
NodEO, a Multi-Paradigm Distributed Evolutionary
Algorithm Platform in JavaScript

Juan-Julián Merelo,
Pedro Castillo,
Antonio Mora

GeNeura, ETSIIT + CITIC, U.
Granada

jmerelo,pedro,amorag@geneura.ugr.es

Anna Esparcia-Alcázar
S2 Grupo

aesparcia@s2grupo.es

Víctor Rivas-Santos
Universidad de Jaén
vrivas@ujaen.es

ABSTRACT
After existing for more than fifteen years, JavaScript has fi-
nally risen as a popular language for implementing all kind
of applications, from server-based to rich internet applica-
tions. The fact that it is implemented in the browser and
in server-side tools makes it interesting for designing evo-
lutionary algorithm frameworks that encompass both tiers,
but besides, they allow a change in paradigm that goes be-
yond the canonical evolutionary algorithm. In this paper
we will experiment with different architectures, client-server
and peer to peer to assess which ones offer most advan-
tages in terms of performance, scalability and ease of use
for the computer scientist. All implementations have been
released as open source, and besides showing that the con-
cept of working with evolutionary algorithms in JavaScript
can be done efficiently, we prove that a master-slave parallel
architecture offers the best combination of time and algo-
rithmic improvements in a parallel evolutionary algorithm
that leverages JavaScript implementation features.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

Keywords
JavaScript; node.js; parallel evolutionary algorithms; asyn-
chronous evolution; implementation issues

1. INTRODUCTION
JavaScript (JS from now on) was introduced in 1998 as a

browser-embedded language by Netscape [6]; it was quickly
adopted, in several versions, by the rest of the existing browsers
(Internet Explorer, Opera and the offspring of Netscape,
Mozilla and then Firefox). It later became a standard by
the European Association for Standardizing Information and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for prof t or commercial advantage and that copies bear this notice and the full citation
on the f rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specif c permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2881-4/14/07 ...$15.00.
http://dx.doi.org/10.1145/2598394.2605688.

Communication Systems in 1999 [5]. Despite this standard
it was for a long time considered just a language for the
browser, and in fact most books on JS start by telling you
how to embed your scripts in the HTML code of a web page.

Even as such embedded language, JavaScript is an inter-
preted language that uses classes and objects, functions as
first-rate types, and which is dynamic and weakly typed-
checked (a variable can change its type during its lifetime,
but whatever type it has needs to be explicitly coerced to
other type in some contexts, but not in all). These features
make it an ideal language for quick prototyping and produc-
tive programming.

However, the graduation of JS to a full-fledged language
did not start to arrive until the first years of this century
with the introduction of standalone interpreters such as Spi-
derMonkey or Rhino [17], but it was not until Google’s in-
troduction of the V8[20] interpreter and its adoption by the
node.js JavaScript virtual machine that it started to be-
come what it is now, one of the most (or arguably the most)
popular development languages [18]. At the same time, it
is the only language of which it can be said that it is truly
ubiquitous; every Internet-connected device has at least one
interpreter [4] (often as a browser), but you can find it also
as the language of choice of the Gnome user-interface in
Linux, CouchDB object database, and in many Platform-
as-a-service (PaaS) products such as Heroku, Nodejitsu or
Openshift. It can also be easily installed in IaaS (Infrastructure-
as-a-Service) products, such as Windows Azure or Amazon.
That makes it the right choice for parasitic-style or volunteer
computing platforms such as Crowdprocess1.

The fact that there are interpreters embedded in browsers
and in server-side services makes it the only language in
which you can develop both the client and server tier of a
client-server application (and, for that matter, any other tier
in between).

What we propose in this paper is to measure different ways
of implementing distributed evolutionary algorithms using
JS. It has already been proved that implementation matters
[16], and it does so, since the evolutionary framework must
be translated to a particular language in a way that goes
with its grain and not in the way that is more easily trans-
lated from C or Java, but also because it offers new ways
of implementing evolutionary algorithms. In many cases,
the environments where JS excels, such as the browser, for
instance, might need proper support in the shape of evolu-
tionary algorithms; finally, creating distributed evolutionary

1https://crowdprocess.com

1155

algorithms is easy using JS; so easy, in fact, that there are
so many ways of doing it, and mixing and matching them
(WebSockets, Ajax and REST, just to name a few) that
it becomes necessary to give an initial idea of how to make
them useful for evolutionary algorithms and what is the per-
formance we should expect.

The experiments proposed in this paper have been re-
leased under an open source license and are available at
https://github.com/JJ/nodeo. They offer a glimpse into
the different possibilities of programming using JS, but at
the same time show the kind of performance we should ex-
pect from them and what it wins from parallel operation.
In doing so, our intention is to prove that the translation of
the usual distributed evolutionary paradigm into this new
language is valid, but also which option offers the best per-
formance in terms of scalability and number of evaluations
needed to reach the solution.

The rest of the paper is organized as follows: next we
describe the state of the art in new and uncanny implemen-
tations of evolutionary algorithms, and a description of the
past implementations using different JS interpreters. The al-
gorithm that has been adapted to JS is described next along
with the experimental setup in Section 3; finally results are
presented in Section 4 and its implications discussed in the
last section of the paper.

2. STATE OF THE ART
Evolutionary algorithms have always been targeted by

new programming languages, with implementations cutting
across paradigms and computing platforms; the relatively
new language Clojure (which is 17th in the RedMonks rank-
ing), for instance, has been used to implement the PushGP
system (which uses its own language, Push) [8]; Ruby (7th in
the ranking) was used as the backoffice for a JavaScript evo-
lutionary algorithm in the AGAJAJ system [13] but it actu-
ally implements an evolutionary algorithm within a testing
framework called RuTeG [12] using this language. In fact,
this use has not been limited to new and paradigm-heavy
languages; Langdon used the venerable awk to handle popu-
lations of millions of regular expressions in [11] and claims:

Although this may seem complex, gawk (Unix’
free interpreted pattern scanning and process-
ing language) can handle populations of a million
motifs.

This, in fact, proves that in many cases using new tools out-
side the mainstream programming languages can lead to new
insights on the algorithm (in this case, the use of populations
much bigger than is usual in evolutionary algorithms) and,
of course, faster and more efficient solutions of the problem
at hand.

However, JavaScript has not been the subject of extensive
experimentation until now. The first mention of JS in rela-
tion with evolutionary algorithms was in 1996, when Smith
and Sugihara [21] used it for creating the user interface of
a browser-based evolutionary building system, that was, in
fact, based in Java. It was not much later, in 1998, when a
single-browser evolutionary algorithm for evolving the lay-
out of a web newspaper was published [19]. In this case an
outstanding feature of JS, the fact that it is embedded in
the browser, was used to evolve the document object model
in a native way; it could not have been done in any other
way since the intention was that a personalized page was

generated by every user and rendered using the user’s own
computing power, without needing to overload the server
with the generation of pages for thousands of users. In this
sense it also pointed out to the unwitting [9] use of resources,
which was taken full advantage later on for the generation
of L-System (a grammar for describing fractal objects) in a
distributed way [10] once again, and in the same way that
has been mentioned before, a proof of choosing the right lan-
guage for the evolutionary algorithm outside the mainstream
languages.

The distributed capabilities of JS were discovered later
on with the realization of the possibilities of Ajax for dis-
tributing information mediated by a server. This was im-
plemented in different ways, [14, 9, 13]. These initial ex-
periments mainly revealed that the usual ways of distribut-
ing evolutionary algorithms (farming out evaluation or us-
ing synchronous islands) were not suitable to an ephemeral
client that could enter into a particular experiment at any
time. It was clear also that new paradigms, based on us-
ing pools of resources and dealing with them asymmetrically
could also be better suited to this environment that symmet-
ric algorithms with uniform distribution of their population.
Several systems have recently been tested with this premise
[24, 15]. Although most of them use JavaScript, those that
do not use it (like EvoSpace, [24]) reach conclusions that can
be applied to JS-based evolutionary algorithms as well.

The current state of the art shows that JS can, indeed, be
used in a cloud computing environment, but that an assess-
ment of its performance in different situations, frameworks
and methodologies might be in order. This is what we will
carry out in this paper via different implementations mainly
done in the asynchronous JS interpreter node.js; what this
asynchrony means will be explained next.

3. AN EVOLUTIONARY ALGORITHM IN
NODE.JS

node.js (which, from now on, we will simply call Node) is
a JS interpreter based on the V8 virtual machine created by
Google. It is designed to use asynchronous input/output by
default, including an event model that makes event-driven
programming extremely easy [23]. Since it is essentially a JS
interpreter, sequential and synchronous programs are possi-
ble and, due to the speed of the underlying JS virtual ma-
chine, have a high performance, but the best way of using
it is by taking advantage of the asynchronous I/O features
that make it different from other JS interpreters such as Spi-
derMonkey or Rhino and, in fact, closer to the event-driven
programming that is usual in browsers.

From the point of view of distributed evolutionary algo-
rithms, which will have to perform input/output operations
to interact with the rest of the islands, this implies that this
pattern

generat e popu lat ion () ;
do {

s i n g l e g e n e r a t i o n () ;
i f (t ime to migrat e ()) {

migrate out () ;
m igrat e in () ;

}
} un t i l evo lu t ion end () ;

will not work as expected. The main problem is that all
input/output operations will create events in the implicit

1156

event loop, which will generate callbacks once the request
has been completed. The code shown above will work, but
will never have time to process the events and thus migra-
tions, either in or out, will never take place, or rather, in-
bound requests will be made but not processed and out-
bound requests will actually be made, but if the client on
the other side works in the same way, it will never be pro-
cessed. So, instead of this sequential loop, a loop intended
to run for many iterations must be done this way in Node
[22]:

generat e popu lat ion () ;
do evo lu t ion () ;

func t ion do evo lu t ion (){
s i n g l e g e n e r a t i o n () ;
i f (t ime to migrat e ()) {

migrate out () ;
m igrat e in () ;

}
i f (! evo lu t ion end ()) {

d o a f t e r c a l l b a c k s (do evo lu t ion) ;
}

}

This is not only a way of writing the programs using differ-
ent patterns, it is also a different way of understanding the
algorithm sequence. Please note that do_after_callbacks
receives a function pointer, not a function call; so it is not
a recursive call, but actually the definition of a callback. In
a synchronous framework, the first pseudo-code should be
expected to behave in this way:

Generat ion 1
Generat ion 2
. . .
Generat ion 20
Migrat ion−out
Migrat ion−in

However, what we will find in an evolutionary algorithm
programmed in Node as above will be something like

Generat ion 1
Generat ion 2
. . .
Generat ion 20
Request−Migration−out
Request−Migration−in
. . .
Generat ion 22
Migrat ion−in tak ing p lace
. . .
Generat ion 27
Migrat ion−out tak ing p lace

Asynchronous programming not only means that events will
be happening at an undetermined time in the future, but
also that they might take place out of sequence; in fact the
sequence might very well be

Migrat ion−in 2 tak ing p lace
. . .
Migrat ion−out 0 tak ing p lace
. . .
Migrat ion−in 1 tak ing p lace

When designing an evolutionary library that can be used
in the browser and in Node, one of the main things that
must be taken into account is that longish computational
stretches must be divided into more atomic chunks so that
input-output events can happen between them; however,
this concerns mainly the design of library clients, not the
library itself. Thus, an open source library for Node, which
is introduced in this paper, has been released so that it can
be used with the Node package manager just by issuing npm

install nodeo.
The library has been intended mainly as a proof of con-

cept, including the bare minimum to run an evolutionary
algorithm: a single mutation and crossover operators, tour-
nament selection and a few test functions, including the Trap
function (explained below), that has been selected for mak-
ing the experiments in this paper.

4. TESTING DISTRIBUTED EVOLUTION-
ARY ARCHITECTURES

The experiments in the paper have been designed so that
different distributed architectures can be tested. All pro-
grams have been written in Node, although in principle
clients for the browser could also be easily added. Using
them, however, would not add much to the conclusions (al-
though, in the future, it would certainly add to the utility
of the framework described here). The applications that use
the library consider the standard released library plus two
Node modules, one designed for creating REST clients called
Restler and other for REST servers called express.js.

The function chosen for doing all the experiments is a
classical deceptive function called Trap [1]. This assigns
different values to blocks of bits depending on its number
of ones. For each block, it assigns the maximum to a block
with equal bits and another local maximum to the flipped
version of that one. The rest of the values follow this formula

T (x) =

{

a ∗ (z − x)/z if x <= z
b ∗ (x− z)/(l − z) if x > z

where x is the number of ones in the block, l is the length
of the block, and a and b are two constants that meet the
condition a < b. In this experiment we will use z = 3, a =
1, b = 2 which are the usual in other papers such as [7].
This guarantees the problem is challenging enough for a wide
variety of problem sizes. We will consider 30, 40 or 50 blocks,
which offer increasing difficulty for evolutionary algorithms.

Initially, we will try to find out what is the right popula-
tion size for each problem size by doubling its length until
we found one in which 100% of the experiments are success-
ful. The base population will be 128 individuals, and we will
use the baseline evolutionary algorithm in the library with
all the default parameters. This evolutionary algorithm is a
generational method with individuals kept as elite, 2 tourna-
ment for selection, bit-flip mutation, and 2-point crossover.
These parameters will be kept constant (except for the pop-
ulation) for all experiments. If the solution is not found after
2 million evaluations, the program stops.

Experiments are repeated 30 times and take place in a
Linux Ubuntu 13.10 box with

Linux penny 3.8.0−35− gen e r i c #50−Ubuntu SMP

and a AMD Phenom(tm) II X6 1090T Processor with six
cores. All experiments will take place in this single com-
puter, with different nodes in the experiment being different

1157

processes running simultaneously. This was made to make
sure that the computing power was homogeneous and to
make these results reproducible. In fact, all code and data
used to run the programs and also produced by them is
available to the public under an open source license; ad-
ditionally, Ansible configuration for a virtual machine that
runs the code has also been published to make easier the
reproduction of the results. The version of Node used is
0.10.24.

The results of the experiments to size the population are
shown in Figure 1, which shows that 512, 1024 and 2048 are
the right size to find the solution to the 4-trap problem of
sizes 30, 40 and 50.

Figure 1: Number of successful runs out of 30; a
run is considered successful if the target string (all
ones) is found. The leftmost line corresponds to 30
blocks, the one in the middle to 40 and the last one
to 50.

The time needed to reach the solution follows a pattern
that is similar to the success rate, as shown in Figure 2,
which plots the average time needed to find the solution in
successful runs. These graphs have two purposes: first, to
show the time needed to find the solution in Node, which
is around 10 seconds for any of the problems, slightly more
for the problem with 50 traps. This time is well in line
with other script-based languages and show that JavaScript
can be competitive, time wise, with other languages. As
a side comment, time decreases with population since the
presence of a higher initial diversity is key for a successful
initial exploitation, as opposed to an exploration regime that
is needed to find the solution with smaller sizes. We will also
have to take into account this fact when doing the parallel
version of these algorithms, which we will show in the next
section.

It should be noted that the number of lines needed to im-
plement this problem is quite small and of the order of a few
hundred. This fact, along with the performance obtained
when solving this problem, shows that JS and the library
used in this paper can be a contender in the arena of evolu-
tionary computation frameworks. We have also tested differ-

Figure 2: Average time, in milliseconds, for success-
ful runs. The leftmost line corresponds to 30 blocks,
the one in the middle to 40 and the last one in the
right to 50.

ent JS virtual machines to see if there is a difference between
implementations. The fact that it is done in JavaScript al-
lows to easily transform Node code into one that can be run
in the browser by just using a tool called browserify; the
resulting code is, in fact, the same, with the main differ-
ence being the way it is called and the fact that it has to
be done from a web page. There are also slight differences
in the way the loop is done, or rather not done: it has got
to stop from time to time to avoid blocking the browser.
Even so, benchmark results shown in Figure 3 show that
performance of all virtual machines is essentially the same,
with a statistical significant difference only between Firefox
and Chromium, not between Node and the other two im-
plementations. However, the true worth of node.js will be
shown in the next section by extending this basic algorithm
for parallel execution.

The easiest way of creating a distributed application us-
ing Node is adding a RESTful interface to it using ex-

press.js; in fact, RESTful interfaces are quite efficient and
have been tested already in distributed EC experiments [3],
finding that they add a small overhead to communications
and, besides, can be accessed from a variety of languages,
from node.js itself to JQuery (a JavaScript library) in the
browser. This gives us room for growth, but for the time
being we are interested only in showing that a few lines of
code can be used to convert a single-process evolutionary
algorithm into a distributed evolutionary one.

We will test two different regimes here:

• P2P: in it, every node (which we will call process from
now on, since they are implemented as such and to
avoid confusion with node.js, the JS interpreter) com-
municates with the rest.

• pool-based communication of one client with other is
only done through the server, with each program act-
ing independently and knowing only about this server.

1158

Figure 3: Benchmark comparing running time for
node.js and two browsers. Node version is 0.10.29,
Firefox 26.0 and Chromium 31.0.1650.63, all of them
running on Ubuntu 13.10. The first benchmark has
been repeated 30 times, and the others 10 times.
All results run the same benchmark, with the node
version using the same data as that plotted in Figure
2; the benchmark uses 4-trap with 30 blocks and
population = 512.

These two implementations will be described in detail in
the next two sections, after which we will present and com-
pare the result of the experiments using them.

4.1 P2P implementation
Every program uses express.js for implementing a re-

sponse to GET requests made by other processes. After a
number of generations which is configurable, a process makes
a request to another process that is selected randomly from
the list of processes that are running the same algorithm.
Every process runs in its own port; these are assigned se-
quentially starting by 3000; 4 processes, for instance, will
use ports 3000 to 3003.

The queried peer returns the best chromosome in its pool.
As pointed out in Section 3, the chromosome is incorporated
in a later moment to the pool if the program does not finish
before. The new chromosome substitutes the last one in the
pool, as it is usual. This is the case too for the other regime.

We call this implementation P2P, because every process
is a client (requesting individuals from other processes) and
a server (serving those requests). By default, all clients are
stored at the same time (except for negligible delays) using
a shell script.

Every process is run independently, which accounts for
a high load of the machine, approximately 1 per process.
Even so, the operating system is able to accommodate 16
processes without experimenting major delays in the rest of

the applications (such as music reproducer or the browser)
running on the server.

4.2 Pool-based implementation
In this case, processes act only as clients, making GET

and PUT requests to a single server. This server runs in a
public port (by default, 5000) and handles all requests using
express.js integrated web server. Since this server is asyn-
chronous it is theoretically able to serve a good amount of
simultaneous requests. However, this number is not infinite,
as we will see later on. The client always PUTs the best
chromosome.

The server provides a random chromosome when requested
and when it receives a PUT request it stores this in a hash,
in such a way that if the same chromosome is PUT twice it
will be stored only once in the server. This is mainly done
for efficiency purposes, but also to increase diversity.

The client processes, after a fixed amount of generations,
do a PUT and then a GET. As explained in Section 3, this
does not guarantee that they will be served in the same
order so error-handling provisions are in place in case the
server has no chromosomes stored (at the beginning of the
simulation) or any other error (like a flooding of the request
buffer).

The server is started before the clients, which start all at
the same time (but see above). When all client processes
have finished, the server is killed so that no results are kept
from one run to the next.

4.3 Experiments and results
First we will test if the approach is valid and if by divid-

ing the population in several processes we obtain any kind
of improvement. The machine is the same as above and ex-
cept for some errors all experiments have been repeated 30
times to achieve statistical significance. In many cases, the
generational gap, that is, the number of generations before
migration takes place, has been changed to 10 or 20 if it was
considered necessary; the point of the experiment is, any-
ways, to see how the division of the population influences
the performance.

The success rate is shown in Figure 4 for the 10 and 20
generation gap. The results are practically the same, and, in
fact, very similar to the success rate we would obtain with a
single process; a parallel division, in fact, does not seem to
bring a improved success rate even if the total population is
the same as the one that obtained 100% success in a single
deme. The fact that a small variation in the generation gap
does not affect the time-to-success (when it is achieved) is
also reflected in Figure 5, which also shows the time in the
single-process version that was presented in Section 3. It is
interesting to see that time improves 5-fold for population =
256 (while the number of processes has only been multiplied
by two and success rate is roughly constant) and roughly in
the same proportion for population = 128, with the number
of processes multiplied by 4. However, it is interesting to
note that a increase in the number of nodes from 256 to 128
does not decrease running time and might even increase it.

In fact, an additional experiment with 2 processes, g =
20 and population=512 confirms what we have just seen
above: success rate remains 100% but average time needed
to find the solution decreases 3 times, to 1746 ms. from
6588.0. This superlinear increase, which has been found in
many other experiments, might be due to the asynchronous

1159

Figure 4: Number of successful runs out of 30.
Black, solid line corresponds to migration after 20
generations, light-colored, dashed corresponds to
migration after 10 generations.

nature of Node, which might, in turn, increase diversity,
but in any case it proves that, in this P2P regime, adding
a single process might bring great improvements in terms
of time, even in a single machine. However, designing an
experiment that proves this is outside the scope of this paper
and. What we can conclude from this set of experiments is
that a single machine is able to support a good amount of
processes running in parallel, and that adding at least one
process can increase speed significantly without too much
effort (a few lines of code) from the programming point of
view.

However, this programming effort can be used in a differ-
ent direction, and that is what we have attempted with the
pool architecture, with clients all working against a single
server. In principle we wanted to test the same architecture
with the same generational gap, that is, total population for
all nodes equal to 512, with this population divided among
processes. However, since all the requests are done to a sin-
gle process its event queue saturates very fast which led us
to increase the generational gap with the number of pro-
cesses; even so, it brings errors which crash the clients in
some cases.

In general and from the point of view of the operating
system load, no great change is observed with the addition
of one process (n client processes + server) to the pool; if
there is any time difference, it should not be attributed to
increased OS load or, for that matter, for the small changes
in the application architecture done. Even if the P2P appli-
cations do a single request (a GET) and this one performs
two (first a PUT and then a GET), it probably cancels out
with the fact that the P2P processes must also respond to
requests from time to time. In fact, what we observe in the
comparison of both types of architectures in Figure 6 is that
there is a difference for the smallest number of processes
and the biggest number of processes but they go in differ-
ent directions, so it is difficult to say if, in general, there is

Figure 5: Average time, in milliseconds, for success-
ful runs. Black, solid line corresponds to g (genera-
tion gap) = 10, light, dashed to g = 20, and, for the
sake of comparison, the baseline single-node time is
included.

any difference (there is none for p = 64, 128) and what is its
origin.

But a more dramatic change of scenario is shown in Figure
7, which shows that the success rate increases drastically, al-
though decreasingly so with the increasing population; this
is only to be expected since, in fact, success rate increased
with the population in the P2P architecture. This makes,
from the algorithmic point of view, a better alternative of
this pool-based architecture. Since, time-wise, there is no
big difference, we have to conclude that, in general and de-
spite server-overload errors, using a pool-based architecture
for asynchronous parallel evolutionary algorithms is a bet-
ter option than either a single-population architecture or a
peer-based architecture.

This conclusion is reached on top of the fact that JavaScript,
its implementation in node.js, and the simple library we are
presenting in this paper, are valid platforms for perform-
ing distributed computation experiments, since they allow
to create rapid prototypes to concentrate on system archi-
tecture and the solution of problems via evolutionary algo-
rithms. In an environment with no constraints to choose a
particular programming language, JavaScript will probably
be slower than Java or C++, although its speed is on par
(and may beat) other scripting languages. However, in an
environment such as a multi-tier architecture that includes
rich internet applications (with an UI written in JavaScript
in the browser) or even mobile applications (which can eas-
ily be created in JavaScript via, for instance, the PhoneGap
framework or simply HTML5 in any browser) JavaScript can
offer an excellent performance and even algorithmic advan-
tages in parallel evolutionary algorithms, as we have proved
in this paper.

1160

Figure 6: Average time, in milliseconds, for suc-
cessful runs. Black, solid represents the previously
mentioned P2P architecture, while the light, dashed
line represents the pool-based, single-server archi-
tecture.

5. CONCLUSIONS
In this paper we set to prove the worth of a node.js-based

distributed evolutionary algorithm. node.js is a emerging
platform which is receiving a lot of interest in the open
source and enterprise arena, but not so much in the scientific
community so our intention was to introduce it to the evolu-
tionary computation (EC) community by proving its value
as a platform for EC experiments. A basic EC library has
been created and released, so it is available to the researches.
The library can be expanded and, being open source, can be
adapted and suited to the needs of any particular user; due
to the expansion of the JavaScript and node.js commu-
nity, it should be increasingly easy to find people interested
and skilled enough to work in evolutionary algorithms using
JavaScript and node.js, and, from the other end, it could
get the node.js community interested in our area, which
might prove the source of interesting problems that can be
dealt with from the point of view of metaheuristics.

The main challenge of this paper was to create evolution-
ary algorithms program that took advantage of the asyn-
chronous nature of node.js and the easiness with which
asynchronous communication is done using it. To that end,
two implementations of a parallel system (that can be easily
distributed by changing the configuration files of the clients
to reflect the URLs used), one in which evolutionary islands
form a star topology and are aware and communicate with
all other processes, and another in which each client must
be aware only of the server it uses to deposit and pick up
individuals that are deposited by other clients. These two
alternatives offer different advantages from the raw and al-
gorithmic performance point of view: while the P2P setup is
able to achieve great improvements by reaching solution in
a portion of the time, the server-based setup not only offers
improvements of the same order, but also is able to improve
the success rate over the P2P and single-server architecture.

Figure 7: Number of successful runs out of 30.
Black, solid line corresponds to the P2P architec-
ture, light-colored, dashed corresponds to the single-
server architecture (pool).

This despite the disadvantage of the server not being able
to process all requests in some occasions.

Why this happens is, however, a different matter. The
P2P system always deposits the best individual in the cur-
rent generation and retrieves also the best from its peer.
This might not be the best alternative, as shown in papers
such as [2]. However, the peer it takes the chromosome from
is random, so that might not be the problem. It would be
interesting, however, to use other strategies to retrieve in-
dividuals from other processes to check what is exactly the
reason for this lack of performance. On the other hand, the
pool-based system retrieves a random individual from the
pool, but this individual has been, in some past moment,
the best since they only deposit the best, so the probably
increase in diversity afforded by using a random individual
from the server might not be the reason; in fact, this was
chosen since retrieving the best would probably get the same
individual the client had just deposited and checking for that
might lead to increasing complexity that we pointedly tried
to avoid.

In any case, it is quite clear that the use of this platform
and the degrees of liberty in its design open a whole world
of possibilities testing uniform vs. heterogeneous settings in
nodes. We have been using a single population size, gener-
ation gap and tournament size, in general. Using dissimilar
and even random values might increase diversity and thus
increase the success rate; heterogeneity could come from
parameter settings or from different machines being used.
Besides, the P2P and pool-based options are not mutually
exclusive, since in fact the program used in the P2P setup
can be used as a server by adding to it the capability to
respond to PUT petitions. Working with different servers
and distributing clients might offer a way out of the server
overload problem but, at the same time, opens many more
possibilities.

1161

We should emphasize too that this research has been car-
ried out in an open science fashion by publishing, as soon
as they are produced, all results on a public server whose
address is withheld at this point in the evaluation on the
paper. We have made sure that these results are fully repro-
ducible by not only releasing the source code, but also all
configuration files (in JSON) and data obtained during the
experiments, as well as a configuration script in Ansible for
the setup of a virtual or real machine.

6. ACKNOWLEDGMENTS
This paper has been developed thanks to the support of

the projects CANUBE (CEI2013-P-14), ANYSELF (TIN2011-
28627-C04-02) and Muses (http://musesproject.eu).

7. REFERENCES
[1] D. H. Ackley. A connectionist machine for genetic

hillclimbing. Kluwer Academic Publishers, Norwell,
MA, USA, 1987.

[2] L. Araujo and J. J. Merelo Guervos. Multikulti
algorithm: Using genotypic differences in adaptive
distributed evolutionary algorithm migration policies.
In Evolutionary Computation, 2009. CEC ’09. IEEE
Congress on, pages 2858–2865, May 2009.

[3] P. A. Castillo, J. L. Bernier, M. Garćıa-Arenas, J.-J.
Merelo-Guervós, and P. Garćıa-Sánchez. SOAP vs
REST: Comparing a master-slave GA implementation.
CoRR, abs/1105.4978, 2011.

[4] D. Crockford. JavaScript: The world’s most
misunderstood programming language.
www.crockford.com, 2001.

[5] ECMA. 262: ECMAScript Language Specification,
1999.

[6] D. Flanagan. JavaScript. O’Reilly, 1998.

[7] D. González Lombraña, J. L. J. Laredo,
F. Fernández de Vega, and J. J. Merelo Guervós.
Characterizing fault-tolerance of genetic algorithms in
desktop grid systems. In Evolutionary Computation in
Combinatorial Optimization, pages 131–142. Springer,
2010.

[8] T. Helmuth and L. Spector. Evolving a digital
multiplier with the PushGP genetic programming
system. In Proceeding of the fifteenth annual
conference companion on Genetic and evolutionary
computation conference companion, pages 1627–1634.
ACM, 2013.

[9] J. Klein and L. Spector. Unwitting distributed genetic
programming via asynchronous JavaScript and XML.
In Proceedings of the 9th annual conference on Genetic
and evolutionary computation, pages 1628–1635.
ACM, 2007.

[10] W. Langdon. Global Distributed Evolution of
L-Systems Fractals. In Genetic Programming: 7th
European Conference, EuroGP 2004, Coimbra,
Portugal, April 5-7, 2004, Proceedings, volume 7,
pages 349–358. Springer, 2004.

[11] W. B. Langdon and A. P. Harrison. Evolving DNA
motifs to predict GeneChip probe performance.
Algorithms for Molecular Biology, 4(1):6, 2009.

[12] S. Mairhofer, R. Feldt, and R. Torkar. Search-based
software testing and test data generation for a

dynamic programming language. In Proceedings of the
13th annual conference on Genetic and evolutionary
computation, pages 1859–1866. ACM, 2011.

[13] J. J. Merelo, P. Castillo, J. Laredo, A. Mora, and
A. Prieto. Asynchronous distributed genetic
algorithms with JavaScript and JSON. In WCCI 2008
Proceedings, pages 1372–1379. IEEE Press, 2008.

[14] J. J. Merelo, A. M. Garćıa, J. L. J. Laredo, J. Lupión,
and F. Tricas. Browser-based distributed evolutionary
computation: performance and scaling behavior. In
GECCO ’07: Proceedings of the 2007 GECCO
conference companion on Genetic and evolutionary
computation, pages 2851–2858, New York, NY, USA,
2007. ACM Press.

[15] J. J. Merelo-Guervos, A. Mora, J. Cruz,
A. Esparcia-Alcazar, and C. Cotta. Scaling in
distributed evolutionary algorithms with persistent
population. In Evolutionary Computation (CEC),
2012 IEEE Congress on, pages 1 –8, june 2012.

[16] J.-J. Merelo-Guervós, G. Romero, M. Garćıa-Arenas,
P. A. Castillo, A.-M. Mora, and J.-L. Jiménez-Laredo.
Implementation matters: Programming best practices
for evolutionary algorithms. In J. Cabestany, I. Rojas,
and G. J. Caparrós, editors, IWANN (2), volume 6692
of Lecture Notes in Computer Science, pages 333–340.
Springer, 2011.

[17] T. Mikkonen and A. Taivalsaari. Using JavaScript as a
real programming language. Technical report, Sun
Microsystems, Inc., 2007.

[18] S. O’Grady. The RedMonk Programming Language
Rankings: January 2014. Tecosystems blog, January
2014.

[19] J. G. Peñalver and J.-J. Merelo-Guervós. Optimizing
web page layout using an annealed genetic algorithm
as client-side script. In Proceedings PPSN, Parallel
Problem Solving from Nature V, number 1967 in
Lecture Notes in Computer Science, pages 1018–1027.
Springer-Verlag, 1998. http://www.springerlink.
com/link.asp?id=2gqqar9cv3et5nlg.

[20] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An
analysis of the dynamic behavior of JavaScript
programs. ACM Sigplan Notices, 45(6):1–12, 2010.

[21] J. Smith and K. Sugihara. GA toolkit on the Web. In
Proceedings of the First Online Workshop on Soft
Computing, page 12, 1996.

[22] P. Teixeira. Asynchronous Iteration Patterns In
Node.js, 2011. http://metaduck.com/
01-asynchronous-iteration-patterns.html.

[23] S. Tilkov and S. Vinoski. Node.js: Using javascript to
build high-performance network programs. Internet
Computing, IEEE, 14(6):80–83, Nov 2010.

[24] M. G. Valdez, L. Trujillo, F. F. de Vega, J. J. M.
Guervós, and G. Olague. Evospace: A distributed
evolutionary platform based on the tuple space model.
In A. I. Esparcia-Alcázar, editor, EvoApplications,
volume 7835 of Lecture Notes in Computer Science,
pages 499–508. Springer, 2013.

1162

