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ABSTRACT

In order for appropriate meta-heuristics to be chosen and
tuned for specific problems, it is critical that we better un-
derstand the problems themselves and how algorithms solve
them. This is particularly important as we seek to automate
the process of choosing and tuning algorithms and their op-
erators via hyper-heuristics. If meta-heuristics are viewed
as sampling algorithms, they can be classified by the tra-
jectory taken through the search space. We term this tra-
jectory a trace. In this paper, we present Hyperion2, a
JavaTM framework for meta- and hyper- heuristics which
allows the analysis of the trace taken by an algorithm and
its constituent components through the search space. Built
with the principles of interoperability, generality and effi-
ciency, we intend that this framework will be a useful aid to
scientific research in this domain.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods; D.1.5 [Object-

oriented Programming]

Keywords

Metaheuristics, Hyper-heuristics, analysis, experimental frame-
work, search space

1. INTRODUCTION
Metaheuristics and related methods are reaching maturity

as a research domain. An extensive literature covers a large
number of approaches, from broad algorithm paradigms to
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individual operators, and over the past couple of decades
metaheuristics have increasingly gained acceptance for ap-
plication to real-world problems in industry [1]. However,
in many respects there is still something of an art in terms
of finding the right algorithm for the right problem. Much
research still focuses on developing tweaks to existing algo-
rithms and operators to suit new application domains, treat-
ing the search process itself as a black box and focussing
on metrics such as convergence speed and solution qual-
ity in empirical comparisons. Approaches to automating
the processes of algorithm selection and tuning have been
made, notably hyper-heuristics, which operate in the space
of heuristics [2]. However, for such approaches to be effec-
tive, it remains critical that we better understand the nature
of problems themselves and how algorithms solve them. The
ultimate goal is to classify search algorithms and problems
[3] so it becomes possible to match a problem with an ap-
propriate algorithm [4].

If metaheuristics are viewed as sampling algorithms [5],
they can be classified by the trajectory (which we term a
trace) that they take through the search space. Understand-
ing the influence of operators on the trace produced by a
search will provide essential information for algorithm de-
signers (human or otherwise). Whitebox information about
traces (e.g. which bit was flipped, knowing the lineage of
individuals in a population) allows the search process to
proceed in a more informed manner [6], and can be seen
as the principled incorporation of (both problem and solu-
tion) domain information in a manner than has proved to be
effective (e.g. as evidenced by the tabu search metaheuris-
tic [7]). It is claimed that machine learning approaches are
needed to move beyond the ‘persistent operator tweaking’
that plagues metaheuristic design [8, 9, 10] and options for
learning are clearly facilitated by the availability of such
trace information. In particular, the incorporation of traces
is vital for the creation of an ‘interoperable universal sig-
nature’ for metaheuristics, something which is clearly nec-
essary for automatic hybridization. Further, detailed trace
information can be used to generate a proxy for fitness in ge-
netic programming and hyper-heuristics, where traces model
algorithm behaviour [10, 11].
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It is in this context that we propose Hyperion2, a JavaTM

framework to aid scientific research, allowing sound analysis
of meta- and hyper- heuristics by providing a general ap-
proach for describing the trace taken by an algorithm and
its constituent components through the search space.

Hyperion2 is a research toolkit for non-global optimiza-
tion that aims to maximize expressive power whilst main-
taining ease-of-use. Based on [12], it has evolved through
several incarnations and attempts to incorporate the best
elements of solution-domain frameworks such as [13], [14]
and most notably [15].

The specific design goals of Hyperion2 include:

1. Promoting interoperability via component interfaces.
These interfaces are type-parameterized by solution-
state representation and objective-value (the latter al-
lowing for multi-objective formulations).

2. Allow rapid prototyping of meta- and hyper- heuris-
tics, with the potential to use the same source code in
either case.

3. Provide generic templates for a variety of local search
and evolutionary computation algorithms, allowing pop-
ular variants to be readily constructed from pre-existing
components.

4. Facilitate the construction of novel meta- and hyper-
heuristics by hybridization (via interface interoperabil-
ity) or extension (subtype polymorphism).

5. ‘Only pay for what you use’ — a design philosophy that
attempts to ensure that generality doesn’t necessarily
imply inefficiency.

In this paper we present an overview of the framework’s
core interfaces, discuss the key concepts and give some im-
plementation examples including the well-known ‘onemax’
problem [16], random search and steepest-ascent hillclimb-
ing.

2. RELATED WORK
There are many existing frameworks for construction and

analysis of metaheuristics: [17] cites several current exam-
ples. The HeuristicLab framework [18] also implements a
generic approach to algorithm construction. Two popular
frameworks, ECJ [19] and EpochX [20] offer event driven
approaches to analyse the progress of evolution, but none
offers the level of control, genericity or level of granularity
that are present in Hyperion2.

Besides Hyperion2 and the original Hyperion, Hy-flex

[21] and hMod [22] are (to the authors’ knowledge) the only
other existing frameworks for hyper-heuristics. Hy-Flex is
concerned with building reusable elements for common prob-
lem domains, and recent work [23, 24] has seen the develop-
ment of additional tools for generating hyper-heuristics in
Hy-flex.

CluPaTra [25, 26] and FloTra [27] are approaches which
make use of trajectories in parameter tuning.

3. CORE INTERFACES
The basic interoperability mechanism in Hyperion2 fol-

lows from the observation that a heuristic (equivalently meta-
or hyper- heuristic hereafter) is essentially defined by its so-
lution trajectory (trace) in the state-space graph. A heuris-
tic hS over some solution-state representation of type S (e.g.

S might be a bitstring, permutation, vector of reals, graph
etc) is recursively defined as a function:

hS : TraceS → TraceS

where TraceS = (hS, S)
∗

i.e. a Trace is a list of zero or more (heuristic, solution-state)
pairs, with each pair representing a single transition in the
state-space.

The implied semantics are that a heuristic hS takes a trace
as input and returns a (possibly extended) trace. Primitive
heuristics (such as a bit-flip) extend the trace by a single
move, metaheuristics have the potential to extend it by mul-
tiple moves. The explicit provision of the input trace means
that history-sensitive metaheuristics (e.g. tabu-search, EDA
approaches and adaptive variants of simulated annealing)
can be implemented with a minimum of additional effort.
In addition, the inclusion of previously-applied heuristics
in the trace information means that domain-specific infor-
mation (e.g. knowledge of algebraic relationships between
heuristics) can be used to inform metaheuristics in a domain-
neutral fashion.

As shown in Listing 1, the corresponding Java API is
rather more straightforward than the above definition might
suggest. Trace<S> is essentially a list of Move<S>, the lat-
ter being the pairing of a heuristic with the target state
which results from the application of that heuristic, as de-
scribed above. The additional Random parameter supplied
to the apply method of Heuristic allows for the provision of a
better random number generator than Java’s builtin 48-bit
linear-congruential implementation, this being essential for
fair sampling of large state-spaces.

Other elementary components of the framework are given
in Listing 2. ValueFn<S,Value> defines the evaluation func-
tion for a state, where Value is a generic type than can include
multiobjective representations, with Acceptance and IsFinished

defining the interfaces for acceptance and termination crite-
ria respectively.

Another key concept in Hyperion2 is that of Locality,
representing the ubiquitous concept of local search neigh-
bourhood. The Hyperion2 locality concept is factored into
three - IterableLocality, GenerativeLocality andRan-

domAccessLocality. IterableLocality defines some
neighborhood of a state, successive elements of which are
accessed via the Iterator design pattern [28]. Generative-

Locality provides for the creation of randomly-generated
neighbors and RandomAccessLocality allows a neighbor
to be accessed via an integer index in O(1) time. The ratio-
nale for factoring out these concepts is to reduce the imple-
mentation burden for custom neighborhoods. There is ex-
plicit support withinHyperion2 for bit-flip and permutation-
swap neighborhoods.

Hyperion2 also supports compile-time checking for min-
imization or maximization, through the ‘curiously recurring
template pattern’ [29]. This means that any algorithm im-
plementation can be entirely independent of whether a prob-
lem is minimization or maximization. More importantly,
this will trap ‘wrong direction’ mixing of maximization and
minimization at compile-time. Listing 3 gives the general
implementation of this.
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public interface Heuristic<S>
{

public Option< Move< BitString > > apply( Trace< BitString > inputTrace, Random rng )
public Trace<S> iterate( Trace<S> inputTrace, Random rng );

}

public final class Move<S>
{

public Heuristic<S> getHeuristic() { /∗ . . . ∗/ }
public S getTargetState() { /∗ . . . ∗/ }

// Other details omitted . . .

}

public final class Trace<S>
{

public int length() { /∗ . . . ∗/ }
public Move<S> getMove( int index ) { /∗ . . . ∗/ }

// Other details omitted . . .

}

Listing 1: Hyperion2 Heuristic interface and associated classes.

public interface ValueFn<S,Value>
{

public Value apply( S state );
}

public interface Acceptance<S>
{

public Probability apply( Trace<S> trace, Move<S> suggestedMove, double temperature );
}

public interface IsFinished<S>
{

public boolean apply( Trace<S> trace, long numIterations );
}

Listing 2: Core Hyperion2 interfaces.
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public interface DirectedValue< Derived >

extends Comparable< Derived > {}

public final class Max< Value extends Comparable< Value > >

implements DirectedValue< Max< Value > > {
private final Value value;

public Max( Value value ) {
this.value = value;

}

@Override
public int compareTo( Max< Value > other ) {

return value.compareTo( other.value );
}

// Other details omitted . . .

}

public final class Min< Value extends Comparable< Value > >

implements DirectedValue< Min< Value > > {
private final Value value;

public Min( Value value ) {
this.value = value;

}

@Override
public int compareTo( Min< Value > other ) {

return −value.compareTo( other.value );
}

// Other details omitted . . .

}

Listing 3: Compile-time checking of min vs max functions using CRTP

final class OnemaxValueFn
extends ValueFn<BitString, Double> {

@Override
public boolean isMinimizing() { return false; }

@Override
public Double apply( final BitString x ) {

return x.cardinality() / (double)x.length();
}

}

final class UniformMutation
implements Heuristic<BitString> {

@Override
public Option< Move<BitString>> apply( Trace<BitString> t, Random random ) {

final int bitToFlip = random.nextInt( t.getLastState().length() );
Heuristic<BitString> h = new BitFlip( bitToFlip );
return h.apply( t, random );

}
}

final class OnemaxSolutionFound
implements IsFinished<BitString> {

@Override
public boolean apply( Trace<BitString> t, long iteration ) {

return t.getLastState().cardinality() == t.getLastState().length();
}

}

Listing 4: Concrete subclasses for the onemax problem.
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public static void runRandomSearch( BitString initialState, Comparator< BitString > compareStates, Random random ) {
IsFinished< BitString > isFinished = new OnemaxSolutionFound();
RandomAccessLocality< BitString > locality = new BitFlipLocality( random );

Acceptance< BitString >acceptance = new AllMoves< BitString >();
Metaheuristic< BitString > meta = new RandomSearch< BitString >( locality, acceptance, isFinished );

Trace< BitString > result = meta.iterate( Trace.cons( initialState ), random );

BitString bestState = result.bestState( compareStates );
System.out.println( ”best:”+ bestState );

}

Listing 5: Invoking a Random-search metaheuristic.

public static void runSteepestAscent( BitString initialState, Comparator<BitString> compareStates, Random random ) {
RandomAccessLocality< BitString > locality = new BitFlipLocality( random );

Metaheuristic< BitString > meta = new SteepestAscent< BitString >( locality, compareStates );

Trace< BitString > result = meta.iterate( Trace.cons( initialState ), random );

BitString bestState = result.bestState( compareStates );
System.out.println( ”best:”+ bestState );

}

Listing 6: Invoking a Steepest-ascent metaheuristic.

4. METAHEURISTIC TEMPLATES
A number of local search algorithms are currently pro-

vided as an illustration of how to implement and/or cus-
tomize metaheuristics. These include random search; iter-
ated perturbation; iterated local search; various flavours of
tabu search and a simple simulated annealing variant.

As a concrete example, Listings 4-6 give client code for
the well-known ‘onemax’ problem, chosen for its simplic-
ity so that problem-specifics do not obfuscate the details of
how metaheuristics are configured. Listing 4 show how the
evaluation function and a uniform mutation heuristic are
defined. Listings 5 and 6 demonstrate the configuration of
random search and steepest-ascent hillclimbing respectively.
Although these two listings contain some domain-specific
details in order to provide a concrete example, it will hope-
fully be clear that it is entirely possible to write these kind of
templates in a solution-independent manner. As is typical of
Java, the listings are rather syntactically-verbose, but since
many of the interfaces being subclassed consist of a single
method, much simplification of client code will be possible
when support for lambdas/closures is added in Java 8.

5. TRACES
One option available to the algorithm designer is the level

of granularity at which traces are described. This is of par-
ticular importance because, at a hyper-heuristic level, we
can consider metaheuristics to be operators [12, 30]. We
may therefore wish to compress all the activity of a meta-
heuristic to a single operator, either to save memory or to
explicitly denote it for purposes of subsequent metaheuristic
choice (for example, determination of equivalent and inverse
operator pairs at a given level of algorithm operation). In the
general case of stochastic operators, the designer may elect
to have the trace represent either the generalised stochastic

operation or else the specific concrete change made to the
underlying solution representation.

To illustrate this, we give an example traces for the appli-
cation of Iterative Local Search on a 5-bit onemax problem.
If we elect to record concrete changes, we obtain output of
the following form:

([01000])

→(BitF lip(0), [11000])

→(BitF lip(3), [11010])

→(BitF lip(4), [11011])

→(BitF lip(2), [11111])

where (BitFlip(i) is a mutation applied to a specific vari-
able i.

If the user elects for more coarse-grained information, then
the output might appear as follows:

([01000]),

→(UniformMutation@a1e6661, [11000])

→(UniformMutation@a1e6661, [11010])

→(UniformMutation@a1e6661, [11011])

→(UniformMutation@a1e6661, [11111])

where UniformMutation@a1e6661 is simply the generic
uniform mutation operator with no record of the specific
bit changed.

It is implicit in the nature of multi-level search method-
ologies such as hyper-heuristics that it should be possible
to make decisions based on operator application at differ-
ent heirarchical scales, and the mechanism we provide here
makes this an explicit part of the API.
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6. CONCLUSION AND FUTURE WORK
In this paper, we have presented Hyperion2, a framework

to support scientific research in meta- and hyper- heuristics,
with a particular focus on mapping the traces taken through
the search space by algorithms and their components.

The framework promotes interoperability via component
interfaces and is generic enough that meta- and hyper- heuris-
tics can reuse the same source code. Generic templates for a
variety of local search algorithms are already implemented,
and novel meta- and hyper- heuristics may be constructed by
hybridization or extension. The framework follows an ‘only
pay for what you use’ design philosophy, for more efficient
concrete implementations and rapid prototyping.

We have described the framework’s core interfaces, and
given some implementation examples. We have also pro-
vided a concrete example of a trace output by the frame-
work. Hyperion2 is in continuing development, with several
remaining priorities.

The original Hyperion [12] implementation additionally
provided generic templates for Ant-Cycle System, Evolu-
tionary Strategies and Genetic Algorithms. In order to align
these with the trace-based extensions of Hyperion2, it will
be necessary to introduce some form of ‘multi-trace’ support
(i.e. each member of the population having its own trace).
Furthermore, this would allow extension to multi-objective
problems, with each member of a Pareto front having a cor-
responding trace. Given the ‘only pay for what you use’ de-
sign criterion, it remains to be discussed how best to achieve
this. One option is to use a shared workspace in the manner
of [30] as the repository for multi-traces, with their presence
being at the option of the client-programmer.
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