. Another advantage of using a byte array is that in-
teger constants do not have to be converted to floats and then back
again to integers in the OpenCL kernel.

4.1.1 NOT operator
An interesting problem found when flattening trees was the NOT

operator. The first idea to deal with this involved flipping the pos-
itive / negative jumps of the associated operators. This ‘jump flip-
ping’ ensured that a true test evaluation resolves to the false branch
while a false evaluation will jump to the positive branch, mimick-
ing the flip created by a NOT operator. While this worked for most
cases, it produced incorrect trees in cases involving nested NOT
operators.

A solution was finally found when NOTs were ‘pushed’ down
the tree until they reached a comparison function. If an AND or
OR function is encountered, the rules of logical equivalence found
in Equations 5 and 6 allow the NOT operator to be pushed through
the function descending down the tree further. This solution suc-
cessfully works for all trees that contain the NOT operator.

¬(A ∨B) = ¬A ∧ ¬B (5)

¬(A ∧B) = ¬A ∨ ¬B (6)

When the tree reaches a comparison operator they are changed
from ‘Less Than’ to ‘Greater Than or Equal To’; ‘Greater Than’
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Table 1: The general node structure along with brief descrip-
tion of each element used to convert trees into byte arrays. Each
node takes a total of 12 bytes.

Type Name Description

short - Indicator Which Indicator to use
byte - Period Period of the chosen indicator
byte - Operator What Operation to perform
float - Comparison Comparison value for the oper-

ator
short - Positive Jump Where to go if operator evalu-

ates true
short - Negative Jump Where to go if operator evalu-

ates false

Total Size - 12 Bytes

Figure 5: The representation of an EDDIE tree as nodes using
the structure presented in Table 1.

becomes ‘Less Than or Equal To.’ Finally the third test ‘Equal To’
becomes ‘Not Equal To.’; thus completing the NOT chain.

4.2 JOCL
Java OpenCL (JOCL) [9] is an open-source project which pro-

vides OpenCL bindings for Java. Since EDDIE was originally writ-
ten in Java, the use of JOCL avoids the requirement to pass pro-
gram parameters to a native program, which would require the use
of either the Java Native Interface (JNI) or the Java Native Access
(JNA). Therefore, to implement the OpenCL-enabled fitness eval-
uation in EDDIE we used the JOCL library - this extended EDDIE
version is called EDDIE-JOCL.

There are two parts that makes up the OpenCL/JOCL implemen-
tation of any application: the host program and a kernel.

The host program creates the OpenCL device and deals with the
scheduling and execution of kernel instances. It provides the bridge
between the two architectures. The general process requires the
selection and initialisation of an OpenCL device. Once an OpenCL
device has been created you can then specify the data that is to be
sent across and queue work items to be processed. After execution,
data can then be retrieved from the OpenCL device.

The OpenCL kernel contains the code that will be executed on
an OpenCL enabled device (CPU or GPU device). It generally con-
sists of the internals of a for loop, which has been unravelled so

that it can be executed in parallel. Each work unit on the OpenCL
device has its own id which can be obtained with the following
snippet of code:

int gid = get_global_id(0);

This allows each work unit to identify which bit of data it should be
using in its execution. In EDDIE, this parameter is used to identify
which day of the training or test data we want to evaluate.

Inside EDDIE’s kernel, we have a struct that is overlaid onto the
incoming tree to convert the bytes back into their original types.
The struct displayed below corresponds to the OpenCL version of
the same node structure in Table 1:

// node structure used to flatten
// the trees in EDDIE-JOCL
struct node {

short indicator;
char period;
char operator;
float comparison;
short pos_jump;
short neg_jump;

};

First the kernel places this node struct over the start of the byte
array received by the kernel. It then evaluates the node and decides
whether it should move to the position specified by positive jump
or negative jump. The node is then repositioned and then the new
node is evaluated. This process is shown in the following code:

// we will now decide whether we
// will true jump or false jump
int pos = eval(ind,

node->operator,
node->comparison);

if (pos == 0) {
ptree = &tree[node->neg_jump];

} else if (pos == 1) {
ptree = &tree[node->pos_jump];

} else { // catch evaluation error
// insert error code
fitnessValue[gid] = -1;
return;

}

// move the position of the node
node = ptree;

The test is evaluated and then the code decides whether to use
the positive or negative jump. We then reassign the void pointer
ptree before then assigning its address as the next node to evalu-
ate.4

This process will then continue until a BUY or NOT BUY node
is reached. If malformed trees are introduced to the system, a po-
tentially dangerous situation could occur where the OpenCL kernel
could loop indefinitely. While a maximum iteration could be ap-
plied to the loop this would reduce performance as this compari-
son will have to be checked every loop. In this implementation no
protection is provided against malformed trees, apart from the cor-
rectness of the tree flattening process, which ensure that maximum
performance can be extracted from the OpenCL device.
4The complete OpenCL kernel used by EDDIE-JOCL can be found
at #pre-print version#.
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Table 2: The parameter values of EDDIE used in the experi-
ments.

Experiment Parameter Value

Stock names: Aggreko – FTSE 100 stock
GSK – FTSE 100 stock
Lloyds – FTSE 100 stock

Maximum initial depth: 6
Maximum depth: 8
Primitive probability in Grow method: 0.6
Terminal node crossover bias: 0.1
Hill Climbing probability: 0.001
No of generations: 51
Population size: variable
Tournament size: 2
Crossover probability: 0.9
Reproduction probability: 0.1
Mutation probability: 0.01
Elitism percentage: 0.01
[w1, w2, w3]: [0.6, 0.1, 0.3]
Training Days: 1000
Testing Days: 300

5. RESULTS
We evaluated the performance of the improved EDDIE-JOCL

implementation against the original EDDIE, running on both the
CPU and GPU. All performance tests were run on the following
hardware:

CPU - Intel Core i7-3770K

RAM - 8GB DDR3

GPU - AMD 7970 (Tahiti XT)

OS - Ubuntu 12.10 x86-64

The parameter values of EDDIE used in the computational ex-
periments are shown in Table 2. The only parameter that is changed
during the experiments is the population size. To test the scalability
of the improved EDDIE-JOCL, we used population sizes {50, 250,
500, 750, 1000}. We also tested both the CPU and GPU devices.
While there are less work units—less parallel fitness evaluations by
consequence—when using the CPU, there is no memory copy over-
head, since both the host and OpenCL processes are using the main
memory. By using the GPU, we can significantly increase the num-
ber of work units, but we also introduce a memory copy overhead
to copy the data from the main memory to the GPU memory.

The computation results are summarised in Table 3 and pre-
sented graphically in Figure 6. Overall, large speeds up were ob-
tained by the EDDIE-JOCL when running in the CPU—average
speed up of 19 times across all 5 population sizes, with the maxi-
mum speed up seen being 21 times the original EDDIE implemen-
tation. It is also interesting to note that the execution times do not
vary significantly across different datasets (stock data)—the nature
of the data (daily closing prices) and the problem are the same.

As can be seen, the execution time of EDDIE-JOCL using the
GPU was considerably slower than the CPU. This was unexpected
as the large number of stream processors available in the GPU
should have given it a significant advantage—the more work units,
the more parallel fitness evaluations. To explore the reason behind
this occurrence, the fitness evaluation times of both GPU and CPU
execution were recorded. Figure 7 shows the time taken for each

Table 3: Summary of the experiments concerning the execution
time in seconds (average time [standard error]).

Stock Pop. EDDIE EDDIE-JOCL
CPU GPU

Aggreko 50 84.1 [20.5] 4.0 [0.4] 109.7 [12.5]
250 447.3 [84.2] 22.3 [1.9] 574.4 [52.9]
500 885.3 [119.9] 47.3 [2.8] 1170.5 [102.9]
750 1406.8 [186.5] 71.3 [3.1] 1743.9 [131.5]

1000 1597.3 [201.1] 95.2 [6.1] 2474.4 [168.0]

GSK 50 81.7 [23.9] 4.5 [0.5] 95.8 [12.6]
250 422.7 [91.4] 19.8 [3.7] 563.2 [60.7]
500 1005.7 [145.1] 41.9 [3.0] 1208.3 [167.5]
750 1498.3 [198.0] 73.0 [4.2] 1807.6 [143.8]

1000 1617.0 [267.2] 98.2 [6.0] 2398.6 [232.8]

Lloyds 50 77.1 [18.3] 3.7 [0.5] 94.2 [11.3]
250 457.7 [79.1] 23.1 [2.6] 611.4 [65.5]
500 809.4 [124.0] 44.1 [3.0] 1386.1 [208.8]
750 1451.6 [203.6] 84.8 [3.6] 1761.2 [173.8]

1000 1603.0 [278.1] 103.3 [6.0] 2397.4 [221.4]

EDDIE variation to evaluate a single tree. A single run with a pop-
ulation size of 50 trees was used across all three versions and the
same seed was also used to ensure that the same trees were eval-
uated every time. The trees were then sorted by length and the
average times for each tree length was calculated. The slowest ver-
sion is EDDIE-JOCL when running on the GPU, with a time ap-
proximately 30% slower than EDDIE; the faster is EDDIE-JOCL
running on the CPU is over 6 times faster than EDDIE.

The evaluation times confirmed the previous results: EDDIE-
JOCL running on the GPU is the slowest of all three versions. To
further investigate what was causing the difference between the two
EDDIE-JOCL versions, both the evaluation and kernel times were
recorded for EDDIE-JOCL. These times are shown in Figures 8
and 9, respectively. They compare the average time taken to evalu-
ate one tree including all overheads, such as OpenCL set-up times,
memory transfer times when sending and receiving data from and
to the OpenCL device. The kernel time corresponds to the time to
execute the kernel. The difference between the two time measures
corresponds to the overheads created by JOCL and the OpenCL
environment.

It can be seen that when running on the CPU, the kernel time
accounts for a large proportion of the total evaluation time, since
there is no memory copy overhead. This is not the case on the
GPU, where the kernel time corresponds to very small proportion
of the total evaluation and the OpenCL overheads dominate.

5.1 Discussion

5.1.1 CPU speed ups
EDDIE-JOCL running on the CPU showed large speed ups be-

tween 21 and 16 times, depending on the population size, and an
average of 19 over the five population sizes. This speed up is
very significant as only four cores and eight threads are available
to EDDIE-JOCL. If the both evaluation methods on EDDIE and
EDDIE-JOCL were equally as efficient, then a maximum speed up
of eight times would be expected. There must be another reason for
the extra efficiency and we hypothesise that this extra efficiency is
due to the change from an object orientated paradigm to a procedu-
ral paradigm.

The original evaluator found in EDDIE uses the eval method
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EDDIE and EDDIE-JOCL. Large speed ups are achieved when
EDDIE-JOCL is using the CPU device—the maximum speed
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Figure 7: Evaluation times according to the number of nodes
in the trees of the original EDDIE algorithm compared with
EDDIE-JOCL running on both the CPU and GPU.

found inside every function that makes up a tree, following a object
orientated paradigm. Therefore, to evaluate a tree, there is a need
to traverse an object structure, which may incur method overheads
when the program wants to move to the next object. In the EDDIE-
JOCL implementation the trees are stored as arrays and the time to
traverse an array is much faster than traversing an object structure

5.1.2 GPU (under-)performance
Despite the performance increases found when EDDIE-JOCL

was run on the CPU, EDDIE-JOCL when running on the GPU
proved to be slower than EDDIE, as can be seen in Figure 7. This
was surprising as the highly parallel nature of the GPU architec-
ture should have lent itself to speeding up the fitness function of
EDDIE.

This result suggests that the losses are occurring as a result of
OpenCL overheads. When running on the CPU, memory transfer
overheads are not relevant as no memory copies are necessary—
both host and OpenCL processes are using the main memory. But
when running on the GPU, a memory copy does have to take place.
This is confirmed by Figures 8 and 9, where the kernel times for
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Figure 8: Evaluation and kernel times according to the number
of nodes in the trees for EDDIE-JOCL when running on the
CPU.

the CPU (Figure 8) are much closer to the total evaluation time. On
the other hand, Figure 9 shows that the kernel times on the GPU are
less than a tenth of the total evaluation time. The two configurations
share the same code, so the only differences between the two is the
memory transfer times, which seem to be very expensive in our
case.

Looking only at the kernel times, the average kernel time on the
CPU are 0.025ms whilst on the GPU they are 0.089ms. These dif-
ferences could have a number of possible reasons. First, the cores
contained on the CPU are much more complex than those found on
the GPU. This, combined with the higher clock rate (1050Mhz on
the GPU compared with 3500MHz on the CPU), allows the CPU
to execute more instructions in the same time period. Secondly, the
training data only contained 1000 samples, a small data size could
cause some of the GPU stream processors (work units) to be under
utilised.

Thirdly, the CPU does not subscribe to the SIMD (Single Instruc-
tion, Multiple Data) architecture, so is not penalised by branching
code. In EDDIE, this occurs when the test results in each node eval-
uate differently for different elements in the testing data. On the
CPU this is not a problem and all cores execute separately. How-
ever on the GPU, both positive and negative jumps on the node
have to be evaluated sequentially and the stream processors waste
cycles as they evaluate branches that are of no relevance to their
calculation—the stream processors in the GPU must execute the
same line of code. This was also noticed by Franco et al. in their
implementation [7].

5.1.3 Possible improvements
The implementation discussed here could be further improved

by changing the way the trees are dispatched to the OpenCL ker-
nel. All the trees could be dispatched in one go. This is likely to
decrease the transfer time as a single large block transfer would be
quicker than many small transfers.

Once all the trees are on the OpenCL device there are two possi-
ble routes that could be taken to calculate the fitness function: the
first is to let each stream processor calculate the entire fitness func-
tion of a single tree; the second is to parallelise both the trees and
fitness function evaluation. This would require more logic in the
kernel, as each instance would have to know which tree to evaluate
along with the specific data that is to be used.

Finally a large amount of data is returned by the kernel, as the
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final fitness calculation is still calculated by EDDIE. A second ker-
nel could be created to reduce this data into a single fitness value
for each tree, which would then be returned, reducing the amount
of memory that needs to be copied back.

6. CONCLUSION
In this paper we presented an extension to the financial forecast-

ing algorithm EDDIE, called EDDIE-JOCL. As explained, speed
is a very important aspect for financial forecasting algorithms, and
can lead to significant increases in investors’ profitability. Our goal
thus in this paper was to improve EDDIE’s computational perfor-
mance by using an OpenCL kernel to evaluate candidate solutions.
This allowed the parallel evaluation of solutions, both using multi-
core CPUs and GPUs, by implementing the fitness function as an
OpenCL kernel—following the assumption that the fitness evalua-
tion is usually the expensive process in the GP run. EDDIE-JOCL
achieved a maximum speed up of 21 times and an average of 19
times over the original EDDIE, when the OpenCL kernel was run
in a multi-core CPU. Differently than previous results in the liter-
ature, running the kernel on a GPU device did not resulted in im-
provements over the CPU results. We identified the memory copy
overheads from the main memory to the GPU memory and branch-
ing code (code that executes different instructions based on the in-
put data) as potential causes of the somewhat unexpected (under-)
performance of the GPU. As an overall observation, it seems that it
is not guaranteed that by using GPUs, a performance increase will
be achieved—specific refactorings to the code might be needed to
fully use the potential of GPUs.

We have identified future improvements to better use the GPU
resources and optimise memory copy overheads, which have the
potential to lead to further performance gains. This include the
copying of all candidate solutions (trees) in one operation, a more
complex kernel that parallelises the evaluation of multiple trees and
fitness cases and the use of a second kernel to compute the final
fitness value of solutions.
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