
A Scalable Symbolic Expression Tree Interpreter for the
HeuristicLab Optimization Framework

Simone Cirillo
cirillo@almontcapital.com

Stefan Lloyd
lloyd@almontcapital.com

Almont Capital LLC
12800 Hillcrest Road
Dallas, Texas 75230

ABSTRACT

In this paper we describe a novel implementation of the In-
terpreter class for the metaheuristic optimization framework
HeuristicLab, comparing it with the three existing inter-
preters provided with the framework. The Interpreter class
is an internal software component utilized by HeuristicLab
for the evaluation of the symbolic expression trees on which
its Genetic Programming (GP) implementation relies. The
proposed implementation is based on the creation and com-
pilation of a .NET Expression Tree. We also analyze the
Interpreters’ performance, evaluating the algorithm execu-
tion times on GP Symbolic Regression problems for different
run settings. Our implementation results to be the fastest
on all evaluations, with comparatively better performance
the larger the run population size, dataset length and tree
size are, increasing HeuristicLab’s computational efficiency
for large problem setups.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Processors—Interpreters;
D.2.8 [Software Engineering]: Metrics—Performance mea-
sures; D.2.11 [Software Engineering]: Software Architec-
tures—Domain-specific architectures; I.2.2 [Artificial In-

telligence]: Automatic Programming—Program synthesis

Keywords

Genetic Programming; HeuristicLab; Interpreter; .NET Ex-
pression Trees; Performance

1. INTRODUCTION
HeuristicLab is an open-source metaheuristic optimiza-

tion framework developed and maintained by the Heuris-
tic and Evolutionary Algorithms Laboratory of the Upper
Austria University of Applied Sciences [14, 13]. Heuristi-
cLab supports a variety of heuristic optimization techniques,
among which Genetic Programming. Algorithms are imple-

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2881-4/14/07 ...$15.00.

http://dx.doi.org/10.1145/2598394.2605692.

mented using an Operator Graph: a series of loosely-coupled
Operator objects executed in sequence exposing values and
other objects to each other, representing the successive steps
in the algorithm workflow as well as the solution analysis
process.

Thanks to an entirely modular, plugin-based architecture,
HeuristicLab decouples the heuristic algorithm from the pro-
blem to be solved, provided the two are compatible. Exam-
ples of supported problems are, as of version 3.3.9, Symbolic
Regression, Symbolic Classification, Artificial Ant, Travel-
ing Salesman, and Vehicle Routing. HeuristicLab is open-
source, and developers are encouraged to write their own
plugins for use-cases not supported out of the box.

HeuristicLab supports communication to and from other
software [7]; one of the intended uses for this feature is
the optimization of simulation-based problems for which the
simulation environment is external, as described by Beham
et al. [2, 3]; in these documented implementations Heuris-
ticLab was used to optimize simulation parameters and set-
tings. This contrasts with algorithms evolving agents or
models acting in a simulation environment, as with Genetic
Programming. External evaluation, additionally, is not a
feasible approach when the simulation software cannot be
interfaced to other programs, or where doing so would be
structurally inconvenient and computationally costly, or fi-
nally where the optimization algorithm requires inputs rep-
resenting simulation state variables.

Considering there are no clear guidelines or previous ex-
amples regarding the implementation of such a scenario and
that HeuristicLab provides all the necessary source files and
tools, encouraging the development of additional function-
ality, our final goal is the development of a series of Heuris-
ticLab plugins implementing a general framework for the
internal evaluation of Genetic Programming solutions for
simulation-based problems, providing a clear execution flow
and domain-specific abstractions and features.

In order to make HeuristicLab capable of running Genetic
Programming simulation-based evaluations internally, sev-
eral components of its execution flow have to be reworked.

1.1 GP Interpreters
The Genetic Programming (GP) implementation present

in HeuristicLab is tree-based, an approach popularized by
Koza [8]. In tree-based GP individuals consist of expression
trees: data structures used to represent and evaluate math-
ematical (algebraic, boolean) expressions. In an expression
tree leaf nodes contain operands, while internal nodes con-
tain the operators. To evaluate the expression, the repre-

1141

sentation tree has to be traversed. In HeuristicLab, this
functionality is implemented by the Interpreter class [7].

HeuristicLab provides three alternative implementations
of the Interpreter class, they implement a common inter-
face and they are therefore interchangeable to other Oper-

ator objects requiring their functionality; however their in-
ternal structure and logic are substantially different.

The Interpreter’s public method returns, as its output,
the raw numerical values resulting from the evaluation of
the individual on the dataset; these are then passed on to
the Evaluator operator, where the fitness score is computed.
This is an acceptable solution for regression and classifica-
tion problems, both of which are prominent HeuristicLab
use-cases, however it is not optimal for simulation problems.

Therefore, as the first step towards the implementation of
a HeuristicLab plugin framework able to evolve symbolic Ge-
netic Programming solutions for simulation problems, in this
work we will describe an Interpreter with a modified pub-
lic interface as well as a novel internal implementation and
we will compare its performance against the Interpreter

implementations provided together with HeuristicLab.
In Section 2 we will review the three Interpreter imple-

mentations provided with HeuristicLab and identify their
weaknesses on the prospective use on simulation problems.
In Section 3 we will describe our novel Interpreter imple-
mentation. In Section 4 we will evaluate the Interpreters’
performance in terms of run execution times. In Section 5
we will draw conclusions and outline future steps.

2. GP INTERPRETERS

IN HEURISTICLAB
HeuristicLab, as of version 3.3.9, provides three different

Interpreter implementations able to process GP trees en-
coding mathematical expressions: SymbolicDataAnalysis-

ExpressionTreeInterpreter, SymbolicDataAnalysisEx-
pressionTreeILEmittingInterpreter, and SymbolicData-

AnalysisExpressionTreeLinearInterpreter; these can be
interchangeably used in the Symbolic Regression, Symbolic
Classification, Time Series Evaluation and Trading problem
templates.

The three symbolic tree interpreters all implement the I-

SymbolicDataAnalysisExpressionTreeInterpreter inter-
face, exposing the IEnumerable<double> GetSymbolicEx-

pressionTreeValues(ISymbolicExpressionTree tree,

Dataset dataset, IEnumerable<int> rows)method; from
the method’s signature, it is evident how the Interpreter

objects are not only performing tree interpretation and eval-
uation, but they are also responsible for computing and re-
turning the output values given a dataset.

For the sake of completeness, we mention that Heuris-
ticLab also features other Interpreter classes; these are
however specific to the type of optimization problem they
are used for and do not evaluate mathematical expressions,
therefore we will briefly describe them in Section 2.5 but we
will not be analyzing their performance.

2.1 Common Logic
Part of the three Interpreter’s internal workflow is com-

mon. In computing, an interpreter can be defined as a pro-
gram that implements a virtual machine using a program-
ming language as its own assembly language. As such, the
three HeuristicLab interpreters all start by traversing the

expression tree, parsing it into a linear, one-dimensional ar-
ray of Instruction objects. Instruction is a data structure
comprising an OpCode that specifies an operation and appro-
priate operands (data, number of arguments, addressing), as
described by Kommenda et al. [7]. After the Instruction[]
corresponding to the program has been generated, it is it-
erated a second time to specify the jump locations for flow
control instructions, if any. Finally, it is iterated a third
time to finalize input variable referencing: Instruction ob-
jects referring to variables are assigned, as their data field,
the entire set of values for that variable contained in the
problem Dataset.
Instruction objects therefore represent assembly-level in-

structions for the virtual machine the HeuristicLab GP in-
dividuals run on. The Instruction[] is produced and then
processed differently for the three Interpreter implemen-
tations.

2.2 SymbolicDataAnalysis-
ExpressionTreeInterpreter

Here to create the Instruction[] the tree is traversed in
pre-order fashion, then the list is passed to the Evaluate

(Dataset dataset, ref int row, InterpreterState

state) method. Evaluate is recursive, calling itself on the
following Instruction number of arguments times. There-
fore its operations are analogous to a post-order evaluation
of the original expression tree. InterpreterState is a class
containing the Instruction[] and a simple call-stack imple-
mentation; this allows SymbolicDataAnalysisExpression-

TreeInterpreter to support GP individuals featuring Au-
tomatically Defined Functions (ADFs).
Evaluate is called at the root level, and therefore the

entire Instruction[] list is interpreted, once per evalu-
ated row. This results in computational overhead propor-
tional to the number of evaluated rows length, Symbolic-
DataAnalysisExpressionTreeInterpreter is therefore best
suited for the evaluation of short datasets.

Throughout the rest of this paper this interpreter will be
referred to as Standard.

2.3 SymbolicDataAnalysisExpressionTree-
ILEmittingInterpreter

SymbolicDataAnalysisExpressionTreeILEmittingInter-

preter, from here on referred to as IL, strictly speaking, is
an interpreter only partially. The class, before performing
evaluation, first traverses the tree in pre-order, like Stan-

dard; however later it performs a recursive post-order pars-
ing of the Instruction[], translating it directly into Com-
mon Intermediate Language (CIL) instructions, making use
of the Reflection.Emit capabilities of .NET.

CIL is is the lowest-level human-readable language defined
by the Common Language Infrastructure specification and
used by the .NET Framework; CIL is an object-oriented
assembly language, and it is entirely stack-based [5].

Once all the CIL instructions for the program have been
obtained, the .NET Just-In-Time compiler is called, return-
ing an executable handle for the function in the form of a
delegatemethod with input signature matching the Dataset
variables. Therefore, IL is a compiler: it produces an exe-
cutable function implementing the operations encoded in the
original expression tree.

Successively, to evaluate the function, the delegate is in-
voked once per row to obtain the output values. In terms of

1142

computational overhead this approach results in an initial
one for every GP individual, due to the invocation of the
.NET compiler; however, as there is no re-interpretation or
re-compilation for every row, such overhead is completely in-
dependent from the number of rows to be evaluated. For this
reason IL is much more suited for the evaluation of longer
datasets than Standard, the creators state 10,000 rows as
the point where this interpreter starts performing better [7].
Currently, IL does not support ADFs.

2.4 SymbolicDataAnalysisExpressionTree-
LinearInterpreter

SymbolicDataAnalysisExpressionTreeLinearInterpre-

ter, from now Linear, is a refinement of Standard: they
share the general concept as well as the interpreted ap-
proach. However, in this implementation Instruction is ex-
tended to LinearInstruction, adding a value and a child-
Index field.

The initial tree traversal is here performed breadth-first,
therefore the obtained LinearInstruction[] is in different
order than with the other two interpreters. childindex is
initialized to contain the instruction number for the first ar-
gument to the instruction while the others, given the traver-
sal, will be found in the adjacent successive positions; value
will be used at evaluation time to store partial results.

This implementation results in behavior analogous to that
of a linear register machine: the value fields of LinearIn-
struction act as the linear registers. At evaluation time,
the LinearInstruction[] is iterated starting from the bot-
tom. This resolves the value fields in a leaves-to-root di-
rection, ensuring by design that the value of arguments to a
LinearInstruction have already been computed when the
instruction is executed.

As a consequence of this, the Evaluate(Dataset data-

set, int row, LinearInstruction[] code)method of this
interpreter is recursion-free and executes the LinearInstruc-
tion[] entirely linearly. Therefore, the computational over-
head due to row-by-row interpretation is substantially re-
duced compared to Standard. Currently, Linear does not
support ADFs.

It is worth specifying that even though the individual eval-
uation is performed using a linear machine abstraction, the
type of Genetic Programming in use is still Tree Genetic
Programming, as opposed to Linear Genetic Programming
(LGP) [1, 4]. That is because the GP Selection, Crossover
and Mutation operators still act on the original tree repre-
sentations.

2.5 Problem Specific Interpreters
In addition to the three interpreters described so far, Heu-

risticLab relies on this architectural pattern for other types
of optimization problems as well. Examples of these are
Lawnmower.Interpreter and ArtificialAnt.AntInterpre-

ter. The interpreters for such other problems are, however,
far less generic and generalizable. These do not compute
mathematical expressions nor they output a list of numeri-
cal values: they operate instead on tree structures featuring
problem-specific types of nodes and directly output an ac-
tion to be performed in response to the inputs.

2.6 Limitations
As mentioned in Section 2, the symbolic expression

interpreters’ GetSymbolicExpressionTreeValues(ISym-
bolicExpressionTree tree, Dataset dataset,

IEnumerable <int> rows) method returns the raw output
numerical values resulting from the evaluation of the GP in-
dividual on the dataset; the Evaluator computing the fitness
score assumes this behavior, as specified by the ISymbolic-
ExpressionTreeInterpreter interface. Therefore, in order
to comply to this specification, for a simulation-based evalu-
ation the running of the simulation would have to be imple-
mented within the Interpreter, providing the Evaluator

with the values required to compute the individual’s fitness.
For the Santa Fe Trail problem implementation [9], the

ArtificialAnt.Interpreter mentioned in Section 2.5 is re-
alized exactly in such a way: ArtificialAnt.Interpreter

does not implement the ISymbolicExpressionTree interface
but does instead expose a Run()method inside which the ant
world simulation takes place, once Run() completes execu-
tion the fitness score is retrieved. The design works well if
the simulation to be run is relatively simple, with few evalua-
tion and performance measures. If the simulation problem or
the evaluations and analyses to be performed are more com-
plex instead, such design choice becomes constraining and
intensive from a developmental and computational point of
view:

• HeuristicLab does not provide a structured class and
interface framework to generalize tree interpretation
and simulation running within an Interpreter, so for
every problem type Interpreter, Evaluator, and An-

alyzer classes would have to be written ad-hoc, in
addition to the code for the simulation logic itself.

• Interpreting a symbolic expression and evaluating its
fitness are two distinct and separate tasks, implement-
ing them inside the same logical object implicitly pro-
motes the emergence of unnecessary dependencies and
greatly reduces the maintainability and reusability of
the code base.

• Another drawback is the computational impact of hav-
ing an interpreted approach, even if partial, as op-
posed to a compiled one: for very large population and
dataset sizes, as it is common with simulation prob-
lems, the once-per-row overhead of interpreted GP in-
dividuals becomes dominant with respect to the initial,
once-per-individual, overhead of compiled individuals;
resulting in substantially longer execution times for al-
gorithm runs.

• Finally, in the case GP individuals are not only to
have access to external, provided inputs, but to simu-
lation state variables depending on their own actions
on previous datapoints as well, it follows that it is im-
possible to obtain these internal state values without
running the simulation itself, which is also what ulti-
mately produces the fitness score, de facto coinciding
with the intended functionality of Evaluator.

Given that the architecture of HeuristicLab strongly relies
on interface and inheritance mechanisms to provide as much
generalization as possible, we think that a framework of

1143

classes providing the necessary abstractions enabling Heuris-
ticLab to internally run GP encoding mathematical expres-
sions on simulation problems fits well with HeuristicLab’s
vision and purpose, as it would add a very general and use-
ful problem type to its capabilities.

To achieve such goal, partial reimplementation of Inter-
preters, Evaluators, and Analyzers is required. We will
begin from the Interpreter class because it is the first one
to be employed in HeuristicLab’s execution workflow.

3. .NETEXPRESSIONINTERPRETER

3.1 Design Overview
As stated in Section 2.6, our goal is to have compiled

GP individuals as well as separating interpretation/compi-
lation from evaluation, therefore our interpreter does not
implement the ISymbolicDataAnalysisExpressionTreeIn-
terpreter interface and the GetSymbolicExpressionTree-

Values method described in Section 2.
Our interpreter instead is designed to interface with its

Evaluator via the Func<int, double[][], double[],

double> GetCompiledFunction(ISymbolicExpressionTree

tree) method. In C#, Func is an anonymous, generic func-
tion type [11]; the GetCompiledFunction method therefore
outputs an executable function with int, double[][], and
double[] arguments and with double return value.

It will be then the Evaluator to be responsible for evalu-
ating the individual on the problem data, running the sim-
ulation.

3.2 .NET Expressions
.NET Expression Trees are data structures used to rep-

resent, construct, compile and run code itself [10]. In an
Expression Tree, nodes are constituted by Expression ob-
jects. Expression objects can be used to represent many
code constructs including constant values, variables, math-
ematical operations, method calls, control flow statements,
scope blocks, etc... [12].
Expression trees can be constructed programmatically by

combining single Expression objects, passing them as con-
structor parameters to others, resulting in a tree structure.
Finally, an Expression tree can be converted into a lambda
expression, specifying one or more ParameterExpression as
its argument(s), and then compiled into an executable del-
egate which, invoked, executes the function encoded by the
original tree.

The code in Listing 1 shows a simple example of this pro-
cess for an expression tree representing the sum of two ele-
ments of an array.

.NET Expression Trees allow the conversion of a tree data
structure into executable code. Given how closely this be-
havior matches with the concept of Tree GP, we chose to
rely on .NET Expression Trees for the implementation of
our Interpreter class: DotNETExpressionInterpreter.

Compared with emitting CIL instructions and then calling
the compiler on them, as in the case of IL, the use of Ex-

pression trees entails a slightly larger initial computational
overhead: in the former case assembly instructions are al-
ready specified so the compiler is invoked directly, while in
the latter the Expression tree has to first be parsed into CIL
and compiled subsequently. However, the use of Expression
trees give several advantages over explicit CIL emission:

1 ParameterExpression inputs =
2 Expression.Parameter
3 (typeof (double []), "inputs");

4

5 BinaryExpression i1 =

6 Expression.ArrayIndex
7 (inputs , Expression.Constant (0));

8

9 BinaryExpression i2 =
10 Expression.ArrayIndex

11 (inputs , Expression.Constant (1));
12

13 BinaryExpression sum =
14 Expression.Add(i1, i2);
15

16 Expression <Func <double [], double >> lambda =
17 Expression.Lambda <Func <double [], double >>

18 (sum , new ParameterExpression[] {inputs });
19

20 Func <double [], double > method = lambda.Compile ();
21

22 double [] values = {1, 2};

23

24 method(values);

Listing 1: Construction, parameterization, compilation and in-
vocation of a .NET Expression Tree implementing the sum of two
numbers

• The Interpreter’s own code is much more readable
and understandable

• Expressions can be visualized and printed in linear,
parenthesized, infix form via their ToString()method,
therefore the correctness of the tree building process
can be easily verified

• Considering how Expression objects can represent
arbitrary method calls, it is in principle possible to rely
on such technique to support ADFs

• Relieving the developer from directly writing CIL in-
structions makes it easier to implement functionality
for tree nodes representing more elaborate instructions

3.3 Workflow

1. Our DotNETExpressionInterpreter has a pre-proces-
sing step, shown in Listing 2, executing only when
the Dataset object for the problem setup is modified.
Here the names of the Dataset variables are mapped
to ParameterExpression objects containing their col-
umn index, later allowing to build the Expression tree
using parameterized input arguments whose value will
only be specified when the already compiled tree is
evaluated.

2. DotNETExpressionInterpreter parses the Heuristic-
Lab SymbolicExpressionTree recursively, in post-or-
der; each recursive call on a node returns the com-
pound Expression representing that node’s subtree in-
cluding itself. No additional tree traversal is needed to
produce the final Expression tree, as the input vari-
ables have been mapped in pre-processing.

The code in Listing 3 shows parts of the tree parsing
logic exemplifying the processing for different types of
nodes.

1144

1 ...
2

3 private Dictionary <string , Expression > paramVarMap;

4 private Dictionary <string , Expression > inputsVarMap;
5

6 ...
7

8 private void UpdateInputsMap(IEnumerable <string > vars)
9 {

10

11 paramVarMap = new Dictionary <string , Expression >();
12 inputsVarMap = new Dictionary <string , Expression >();

13

14 ParameterExpression varParam =
15 Expression.Parameter

16 (typeof (double [][]), "variables");
17

18 ParameterExpression rowIndexParam =
19 Expression.Parameter

20 (typeof (int), "rowIndex ");
21

22 paramVarMap.Add("variables", varParam);

23 paramVarMap.Add("rowIndex ", rowIndexParam);
24

25 List <string > varNames = vars.ToList ();
26 for (int i = 0; i < vars.Count (); i++)
27 inputsVarMap.Add

28 (varNames [i], Expression.Constant (i));
29

30 }

Listing 2: DotNETExpressionInterpreter pre-processing stage.
Dataset variable names are mapped to ParameterExpression ob-
jects, later enabling the compiled Expression tree to be evaluated
on arbitrary inputs

3. The tree, as described earlier, is then wrapped into a
LambdaExpression.

4. The .NET compiler is invoked on the LambdaExpres-

sion.

5. DotNETExpressionInterpreter outputs a compiled
Func<int, double[][], double[], double>, map-
ped to a double CompiledFunction(int rowindex,

double[][] data, double[] states) for better ty-
ped access.

double[][] data is the entire problem dataset in ma-
trix form (HeuristicLab’s Dataset was modified to pro-
vide such accessor), int rowindex represents the row
to be evaluated in the call, double[] states is the
input vector representing the internal simulation state
variables for the problem.

6. At Evaluation time a compatible Evaluator will be
responsible for running the simulation, making use of
the now compiled individual.

4. PERFORMANCE ANALYSIS
In order to comparatively evaluate the performance of the

three interpreters described in Section 2 as well as DotNET-
ExpressionInterpreter (.NET), we wrapped the latter in
logic implementing the
ISymbolicDataAnalysisExpressionTreeInterpreter

interface, enabling it to run on HeuristicLab’s problem tem-
plates without the need for developing additional code.

1 private Expression RecursiveParser

2 (ISymbolicExpressionTreeNode node)
3 {

4 ISymbol s = node.Symbol;
5 Expression expr = null;
6

7 if (s is Addition)
8 {

9 Expression left =
10 RecursiveParser(node.GetSubtree(0));

11 Expression right =
12 RecursiveParser(node.GetSubtree(1));
13 expr = Expression.Add(left , right);

14 }
15 ...

16 else if (s is Sine)
17 {
18 Expression sub =

19 RecursiveParser(node.GetSubtree(0));
20 expr = Expression.Call

21 (null , typeof (Math). GetMethod("Sin"), sub);
22 }

23 ...
24 else if (s is Variable)
25 {

26 VariableTreeNode vn = node as VariableTreeNode;
27 Expression ve = Expression.ArrayIndex

28 (Expression.ArrayIndex
29 (paramVarMap["variables"],
30 paramVarMap["rowIndex "]),

31 inputsVarMap[vn.VariableName]);
32

33 if (vn.Weight != 1)
34 {

35 Expression we = Expression.Constant (vn.Weight);
36 expr = Expression.Multiply (ve, we);
37 }

38 else
39 expr = ve;

40 }
41

42 return expr;

43 }

Listing 3: DotNETExpressionInterpreter parsing logic for tree
nodes representing a binary operator (Addition), a unary opera-
tor (Sine), and a terminal node (Variable)

The fraction of the total GP algorithm run time taken up
by tree interpretation and evaluation is proportional to the
number of dataset rows, while the execution time for other
algorithm steps such as tree creation, selection, crossover,
mutation, etc... is not dependant on it. In the case of
HeuristicLab Kommenda et al. note that tree interpreta-
tion and evaluation dominate the total runtime for datasets
exceeding 1,000 rows [7]. Since we will be analyzing cases
with no less than 5,000 dataset rows, such considerations
allow us to approximate the evaluation of the interpreters’
performance to the simple measuring of the total algorithm
execution time.

All the presented evaluations were performed on an Intel
Core i7-2600K machine set at a frequency of 3.8 GHz with
16GB of RAM.

4.1 Population Size
The performance of all four interpreters was tested by

running the Genetic Programming - Symbolic Regression
problem template on the Real World Benchmark Problems
- Tower dataset, both provided with HeuristicLab.

Common settings for the runs are 20 calculated genera-
tions, a dataset length of 5,000, a parallelization setting of

1145

Population Interpreter

Standard Linear IL .NET

1,000 34.2 (1.2) 20.2 (1.3) 20.3 (1.2) 19.6 (0.8)
2,000 79.8 (0.6) 43.7 (0.4) 43.9 (0.5) 42.4 (0.6)
5,000 253.1 (0.4) 125.2 (0.5) 128.3 (0.5) 121.3 (0.1)
10,000 421.5 (0.4) 225.1 (0.2) 233.5 (0.7) 221.3 (0.7)

Table 1: Average (s) and relative standard deviation (%) values
of the algorithm run times for different population sizes

Dataset Length Interpreter

Linear IL .NET

5,000 103.4 (2.7) 103.0 (0.2) 99.1 (0.5)
10,000 166.9 (1.0) 144.7 (0.3) 136.7 (0.5)
15,000 234.3 (0.4) 192.4 (0.4) 176.4 (0.5)

Table 2: Average (s) and relative standard deviation (%) values
of the algorithm run times for different dataset lengths

4, probabilistic tree creator with maximum tree size 150,
and a fixed, constant seed value to ensure the interpreters
evaluate the very same expression trees. For each of the four
interpreters we performed 5 runs for each of the following
population sizes: 1,000, 2,000, 5,000, 10,000. Table 1 shows
the average and relative standard deviation of the obtained
execution times.

Confirming the observation by Kommenda et al. in [7],
for such dataset lengths the run times increase linearly with
respect to the total number of tree evaluations performed,
this results to be true regardless of the interpreter.

It is evident how Standard is consistently the slowest by
a considerable margin: on average Standard times are 1.8
longer. The overhead with respect to the others also appears
to be increasing with growing population sizes. This first
evaluation demonstrates how the Standard interpreter is not
suited for large population runs and therefore we will not be
evaluating it further.
.NET is the best performing across all population sizes,

even if by a small margin compared to IL and Linear.

4.2 Dataset Length
The Tower dataset used previously only provides 5,000

datapoints, so to investigate the relation between dataset
length and execution times we used the Bike Sharing dataset
[6]. We evaluated the Linear, IL, and .NET interpreters on
the on the first 5,000, 10,000, and 15,000 rows of the dataset,
performing 3 runs per setting. Population size is set at 5,000;
other settings are the the same as the ones in Section 4.1.
The results for this evaluation are reported in Table 2.

Kommenda et al. mention 10,000 as the number of dataset
rows where the use of IL is recommended over Standard and
Linear [7]; on our results such threshold appears to be at
a lower row count: at 10,000 rows Linear is already 15%
slower than IL.

The values clearly show how Linear goes from having a
comparable performance to IL and .NET for 5,000 datapoints
(4% slower than .NET, 0.4% than IL), to being considerably
worse at 15,000 (33% slower than .NET, 22% slower than IL).
This growing gap is explained by the inherent per-datapoint
overhead of having an individual interpreted, as opposed to

Tree Length Interpreter

Linear IL .NET

100 76.9 (0.2) 81.1 (0.3) 77.5 (0.7)
150 159.3 (1.1) 157.8 (0.3) 148.5 (0.3)
200 435.3 (0.3) 386.1 (0.4) 341.7 (0.3)

Table 3: Average and relative standard deviation (%) of the
algorithm run times for different tree sizes

compiled; therefore, Linear too would not be a good choice
for large population, long dataset runs.

To explain the increasing performance difference between
IL and .NET on this test: a 3% difference for 5,000 rows and
a 9% one for 15,000, one possibility could be the way the
variables are accessed at evaluation time. .NET’s input is
a two-dimensional array; while IL partially relies on a list,
bound to have a slight performance overhead over the former
when accessing elements.

4.3 Tree Length
Another factor affecting interpreter performance is length

of the symbolic trees; we analyzed the execution times of
Linear, IL and .NET changing only the maximum allowed
tree size: 100, 150, 200. This evaluation was performed
on the 5,000 rows Tower dataset, with a population size of
5,000. In order to magnify the effect of tree length on per-
formance for this run we utilized the full tree creator rather
than the probabilistic one. Table 3 displays the results.
Linear exhibits a behavior analogous to the one it has

in the evaluation on different dataset lengths described in
Section 4.2: it goes from having a very slight, sub-second,
performance advantage for length 100, to a very slight over-
head at 150, to lastly obtaining significantly slower times
than the other two for tree length 200. The increasingly
worse performance is still because of a per-datapoint over-
head, this time due to longer, deeper, trees requiring more
time to be parsed rather than having more rows to evaluate.
.NET results to be the best performer on this evaluation

as well, the performance gains with respect to both Linear

and IL positively correlate with tree size.
The growing difference between IL and .NET could be ex-

plained by the fact that for the former the starting Sym-

bolicExpressionTree is parsed three times to arrive to its
compiled form; in the case of the latter instead it is explicitly
parsed once in the interpreter and another time by the com-
piler, for a total of two. Furthermore, considering that in IL

the logic for CIL translation was coded manually, another
possibility could be the presence of suboptimalities in the
generated CIL instructions, leading to an increasing over-
head over a compiler-optimized CIL the more instructions,
and correspondingly tree nodes, there are.

5. CONCLUSION
The high sensitivity of Standard to population size and of

Linear to dataset length demonstrate how a compiled execu-
tion of GP individuals is crucial to have usable performance
in large population, long dataset scenarios.

Considering how our DotNETExpressionInterpreter per-
forms better than IL in all three performed evaluations and
furthermore that the difference in performance is also pro-

1146

portional to increasing population size, dataset length, and
tree length, we consider our implementation a success.

The shown good performance scaling is not only of key
importance in the prospected context of simulation-based
problem GP evaluations within HeuristicLab; but it can also
be useful in large population, long dataset setup for more
conventional problem types such as symbolic regression and
symbolic classification.

An issue not addressed in this work that could still pose a
challenge for GP runs entailing a very large number of eval-
uations is that dynamically emitted code, as both IL and
.NET do, is not removed by the .NET Garbage Collector;
potentially leading to system memory exhaustion before the
optimization process is complete. Therefore, further exam-
ination of this phenomenon is required to assess its quanti-
tative impact.

The following steps for the implementation of the entire
simulation-problem framework consist in the establishing of
common Interfaces and reimplementation of Evaluators and
Analyzers.

6. REFERENCES
[1] W. Banzhaf, P. Nordin, R. E. Keller, and F. D.

Francone. Genetic programming: an introduction,
volume 1. Morgan Kaufmann San Francisco, 1998.

[2] A. Beham et al. Simulation optimization with
HeuristicLab, 2008.

[3] A. Beham, M. Kofler, S. Wagner, and M. Affenzeller.
Coupling simulation with HeuristicLab to solve facility
layout problems. In Winter Simulation Conference,
WSC ’09, pages 2205–2217. Winter Simulation
Conference, 2009.

[4] M. F. Brameier and W. Banzhaf. Linear genetic
programming. Springer, 2007.

[5] ECMA. Common Language Infrastructure (CLI)
Partitions I to VI, chapter Partition III: CIL
Instruction Set, pages 290–432. ECMA International,
6th edition, June 2012.

[6] H. Fanaee-T. Uci machine learning repository: Bike
sharing dataset data set. https://archive.ics.uci.
edu/ml/datasets/Bike+Sharing+Dataset, March
2014.

[7] M. Kommenda, G. Kronberger, S. Wagner,
S. Winkler, and M. Affenzeller. On the architecture
and implementation of tree-based genetic
programming in HeuristicLab. In Proceedings of the
fourteenth international conference on genetic and
evolutionary computation conference companion, pages
101–108. ACM, 2012.

[8] J. R. Koza. Genetic Programming: vol. 1, On the
programming of computers by means of natural
selection, volume 1. MIT press, 1992.

[9] J. R. Koza. Genetic Programming: vol. 1, On the
programming of computers by means of natural
selection, volume 1, pages 147–155. MIT press, 1992.

[10] MSDN. Expression Trees (C# and Visual Basic).
http://msdn.microsoft.com/en-us/library/

bb397951.aspx, March 2014.

[11] MSDN. Func(T1, T2, T3, TResult) Delegate.
http://http://msdn.microsoft.com/en-us/

library/bb549430%28v=vs.110%29.aspx, March 2014.

[12] MSDN. System.Linq.Expressions Namespace.
http://msdn.microsoft.com/en-us/library/

system.linq.expressions.aspx, March 2014.

[13] S. Wagner and M. Affenzeller. HeuristicLab: A generic
and extensible optimization environment. In Adaptive
and Natural Computing Algorithms, pages 538–541.
Springer, 2005.

[14] S. Wagner, G. Kronberger, A. Beham, M. Kommenda,
A. Scheibenpflug, E. Pitzer, S. Vonolfen, M. Kofler,
S. Winkler, V. Dorfer, and M. Affenzeller. Advanced
Methods and Applications in Computational
Intelligence, volume 6 of Topics in Intelligent
Engineering and Informatics, chapter Architecture
and Design of the HeuristicLab Optimization
Environment, pages 197–261. Springer, 2014.

1147

