
Distributed Optimization on Super Computers: Case Study
on Software Architecture Optimization Framework

Ramin Etemaadi
Leiden Institute of Advanced Computer Science

Faculty of Science, Leiden University
Leiden, the Netherlands
etemaadi@liacs.nl

Michel R.V. Chaudron
Dept. of Computer Science and Engineering

Chalmers University of Technology
Gothenburg, Sweden

chaudron@chalmers.se

ABSTRACT
Nowadays advanced software systems need to satisfy large
number of quality attributes at the same time. It is a
very complex optimization problem which software archi-
tects must address. Evolutionary algorithms can help archi-
tects to find optimal solutions which meet these conflicting
quality attributes. However, these metaheuristic approaches
in multiobjective problems especially for high dimensions
mostly take so long time to be executed. One of the best
solutions to speed up this process is distributing execution
of evolutionary algorithm on multiple nodes of a super com-
puter or on the cloud.

This paper presents the results of distributed execution
of evolutionary algorithm for multiobjective optimization of
software architecture. We report implementation of two dif-
ferent ways for distributed execution of evolutionary algo-
rithm: (1) Actor-based approach, (2) MapReduce approach.
The case study in this experiment is an industrial software
system which is derived from a real world automotive em-
bedded system.

The results of this computationally-intensive experiment
on a super computer give us 81.27% parallelization efficiency
for distribution among 5 nodes.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement; D.2.11 [Software Engineering]: Soft-
ware Architectures; D.2.2 [Software Engineering]: Design
Tools and Techniques

Keywords
Distributed Execution; MapReduce Paradigm; Actor-based
Distribution; Metaheuristic Optimization; Evolutionary Mul-
tiobjective Optimization Algorithms (EMOA); Software Ar-
chitecture Design Optimization; Component-Based Software
Engineering (CBSE)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
Copyright 2014 ACM 978-1-4503-2881-4/14/07 ...$15.00.
http://dx.doi.org/10.1145/2598394.2605686.

1. INTRODUCTION
The architecture has deep impact on non-functional prop-

erties of a system such as performance, safety, reliability, se-
curity, energy consumption and cost. Due to the complexity
of today’s software systems, designing a system which meets
all its quality requirements becomes increasingly complex.
Hence, system architects have to employ optimization tech-
niques to be able to explore more design possibilities and
to find optimal architectural solutions. Metaheuristic ap-
proaches frame the challenge of designing architectures as an
optimization problem and iteratively try to improve a can-
didate solution with regard to the given quality attributes.
Evolutionary Algorithms (EA), as a well-known metaheuris-
tic approach, is a common optimization technique for solving
system architectural problems. However, evolutionary algo-
rithms are generally slow especially when evaluation func-
tion is computationally-intensive and slow. It takes so long
for an evolutionary algorithm to find near optimal solutions,
therefore techniques are needed to speed up this process.
Distributing the optimization process is one of the best so-
lutions to achieve this goal.

This paper shows the results of distributed execution of
evolutionary algorithm for multiobjective optimization of
software architecture. For distributed execution of evolu-
tionary algorithm, we have implemented two approaches:
(1) Actor-based approach, (2) MapReduce approach. To
execute our distributed implementation on a super com-
puter, we have used DAS-4 (The Distributed ASCI Super-
computer 4) [16] to setup a computationally-intensive exper-
iment. Our distributed implementation have been applied
to a case study derived from a real world automotive system.

The paper is organized as following: Firstly, Section 2 de-
scribes our optimization framework, and its detailed mod-
eling, optimization and evaluation parts. Then, Section 3
discusses our two proposed approaches for distributed ex-
ecution. We have applied our approach on a case study,
which is described in Section 4. Finally, the paper concludes
in Section 5.

2. AQOSA FRAMEWORK
In this section, we present the AQOSA framework which

our new degrees of freedom is implemented on. First, we
start with general process of AQOSA framework in Sec-
tion 2.1. Section 2.2 describes AQOSA modeling. Sec-
tion 2.3 describes the optimization process in detail. Then,
the evaluator evaluates each architecture for various quality
attributes. Section 2.4 describes the used evaluation tech-
niques.

1125

2.1 Process
AQOSA is a framework which uses genetic algorithm op-

timization approach for automated software architecture de-
sign. The framework supports analysis and optimization of
multiple quality attributes including response time, proces-
sor utilization, bus utilization, safety and cost. Figure 1
shows the architecture of the AQOSA framework. It uses
an architectural Intermediate Representation (IR) model for
describing the architectural design problem. The tool takes
the following as input: i) an initial functional part of the
system (i.e. components that provide the needed function-
ality and their interactions with other components), ii) a set
of typical usage scenarios (includes trigger to create work-
loads), iii) an objective function (implying which architec-
ture properties should be optimized), iv) a repository that
contains a set of specifications of hardware and software
components.

Options for Additional

Evaluators

AQOSA Architecture

Modeling Editor

AQOSA IR Model

Evaluation Sub-System

Optimization Sub-System

Optimized

Architectures

Evaluator
Evaluator

Evaluator

Optimization

Module

Optimization

Algorithm

Input Model

Evaluator for

Quality Property X

Figure 1: AQOSA overall architecture.

Then, AQOSA iterates through the following steps:

1. Generate a new set of candidate architecture solutions:
To this end, AQOSA uses a representation of the archi-
tecture where it knows which are the degrees of free-
dom in the design and how to generate alternative ar-
chitecture instances.

2. Evaluate the new set of candidate architecture solu-
tions for multiple quality properties: This works by
generating analysis models from the architecture model
using model transformations and then analyzing these
models.

3. Select a set of (so far) Pareto-optimal solutions.

4. Iterate to step 1 until some stopping criterion holds.
This can be a maximum number of generations or a
criterion on the objective function.

2.2 Architecture Modeling
Because AQOSA is designed to optimize architectures in

a wide range of domains, it aims to be independent from
specific modeling languages. Hence, it uses its own inter-
nal architecture representation, AQOSA intermediate rep-
resentation (AQOSA-IR). AQOSA architecture modeling is
based on an Eclipse EMF [5] model. AQOSA-IR model
integrates multiple quality modeling perspectives (such as
performance, safety, etc.) for the architectural level opti-
mization purpose.

AQOSA-IR consists of four major parts: Assembly, Sce-
narios, Repository and Objectives.

• Assembly: It includes software components and their
assembly for delivering system functionalities. Every
component provides some services, and interaction be-
tween different components are defined by flows and
actions within flows.

• Scenarios: It defines expected scenarios for the sys-
tem. So, the architect can define best-case, worse-case
or normal-case for the system. It stores real-time con-
strains of the system such as expected completion time
and deadline.

• Repository: It stores various possible choices for pro-
cessors, buses and component implementations. Based
on this repository, the AQOSA framework is able to
change assigned processor for each node, or assigned
bus instance for each bus line, etc. It contains required
specifications of each possible hardware or software.

• Objectives: It defines the objectives which the frame-
work optimizes.

A sample of AQOSA-IR model is presented in [8].

2.3 Architecture Optimization
The AQOSA optimizer tries to optimize software archi-

tecture with respect to potentially contradicting quality at-
tributes based on evolutionary algorithms. In general, var-
ious global optimization techniques have been used in han-
dling complex engineering problems. Younis et al. [18] com-
pared variety of optimization methods and revealed the pros
and cons of these global optimization methods. For AQOSA
framework, we have chosen Genetic Algorithms (GA) for op-
timization method.

In the following, first we describe compatible evolutionary
algorithms with AQOSA framework. After that, we discuss
implemented degrees of freedom for our architecture opti-
mizer. And then, we detail how we represent software archi-
tecture in the form of a genotype. This shows how we would
be able to generate various architectures.

2.3.1 Evolutionary Algorithms
Because of conflicts between different quality attributes in

the software architecture, AQOSA uses Evolutionary Multi-
Objective Algorithms (EMOA) to improve the architecture.
It has been implemented based on the Opt4J optimization
framework [14]. The system designer can choose one of the
following GA algorithms for his design problem:

• NSGA-II (non-dominated sorting based multi-objective
evolutionary algorithm): It is one of the most widely
used EMOA techniques and has been proposed by Deb [4].

• SPEA2 (an improved version of Strength Pareto Evo-
lutionary Algorithm): It has been suggested by Zitzler
and Thiele [19], and it is also widely used.

• SMS-EMOA (S-Metric Selection Evolutionary Multi-
Objective Algorithm): It has been proposed by Em-
merich, Beume and Naujoks [6]. It is a representative
of the class of hypervolume-based EMOA, which re-
cently gained popularity in the EMOA field.

A comparison of EMOA algorithms for software architecture
domain is discussed in our earlier work [13].

1126

2.3.2 Degrees of Freedom
When an architect finalizes an architectural design for a

system, generally there are still some ways in which the so-
lution can be varied without changing the functionality. We
call them Degrees of Freedom(DoF). The component-based
paradigm that underlies our approach, allows us to recom-
pose components in different topologies and wrappers. How-
ever, we only consider variations of architectural designs that
do not modify the interfaces used in the architecture in order
to guarantee that our optimization process does not change
the functionality of the system.

In the following, we describe the degrees of freedom sup-
ported by AQOSA framework:

Number of hardware nodes .
If an architectural model contains n software components,

then these can be deployed on a number of hardware nodes,
ranging between a minimum of 1 and a maximum of K·n
hardware nodes (for some natural number K > 0), because
the number of nodes in an architecture is finite. Adding
more hardware nodes may provide more processing capacity
and therefore give better performance. Vice versa, removing
hardware nodes may reduce the total cost of the system.

Number of connections between hardware nodes .
If n hardware nodes are chosen for the deployment of com-

ponents, then the maximum number of connections between

hardware nodes can be calculated by Maxc(n) = n(n−1)
2

.
This maximum represents a case that all of the nodes are
connected 1-by-1 together by a dedicated connection. As
a minimum we can assume a single central bus which con-
nects all of the nodes. This DoF has significant impact on
performance and cost of the system.

Network topology.
By definition, network topology is the layout of intercon-

nections between hardware nodes. Figure 2 shows some pos-
sible topologies for connecting a network with 4 nodes. Even
with the same number of nodes and the same number of con-
nections, network topologies might be different. The impact
and importance of this DoF is discussed in authors’ previ-
ous work [7]. Obviously, not all possible topologies are valid
and therefore AQOSA performs a validation process before
evaluation.

Node 1 Node 2

Node 3 Node 4

Node 1 Node 2

Node 3 Node 4

Node 1 Node 2

Node 3 Node 4

Figure 2: Three possible topologies for a 4-node network.

Software on hardware allocation .
Given a hardware network topology, allocation of software

components on hardware nodes is another degree of freedom.
This degree of freedom also has large effect on the processors
utilization and performance of the whole system.

Software components replacement .
Different components (e.g. developed by different ven-

dors) that implement the same functionality are considered
different architectural alternatives. Our assumption is that
one component can replace another if and only if they imple-
ment the same functionality. If not, the replacement violates
the system functionality which is not accepted.

Processors replacement .
This degree of freedom entails that each hardware node

can be replaced by another hardware node (processor) in the
repository. These processors may be different in processing
clock rate, energy consumption, failure probability range,
and cost. It has large effect on all quality attributes.

Buses replacement .
This degree of freedom is similar to the hardware com-

ponents replacement, but is aimed at replacement of buses.
They may be different in communication bandwidth, com-
munication delay, failure probability range, and cost as well.

2.3.3 Architecture Genotype
Inspired by the biological concept of genotypes, in genetic

programming and evolutionary algorithms, the genotype is
the genetic representation of an individual which in this case
is an architecture design. AQOSA framework used a geno-
type which consists of a set of 5 genomes.

The deployment genome encodes that each software com-
ponent is deployed on which hardware node. The framework
calculates the number of nodes based on deployment of soft-
ware components and then stores it in the nodes genome.
The nodes genome encodes which hardware specification is
chosen for each node in the system. The specification for
each hardware node includes processing clock rate, range of
failure probability, and cost. The communication genome,
like the nodes genome, encodes which hardware specification
is chosen for each communication line. Their specification
includes bandwidth, transmit delay, and cost. Topology is
represented by two Boolean matrices which we call it connec-
tion genomes. These matrices show the connections between
buses to nodes and amongst buses themselves. Each cell in
the matrix can have value True or False, where True means
this particular node and particular line are connected (or
that these particular lines are connected).

Genotype Validation.
Evolutionary algorithms in AQOSA can apply various ge-

netic operators such as Copy, Mutate or Crossover to the
genotype. However there is no guarantee that valid archi-
tectures will be generated as offspring. Therefore, it is nec-
essary to validate the offspring. In this process the optimizer
performs sanity checks for each genotype in the generated
offspring. For example, if the model defines that compo-
nent3 should communicate with component5 and then the
generated offspring deploys component3 on node2 and com-
ponent5 on node4, this process should check whether there
are any communication paths between node2 and node4.

1127

2.4 Architecture Evaluation
The AQOSA evaluation sub-system gets an evaluation

model (e.g. Queuing Networks and Fault Tree) which is
transformed from a combination of the AQOSA IR and a
genotype (which is described in Section 2.3.3) for a partic-
ular quality attribute (e.g. Response Time or Safety). It
feeds evaluation models to each evaluator and returns the
results to the optimization sub-system.

It should be pointed out that our framework is aimed
at optimizing architectures. So, from optimization point of
view, the framework is targeted for supporting relative com-
parisons between architectural solutions. For this purpose,
AQOSA uses analysis tools for particular quality attributes
as plug-ins. We assume that these analysis tools are devel-
oped and validated by domain experts. However, to exam-
ine the accuracy of AQOSA evaluation implementation, we
have compared our tool results with results reported in rel-
evant publications. In case of performance attributes, our
QN implementation can achieve the same results as the re-
sults published in [17]. In case of FTA, we compared our
results with the results published in [10].

In the following, we describe the supported quality at-
tributes by the AQOSA framework.

Response Time.
Response time refers to a time interval during which the

response to an event must be executed. The time interval
defines a response window given by a starting time and an
ending time. These can either be specified as absolute times
(time of day, for example) or offsets from an event which
occurred at some specified time [2]. The ending time is also
known as a deadline. AQOSA measures response time for
each event in the system as offsets from the request time,
and then scores them based on predefined deadlines. More
technically, within the QN simulation process, it generates
scenario events as the queuing network inputs and records
the response time of outputs for the events.

Processor Utilization.
Processor utilization is the percentage of time which a re-

source is busy. AQOSA measures this percentage for each
processor in the architecture separately. To do so, it trans-
lates the architecture to the queuing network. After the
simulation of the network, this quality attribute will be re-
trieved from the network statistics. Regarding the final mea-
sure for this metric, AQOSA can be configured to return
either average, minimum, or maximum of processors utiliza-
tions in the network.

Bus Utilization.
Like processor utilization, bus utilization is the percent-

age of bandwidth that a bus uses. Similar to above, AQOSA
measures this metric for each bus in the architecture sepa-
rately. Again, this metric can be configured to return either
average, minimum or maximum of buses utilizations.

System Safety.
Förster [11] claims: ”Software does not fail randomly but

will invariably fail again in the same way under the same
conditions. While for mass-produced hardware parts it is
possible to assign a failure probability, for software a similar
assumption does not seem entirely realistic”. Accepting this

hypothesis, we assume for each component that the output
fails if either the input fails or the hosting hardware crashes.
So, AQOSA analyzes the corresponding fault tree for each
system output and calculates the failure probability of each
output based on its fault tree dependability on various in-
puts and related hardware nodes.

System Cost.
The cost quality attribute is important from a market

point of view. Fortunately, it is easily calculated by adding
the cost of used software components, hardware nodes, and
communication lines.

3. PARALLEL EXECUTION
In the following, we discuss two approaches for parallel

execution of evolutionary algorithms which we implemented
in our framework:

3.1 Actor-based Distribution
(Akka Framework [1])

The Actor Model provides a higher level of abstraction
for writing concurrent and distributed systems. It alleviates
the developer from having to deal with explicit locking and
thread management, making it easier to write correct con-
current and parallel systems. Actors were defined by Carl
Hewitt [12] but have been popularized by the Erlang lan-
guage.

Akka is a framework which helps developers in writing
correct concurrent, fault-tolerant and scalable applications.
Akka by using the Actor Model raises the abstraction level
and provides a better platform to build correct concurrent
and scalable applications. Actors also provide the abstrac-
tion for transparent distribution and the basis for truly scal-
able and fault-tolerant applications.

Actors give developers:

1. simple and high-level abstractions for concurrency and
parallelism,

2. asynchronous, non-blocking and highly performant event-
driven programming model,

3. very lightweight event-driven processes.

Fault tolerance through supervisor hierarchies with “let-
it-crash”semantics. Excellent for writing highly fault-tolerant
systems that never stop, systems that self-heal. Supervisor
hierarchies can span over multiple JVMs to provide truly
fault-tolerant systems.

3.2 MapReduce Paradigm
(Hadoop Framework [15])

MapReduce was firstly introduced by Dean et al. in [3].
MapReduce is a programming model designed for processing
large volumes of data in parallel by dividing the work into a
set of independent tasks. MapReduce programs are written
in a particular style influenced by functional programming
constructs, specifically idioms for processing lists of data.
This requires dividing the workload across a large number
of machines. This model would not scale to large clusters if
the components were allowed to share data arbitrarily. The
communication overhead required to keep the data on the
nodes synchronized at all times would prevent the system
from performing reliably or efficiently at large scale. Users

1128

Figure 3: A visualization of Map and Reduce processes.

specify a map function that processes a key/value pair to
generate a set of intermediate key/value pairs, and a reduce
function that merges all intermediate values associated with
the same intermediate key. Programs written in this func-
tional style are automatically parallelized and executed on
a large cluster of commodity machines.

The Apache Hadoop software library is a framework that
implemented MapReduce programming model. This frame-
work allows for the distributed processing of large data sets
across clusters of computers using MapReduce paradigm.
Conceptually, MapReduce programs transform lists of input
data elements into lists of output data elements. A MapRe-
duce program will do this twice, using two different list pro-
cessing idioms: map, and reduce. The Hadoop MapReduce
framework takes these concepts and uses them to process
large volumes of information. Figure 3 shows a visualiza-
tion of this process.

Mapping List.
The first phase of a MapReduce program is called map-

ping. A list of data elements are provided, one at a time, to a
function called the Mapper, which transforms each element
individually to an output data element. As an example of
the utility of map: Suppose you had a function toUpper(str)
which returns an uppercase version of the input string. You
could use this function with map to turn a list of strings into
a list of uppercase strings. Note that we are not modifying
the input string, we are returning a new string that will form
part of a new output list.

Reducing List.
Reducing lets you aggregate values together. A reducer

function receives an iterator of input values from an input
list. It then combines these values together, returning a sin-
gle output value. Reducing is often used to produce ”sum-
mary” data, turning a large volume of data into a smaller
summary of itself. For example, ”+” can be used as a reduc-
ing function, to return the sum of a list of input values.

4. CASE STUDY

4.1 Implemented Actor-based Distribution
Figure 4 depicts scheme of our implemented Akka actors.

We used 5 nodes, 1 master node and 4 worker nodes. On
each worker node, Akka framework was set to be initial-
ized which run 4 actors on ports 2551, 2552, 2553 and 2554
respectively. Therefore, 16 actors in total were set to be
initialized. They were responsible for evaluating an individ-
ual based on requested software quality attributes, such as
response time, processor utilization, bus utilization, safety
and cost. On the master node, Akka framework was set to
start an actor called ’Evaluator Balancer’ (as depicted in
Figure 4). This actor is responsible for distributing evalua-
tion jobs to other 16 worker actors. It used a round-robin
balancing for the for distribution of assigned jobs. AQOSA
framework also started on master node and it was calling
balancer actor whenever it wanted to evaluate an individ-
ual.

This experiment has been run on DAS-4 [16] super com-
puter that every node is a powerful computer with a 8-core
(each core runs 2.67GHz and 12MB cache) processor and
48GB memory.

4.2 Automotive Subsystem
To examine the efficiency of actor-based distributed imple-

mentation of our software architecture optimization frame-
work, we applied it to a real case study from automotive
industry. The case study was conducted at Saab Auto-
mobile AB and has been reported in the previous authors’
work [9]. The system represents the Saab 9-5 Instrument
Cluster Module ECU (Electronic Control Unit, a node in
a network) and the surrounding sub-systems. It consists of
18 components as depicted in Figure 5. The Instrument
Cluster Module is responsible for 8 concurrent user func-
tions. Hence, for providing these functionalities, it should
be able to response 6 sporadic tasks and 4 periodic tasks con-
currently. Details of these tasks have been reported in [9]
and [8].

1129

WorkerNode1: 10.141.1.1

Worker
1

Worker
2

Worker
3

Worker
4

Master Node: 10.141.1.11

Evaluator
Balancer

EA individual selection

1:
 E

va
lu

at
e

th
is

 in
di

vi
du

al

2: Do this W
ork 3:

 W
or

k
Do

ne

WorkerNode2: 10.141.1.2

Worker
5

Worker
6

Worker
7

Worker
8

WorkerNode3: 10.141.1.3

Worker
9

Worker
10

Worker
11

Worker
12

WorkerNode4: 10.141.1.4

Worker
13

Worker
14

Worker
15

Worker
16

Figure 4: AQOSA implementation of actor-based distribution scheme.

For generating new architectural solutions, the repository
of hardware components contains these elements:

• 28 Processors: ranging over 14 various processing speeds
from 66MHz to 500MHz; Each has two levels of fail-
ure rate. A processor is more expensive if it has less
chance of failure and vice versa.

• 4 Buses: with bandwidths of 10, 33, 125, and 500 kbps,
and latencies of 50, 16, 8, and 2 ms. A bus is more
expensive if it supports higher bandwidth.

As an estimate of the size of the design space in this case
study, consider the following reasoning: Assume we omit ar-
chitecture topology changing and fix an architecture with six
processors and three bus lines for their interconnections (ex-
actly like the current realization in the industry). For these
constraints there are 286 · 43 different possibilities, which is
more than 30 billion architectures. When also considering
variations in the architecture topologies, this number would
be even considerably higher.

After defining the above hardware options, AQOSA was
run 30 times based on NSGA-II algorithm with these adopted
parameter settings: initial population size(α) = 256, par-
ent population size (µ) = 64, number of offspring(λ) = 64,
archive size = 32, number of generations = 60, crossover
rate set to 0.95, and all quality attributes are aimed to be
minimized.

4.3 Results
Table 1 shows the execution times (in milliseconds) of

30 runs of the experiment. The first column is the exe-
cution number. The second column is the execution times
of actor-based distributed implementation. As described in

Section 4.1, it was distributed on 1 master node and 4 worker
nodes. The third column shows the execution times of run-
ning the same design problem on single node.

In parallel computing speedup parameter has been defined
by the following formula:

Sp =
T1

Tp
. (1)

where p is the number of processors, T1 is the execution time
of the sequential algorithm, and Tp is the execution time of
the parallel algorithm with p processors. Therefore, in our
experiment speedup for the average of 30 times run is equal
to:

S5 =
684, 116

168, 353
= 4.0635 (2)

Moreover, efficiency of parallel algorithm has been defined
by this formula:

Ep =
Sp

p
=

T1

pTp
. (3)

This means when running an algorithm with linear speedup,
doubling the number of processors doubles the speed. How-
ever, this case is ideal situation and it is considered ideal
scalability.

To calculate the efficiency of our implemented actor-based
distributed algorithm, we apply the aforementioned formula,
and therefore:

E5 =
S5

5
=

4.0635

5
= 0.8127 (4)

In other words, our implemented actor-based distributed
algorithm in case of this experiment on a real-world case
study shows 81.27% efficiency which is acceptable metric.

1130

DriverDoorAjarSwitch TripStemButton

WheelRotat ion

TransShLeverPstn

LeverPstnSensor

WriteEngineSpeedGauge WriteCoolantTempGauge

LowWasherFluidLevelSwitchOATSensor

WriteVehicleSpeedGauge

OTADisplayInfo

Display_Engine

ControlOdometer ControlGearSelected
Indication

ReadLowWasherLevel

VehicleOdometer

ReadTripStemButtonReadDriverDoor
AjarSwitch

ReadOATSensor

EngineCoolantTempSensor

ControlWheelSpeed

WheelSpeedSensor (4 Wheels)

ReadWheelSpeed
Sensors

TransmissionVehicle
Interface

SystemPowerMode

IgnitionSwitch

ProvidePowerModeInfo

EngineCoolantTemp

CoolantDisplayValue

ControlCoolantTemp
Gauge

VehicleSpeed

VehicleSpeedDisplayValue

ControlVehicleSpeed
Gauge

EngineSpeed

EngineSpeedDisplayValue

ControlEngineSpeed
Gauge

WasherFluidLow

ControlWasherLevel
Indication

OutsideAirTemp

OATDisplayValue

ControlOutAirTemp

CrankShaftSensor

EngineVehicleInterface

Gauge_Engine

SensorsValues

GearDisplayValue WasherDisplayValueOdometerDisplayValue

StemButtonValueAjarSwit chValue

OdometerDisplayInfo WasherDisplayInfo

GearDisplayInfoLegend

System Output

System Input

Internal Signal

Figure 5: Component diagram of Automotive Instrument Cluster system.

4.4 Actor-based vs. MapReduce Approach
To compare two different distribution approaches which

are described in Section 3, we set another experiment to run
both approaches for the same case study. The case study
is the same real-world automotive system which is already
discussed in previous section.

In this experiment, we employed cluster of 16 nodes from
DAS-4. 8 nodes for running actor-based distribution and
8 nodes for running MapReduce distribution. In this ex-
periment, every node had a dual Intel R© Xeon R© Processor
E5-2620 (15M Cache, 2.00 GHz) as processor and 64GB of
memory. Both implementations only distribute the task for
evaluation of an individual solution.

We started both implementations at the same time. The
results show by the time 30 executions were completed us-
ing actor-based approach, MapReduce program managed to
finish only 10 executions. Therefore, we can conclude that
actor-based approach is faster for evolutionary algorithms,
at least for this case study.

One explanation for this behaviour can be the number of
nodes in the cluster. MapReduce approach probably needs
large-size cluster of nodes to achieve its performance. Un-
fortunately, we did not have access to Hadoop cluster larger
than 8 nodes to test this hypothesis.

5. CONCLUSION
In this paper we presented the results of a software archi-

tecture optimization experiment which calculates the effi-
ciency of parallel execution for evolutionary algorithm. We
defined this experiment based on a real world case study
and we applied it for a software architecture optimization
problem with five objectives. We showed that parallel ex-
ecution of evolutionary algorithm for software architecture
optimization can improve execution time significantly with
acceptable efficiency in multiobjective optimization context.

The results showed that for cases in which evaluation
process is significant compare to updating Pareto front (se-
lection process), efficiency of parallelization is considerable.
However, for cases in which evaluation process is fast, par-
allelization would not help considerably. Comparing actor-
based distribution and MapReduce distribution, in our case
study, shows that actor-based distribution performs faster.

As the future work, it is interesting to extend the paral-
lelization of execution to the selection process of evolution-
ary algorithm as well. In this way, in addition to evaluation
process, selection algorithm would also execute in parallel
which helps efficiency of parallelization even more. This
should be implemented separately for each selection algo-
rithm (such as NSGA-II, SPEA2, etc).

1131

Run
#

Distributed
(1 Master-Node +
4 Worker-Nodes)

Single-Node

1 168,346 685,668

2 163,278 691,741

3 171,185 687,933

4 191,425 678,725

5 173,486 683,875

6 212,667 697,605

7 185,926 681,893

8 169,970 689,065

9 135,545 695,583

10 162,341 687,381

11 176,953 693,289

12 164,833 689,954

13 153,570 681,492

14 184,530 692,063

15 148,388 655,434

16 169,537 669,622

17 166,597 686,289

18 212,164 676,475

19 158,257 676,324

20 163,089 684,778

21 170,300 677,652

22 138,852 684,308

23 169,592 691,148

24 155,911 671,799

25 166,818 692,061

26 182,757 680,180

27 143,056 689,571

28 161,778 690,718

29 158,040 681,744

30 171,396 679,107

Average 168, 353 684, 116

Table 1: Execution time (in ms) of 30 runs of experiment

6. ACKNOWLEDGMENTS
This work has been supported by the Netherlands na-

tional project OMECA (Optimization of Modular Embed-
ded Computer-vision Architectures).

This research has been executed on Dutch super computer
DAS-4 (The Distributed ASCI Supercomputer 4). DAS-4 is
a six-cluster wide-area distributed system designed by the
Advanced School for Computing and Imaging (ASCI).

7. REFERENCES
[1] Akka Framework: an open-source toolkit and runtime

simplifying the construction of concurrent and
distributed applications on the JVM. http://akka.io/.

[2] M. Barbacci, M. H. Klein, T. A. Longstaff, and C. B.
Weinstock. Quality Attributes. Technical Report
CMU/SEI-95-TR-021, Carnegie Mellon, 1995.

[3] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In OSDI, pages
137–150. USENIX Association, 2004.

[4] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm:
Nsga-ii. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, 2002.

[5] Eclipse Modeling Framework (EMF).
http://www.eclipse.org/modeling/emf/.

[6] M. Emmerich, N. Beume, and B. Naujoks. An EMO
Algorithm Using the Hypervolume Measure as
Selection Criterion. In C. A. C. Coello, A. H. Aguirre,
and E. Zitzler, editors, EMO, volume 3410 of LNCS,
pages 62–76. Springer, 2005.

[7] R. Etemaadi and M. R. V. Chaudron. Varying
topology of component-based system architectures
using metaheuristic optimization. In V. Cortellessa,
H. Muccini, and O. Demirörs, editors,
EUROMICRO-SEAA, pages 63–70. IEEE Computer
Society, 2012.

[8] R. Etemaadi, K. Lind, R. Heldal, and M. R. V.
Chaudron. Details of an automotive sub-system: Saab
instrument cluster module. CoRR, abs/1306.0555,
2013.

[9] R. Etemaadi, K. Lind, R. Heldal, and M. R. V.
Chaudron. Quality-driven optimization of system
architecture: Industrial case study on an automotive
sub-system. Journal of Systems and Software,
86(10):2559–2573, 2013.

[10] M. Förster and D. Schneider. Flexible, Any-Time
Fault Tree Analysis with Component Logic Models. In
ISSRE, pages 51–60. IEEE Computer Society, 2010.

[11] M. Förster and M. Trapp. Fault Tree Analysis of
Software-Controlled Component Systems Based on
Second-Order Probabilities. In ISSRE, pages 146–154.
IEEE Computer Society, 2009.

[12] C. Hewitt, P. Bishop, and R. Steiger. A universal
modular actor formalism for artificial intelligence. In
N. J. Nilsson, editor, IJCAI, pages 235–245. William
Kaufmann, 1973.

[13] R. Li, R. Etemaadi, M. T. M. Emmerich, and
M. R. V. Chaudron. An Evolutionary Multiobjective
Optimization Approach to Component-Based Software
Architecture Design. In IEEE CEC, pages 432–439.
IEEE, 2011.

[14] M. Lukasiewycz, M. Glaß, F. Reimann, and J. Teich.
Opt4J: a modular framework for meta-heuristic
optimization. In N. Krasnogor and P. L. Lanzi,
editors, GECCO, pages 1723–1730. ACM, 2011.

[15] The ApacheTM Hadoop R© project.
http://hadoop.apache.org/.

[16] The Distributed ASCI Supercomputer 4.
http://www.cs.vu.nl/das4/.

[17] E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse.
System architecture evaluation using modular
performance analysis: a case study. International
Journal on Software Tools for Technology Transfer
(STTT), 8(6):649–667, 2006.

[18] A. Younis and Z. Dong. Trends, features, and tests of
common and recently introduced global optimization
methods. Engineering Optimization, 42(8):691–718,
2010.

[19] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2:
Improving the Strength Pareto Evolutionary
Algorithm for Multiobjective Optimization. Technical
report, ETH Zurich, 2002.

1132

