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ABSTRACT

In this paper, we tackle the distribution network expansion
planning (DNEP) problem by employing two evolutionary
algorithms (EAs): the classical Genetic Algorithm (GA)
and a linkage-learning EA, specifically a Gene-pool Optimal
Mixing Evolutionary Algorithm (GOMEA). We furthermore
develop two efficiency-enhancement techniques for these two
EAs for solving the DNEP problem: a restricted initializa-
tion mechanism to reduce the size of the explorable search
space and a means to filter linkages (for GOMEA) to disre-
gard linkage groups during genetic variation that are likely
not useful. Experimental results on a benchmark network
show that if we may assume that the optimal network will
be very similar to the starting network, restricted initializa-
tion is generally useful for solving DNEP and moreover it
becomes more beneficial to use the simple GA. However, in
the more general setting where we cannot make the closeness
assumption and the explorable search space becomes much
larger, GOMEA outperforms the classical GA.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms

Performance, Experimentation
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Electricity; Distribution Networks; Capacity Planning; Op-
timal Mixing; Linkage Learning
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1. INTRODUCTION
Electric distribution grids are parts of the total power sys-

tem and carry the electricity from high-voltage (HV) trans-
mission grids to the medium-voltage (MV) and low-voltage
(LV) consumers. A distribution grid consists of various
electric components, such as overhead power lines, under-
ground cables, substations, transformers, meters, protection
devices, etc., in which the branch configuration (i.e. lines/
cables) are of particular interest. How the cables are con-
nected and which types of cables are chosen determine both
the topology and the capacity of the grid. Distribution
grids are typically constructed, maintained, and upgraded
by distribution network operators (DNOs). The growth in
the power demands of consumers requires DNOs to perform
network reinforcements to ensure that the magnitude of the
power flows that are required to satisfy consumers’ demands
are within the capacities of all network components. Tra-
ditionally, regarding one or multiple scenarios of forecast
load growth, DNOs manually sketch a few likely network
expansion plans based on engineers’ expert knowledge and
company-specific policies. Those plans are then evaluated
for their investment cost, operational cost, and also tech-
nical feasibility, and usually the plan with the least total
cost is chosen to be carried out. As distribution grids be-
come increasingly large and complicated over time, includ-
ing the introduction of new technologies, such as distributed
generation or demand-side management, traditional manual
generation of expansion plans is no longer thorough enough
to guarantee that a good, let alone optimal, plan can be
obtained from the vast search space of possible alternatives.

Optimization problems of computationally expensive eval-
uation functions and large search spaces often require the
application of metaheuristics, such as genetic algorithms [3],
simulated annealing [13], or particle swarm optimization [2].
The popular use of these classic metaheuristics in electrical
engineer literature is due to, besides their general applica-
bility and search capabilities, their straightforward imple-
mentations and wide availability in computation software
(e.g. MATLAB). However, far more novel, robust develop-
ments in evolutionary computation exist, amongst which are
EAs that perform linkage learning to be robust against a-
priori unknown variable dependencies. These EAs are typi-
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cally more involved, but offer better convergence properties.
This is however more frequently tested on well-known bench-
mark functions rather than real-world applications, like the
one we consider here. In previous, related work [8], we
have applied a state-of-the-art linkage learning EA known
as the Gene-pool Optimal Mixing Evolutionary Algorithm
(GOMEA) [1] to the DNEP problem and obtained promising
results. In this paper, we tackle the problem under a dif-
ferent scenario, input settings, and evaluation function. We
will also present simple linkage filtering techniques aiming
to improve the efficiency of GOMEA.
In real-world optimization, expert knowledge and domain-

specific heuristics are often employed to disregard some“im-
practical” alternatives, thereby reducing the search space.
Especially in the field of electricity network expansion plan-
ning, another reason is that, regarding the current legacy
of already-installed network facilities, DNOs prefer conven-
tional solutions involving an incremental number of changes
to any “upside-down” reconfigurations. Expansion plans in-
volving many big changes, such as removals of cable connec-
tions and restructuring multiple parts of the grids, are often
considered as unfavorable. However, many population-based
optimization algorithms often start from randomly initial-
ized populations. Considering this, we could also generate
the initial population of candidate solutions by randomly
changing only a few components in the existing (starting)
network. In this paper, we will study if such initialization
can help to obtain acceptable solutions faster. It should
be noted that in related work [6], we proposed alternative
methods of reducing the size of the search space from an
electrical engineering point of view by introducing engineer-
ing rules as constraints. Here we will look at search space
size reduction from a more algorithmic perspective.
To this end, we solve the distribution network expan-

sion planning problem (DNEP) by using a classic genetic
algorithm (GA) and the state-of-the-art Gene-pool Opti-
mal Mixing Evolutionary Algorithm (GOMEA) [1, 10] and
study the difference in performance when using fully random
population initializations as well as restricted initializations.
The remainder of this paper is organized as follows. Section
2 presents the optimization model for the DNEP problem.
Section 3 outlines our optimizers GA and GOMEA. Sec-
tion 4 describes our efficiency enhancement techniques for
solving DNEP problems. Section 5 presents the benchmark
problem and exhibits experimental results. Finally, Section
6 concludes the paper.

2. DNEP OPTIMIZATION MODEL
A distribution network can be represented as a graph

G = (V,E), in which V is the set of m nodes (vertices) and
E is the set of l branches (edges). A node can be a substa-
tion, which is usually installed with a HV/MV transformer
feeding electricity from a (sub-)transmission system into the
distribution grid, or a consuming unit (i.e. a customer sta-
tion demanding directly MV electricity or a network station
associated with an MV/LV transformer supplying LV elec-
tricity for an area of households). A branch is a connection
between two nodes, which can be a power line running over-
head or a cable running underground. In conventional distri-
bution grids, the branch configuration creates feed paths for
power flows from supplying substations downward to con-
suming units. In a scenario with distributed generation,
such as photovoltaics at households, a consuming unit can

at times become a supplying unit creating an upward flow
feeding electricity into the grid. Nevertheless, regardless of
the directions, all electric currents have to flow through cable
connections, which have specific nominal capacities. Cable
overload is defined as when a cable connection has to carry
a power flow whose magnitude is larger than its capacity.
Overload for an extended amount of time can damage the fa-
cility and causes system failures. DNOs are thus required to
perform network capacity planning to assure that growths in
power demand are satisfied while no overload should occur.
In this regard, distribution grids may consist of various kinds
of electric facilities, but for the problem of capacity planning
the configurations of the cables are usually of particular in-
terest. In this paper, we assume that DNOs perform DNEP
by making decisions on how the cables are connected and
which type of cable is used for each connection.

2.1 Decision Variable Codification
To solve a DNEP problem, all cable connections on which

a DNO can make reinforcement decisions need to be spec-
ified. These consist of all the currently existing branches
that can be upgraded and the potential branches that can be
newly installed. The set of potential branches is limited by
expert knowledge to dismiss impractical connections, e.g. it
is uneconomical to connect two far-away nodes.

Let l be the total number of branches (i.e. both existing
and potential branches), a distribution network can be rep-
resented as a vector x of l elements:

x = (x1, x2, . . . , xl), |xi| ∈ Ω(xi), i ∈ {1, 2, . . . , l} (1)

where each xi is a categorical variable indicating which type
of cable is installed at the i-th branch of the network. The
set of possible alternatives of cable types Ω(xi) that can be
installed at the branch i-th is DNO-specific, which usually
consists of standardized cable sizes. The value of xi deter-
mines the status of the i-th branch:

• xi = id > 0: A cable of type id ∈ Ω(xi) should be
installed at the i-th branch.

• xi = 0: No cable should be installed at the i-th branch.

• xi = −id < 0: A cable of type id ∈ Ω(xi) should be
installed and put into reserve status at the i-th branch.
This cable connection is put into inactive state, carry-
ing no power flow during normal operation, by opening
one of the two switches at its two endings. Such ca-
ble connection is usually termed as a Normally Open
Point (NOP), which is used to reconfigure the network
in emergency situations.

The original distribution network is thus represented as a
vector whose elements corresponding with currently existing
branches receive non-zero values while elements correspond-
ing with potential branches are set to 0.

2.2 Constraints
For a given scenario of forecast growth in power demand

and, in case of distributed generation, the power generating
capability at every node, the following constraints must be
satisfied:

1. Connectivity constraint: All node should be con-
nected, i.e. there is a feed path from a substation to a
consuming unit.
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2. Voltage constraints:

|Vi|
min ≤ |Vi| ≤ |Vi|

max
, i ∈ {1, 2, . . . ,m} (2)

where |Vi| is the voltage magnitude at node i. |Vi|
min

and |Vi|
max are minimal and maximal allowed voltage

magnitude at node i, respectively. All nodal voltage
should stay within the allowable range.

3. Power flow constraints:

|Si| ≤ |Si|
max

, i ∈ {1, 2, . . . , l} (3)

where |Si| is the magnitude of the power flow through
the cable connection at the i-th branch, and |Si|

max is
the nominal capacity of that cable. There should be
no overload in normal operation.

4. Radiality constraint: A consuming unit should be
supplied its power demand through only one single feed
path in normal operation. This constraint is often em-
ployed due to security and protection policies of DNOs.

5. Reconfigurability constraint: When an active ca-
ble fails, the resulting short-circuit power will be dis-
connected by a circuit breaker to prevent damaging
other components. Some parts of the network will be
out of service. The DNO then reconfigures the network
by closing the switches of reserve branches (i.e. NOPs)
so that all power demands are supplied again. In such
temporary emergency situations, the network can tol-
erate a mild overload for a short time due to thermal
dynamics. Here, we assume the emergency capacity of
a cable is 130% of its nominal capacity.

Constraints (1) and (4) can be easily verified by checking
the topology of the network. To evaluate constraints (2) and
(3), it is required to perform a power flow calculation (PLC)
[4], which involves solving a system of non-linear equations,
called the AC power flow model. A full evaluation of the
constraint (5) for a network of k active cables requires k

PLCs because every active cable is taken out of service at
a time (i.e. to simulate a single cable fault) and it is then
checked to see if closing NOPs can bring back the normal
service. It is normally acceptable to simulate single cable
fault only for cable connections that branching out directly
a substation because these cables usually carry the heaviest
loads. Nevertheless, due to performing multiple PLCs, con-
straint evaluation for a DNEP solution is a computationally
expensive operation.

2.3 Objective Function
Solving a DNEP problem aims to minimize the net present

value (NPV) of the total cost of investment CAPEX and
operation OPEX over a planning horizon of T years. In
this paper, we consider OPEX as solely the cost of energy
loss on cables, which depends on the load and the types of
cables being used. An accurate objective evaluation requires
the DNEP is solved in a dynamic planning manner, in which
the optimal year ti (t0 ≤ ti ≤ tT ) to perform reinforcement
at a branch xi need to be determined. Dynamic planning
is typically very expensive in terms of computation effort,
involving costly constraint checking for each year during the
planning horizon for every candidate solution. In this pa-
per, assuming a limited computation budget, we consider a
cheaper pseudo-dynamic approach as follows.

2.3.1 OPEX Estimation

In this section, we present how to estimate the OPEX,
i.e. the cost of energy loss, of an expansion plan x for an ex-
isting grid xorigin. The peak loss Ploss(x, t) on an electricity
grid x in a year t can be calculated from the result of a com-
putationally expensive PLC for that grid regarding the peak
load in that year. A less accurate, but for planning purposes
commonly accepted, approach is to assume the peak loss also
has a growth rate related to the load growth R as follows

P
estimated
loss (t) = Ploss(t− 1) ∗ (1 +R)2 (4)

Given R, we can estimate the peak load at every node
in each year. Regarding the currently existing configuration
of the network xorigin, we determine the year tX that the
first overload happens. The whole expansion plan x, which
would eventually satisfy the energy demand in the final year
tT , is then assumed to be carried out all together in the
year tX . In this regard, the year tX would be the same for
all candidate solutions x’s because all expansion plans start
from the same original network xorigin. Therefore, the losses
from the beginning until tX would also be the same for all
candidate solutions. The losses from the year tX until and
including the year T are different per candidate solution,
depending on what types of cables are used. Therefore, we
choose to estimate the peak loss Ploss(x, t) of an expansion
plan x in year t as follows

Ploss(x, t) =







Ploss(x
origin, t) if t < tX

P estimated
loss (x, t) if tX ≤ t < T

Ploss(x, T ) if t = tT

(5)

where Ploss(x
origin, t) can be calculated in an accurate way

by performing tX PLCs once for all candidate solutions x’s.
P estimated
loss (t) can be estimated by performing one PLC to

calculate Ploss(x, T ) first and then using the Equation 4 to
deduct backward. The yearly energy loss Eloss(x, t) of a
grid x in year t is then computed as

Eloss(x, t) = Ploss(x, t) ∗ Tloss(t) (6)

where Tloss(t) is the service time of peak loss, defined by
the area of the yearly energy loss profile, and is input data
resulting from scenarios. The OPEX(x, t) of a network x

in year t is computed as

OPEX(x, t) = Price ∗ Eloss(x, t) (7)

where Price is the electricity price used in analysis.

2.3.2 CAPEX Calculation

The total sum of investment cost of an expansion plan x

can be easily computed by comparing x with the currently
existing network xorigin as follows

Investment =
l

∑

i=1

cost(xorigin
i , xi) (8)

where

cost(xorigin
i , xi) =

{

0 if xorigin
i = xi

cost of xi if xorigin
i 6= xi

(9)

However, in scenario-based planning studies, the CAPEX

is usually computed by using the annuities method [9, 12], in
which the payment for investment is converted into a series
of uniform annual payments called annuities. The length of
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this series of payments is the economic lifetime T lifetime of
the devices. Here, we assume that all devices have the same
T lifetime = 30 years. The annuity, i.e. the yearly payment,
with a discount rate i = 4

.
5% is computed as

Annuity = Investment ∗
i

1− (1 + i)−T lifetime
(10)

In a true dynamic expansion planning, the annuity should
be computed for each invested device separately regarding
its specific time of installation. However, in this paper, be-
cause we assume that all investments be carried out at the
same year tX when the first overload occurs and that all
devices have the same lifetime T lifetime, we can compute
the annuity for the total investment of all devices. The
CAPEX(x, t) in year t is then the annuity

CAPEX(x, t) =

{

Annuity if tX ≤ t ≤ tX + T lifetime

0 else
(11)

Note that due to the long lifetime, it can happen that tX+
T lifetime > tT . Since we only consider the cost until the end
of the planning horizon tT , the annuities of the years after
the planning horizon will be disregarded. This annuities
method is used to compare fairly the total costs between
different scenarios [9].

2.3.3 Total Cost Objective Function

The objective of the DNEP problem is to minimize the
NPV of the total cost of expansion, which consists of the
operation cost OPEX and the investment cost CAPEX,
over T years with discount rate i. The objective value of a
candidate solution x is thus computed as

f(x) =

tT
∑

t=t0

OPEX(x, t) + CAPEX(x, t)

(1 + i)t−t0
(12)

3. OPTIMIZATION ALGORITHMS

3.1 Classical Genetic Algorithm (GA)
In this paper, we consider a popular implementation of

a classical, widely-applied, GA with uniform crossover and
tournament selection. First, GA starts with the random ini-
tialization of a population P of n candidate solutions. For
a candidate solution, each decision variable xi (i.e. a cable
connection) can receive any possible value (i.e. 0, id, or −id

with id ∈ Ω(xi)) as long as it does not downgrade the cur-
rently existing facility. All solutions are evaluated against
the required constraints and objective function (Section 2.2
and 2.3). In every iteration, an offspring population O of
n new candidate solutions are created from P. To do this,
every 2 parent solutions randomly chosen from P are re-
combined through uniform crossover to generate 2 offspring
solutions. These fully constructed solutions are evaluated
for their constraints and objective values. Next, the parent
population P and the offspring population O are combined
into a selection pool P +O of 2n solutions, where a tourna-
ment selection with tournament size 4 is then performed to
select n survivors. These n survivors form the new parent
population P for the next iteration of GA.

3.2 Gene-pool Optimal Mixing Evolutionary
Algorithm (GOMEA)

Although GAs can be very efficient, the conditions under

which they are efficient are highly dependent on the match
between the way new solutions are generated (i.e. the opera-
tors of variation), the level of dependencies between problem
variables and the way the problem is encoded. If this match
causes important dependencies to be disrupted during vari-
ation, GAs will exhibit poor scale-up behavior, typically re-
quiring exponentially many evaluations to find the optimum
as the problem size increases [11]. Linkage learning specifi-
cally addresses the task of figuring out, during optimization,
which variables are dependent so as to better respect these
dependencies during variation. If linkage learning is success-
ful, the scale-up behavior can become extremely favorable,
typically requiring only a low-polynomial number of evalu-
ations (sometimes even sublinear) instead [7, 10].

In this paper, we also consider a linkage-learning EA to
solve the DNEP problem. This EA is an instance of the
GOMEA family [10]. Similar to the classical GA, GOMEA
also starts with a randomly initialized population P of n

candidate solutions, which are then evaluated against the
constraints and objective function. In every iteration, a set
S of n solutions is selected out of P by tournament selection
with tournament size 2. A linkage model, describing depen-
dencies among decision variables, is then learned from this
set S. Exploiting linkage structures captured by the linkage
model, GOMEA performs a genetic local search-like varia-
tion operation to transform each existing solution x into a
new offspring solution o in a step-wise manner. Finally, the
population P is completely replaced by the offspring popu-
lation O of n newly constructed solutions.

The linkage model structure of GOMEA follows the Fam-
ily Of Subset (FOS) concept. Let L = {1, 2, . . . , l} be the
set containing all decision variable indices. A FOS F over
L is a subset of the powerset of L : F ⊆ P(S). F can be

written as F = {F 1,F 2, . . . ,F |F|} where F i ⊆ {1, 2, . . . , l},
i ∈ {1, 2, . . . , |F|}. A FOS can thus be seen as a set of
linkage groups, in which each linkage group is in turn a set
of decision variables indices, indicating that those variables
are (inter-)dependent to some degree. In this paper, we use
the Linkage Tree (LT) as the FOS model, which gives a
popular instance of GOMEA, also called the Linkage Tree
Genetic Algorithm (LTGA). An LT over the set L represents
its linkage groups in a hierarchical manner. All l leaf nodes
are singleton linkage groups, i.e. F i = {i}, i ∈ {1, 2, . . . , l},
describing the univariate structure. Then, for each branch
node F i containing more than one decision variable indices,
describing multivariate dependencies, there exist subsets F j

and F k such that F j ∩F k = ∅, |F j | < |F i|, |F k| < |F i| and
F j ∪ F k = F i. The root node, which contains all vari-
able indices and is thus the set L itself, is removed from the
LT because it results in copying the entire solutions when
performing linkage-based recombination, which is not use-
ful. An LT over the set L of l decision variables can be
constructed by the Unweighted Pair Grouping Method with
Arithmetic-mean (UPGMA) procedure in O(nl2) time [5],
resulting in exactly 2l − 2 linkage groups. For more details
on building the LT, please refer to the literature [1, 10].

GOMEA transforms each existing solution x into a new
offspring solution o by a variation operator called Gene-pool
Optimal Mixing (GOM). First, o is a direct clone from x,
and a backup version b of x is created. Traversing the link-
age groups in the LT FOS F , for every F i ∈ F , a donor
solution p is randomly selected from the population P. The
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values of decision variables whose indices are indicated by
F i are copied from p to o, if those values are different be-
tween p and o in at least one position. The constraints
and objective values of this partially-altered o are evalu-
ated and compared against the backup b. If such mix-
ing results in an improvement or an equally good solution
(i.e. fitness[o] ≥ fitness[b]), then the changes are accepted
and also updated into the backup. Otherwise, discarding
the changes, o is reverted to its backup state b. Note that
the acceptance criterion of equal fitness can help the search
to move across a fitness plateau. When all F i ∈ F are tra-
versed, an offspring solution o is fully constructed and will
replace its parent solution x in the next generation.
If GOM cannot transform a solution x into a new off-

spring o, a procedure called Forced Improvement (FI) is
invoked. FI can be seen as a second round of GOM in which
the donor solution is always the best-found-so-far solution
xbest. A mixing step in FI is only accepted when it results
in a true improvement (i.e. fitness[o] > fitness[b]), and
FI is stop as soon as such improvement is found. However,
FI may never be called if there exist significant plateaus
and the acceptance criterion of equal fitness in GOM simply
transforms back and forth solutions of different genotypes
but the same fitness value. To overcome this, if the number
of subsequent generations that the best solution xbest does
not change, termed as the no-improvement stretch (NIS),
exceeds a threshold, FI is triggered. [1] suggests a threshold
of 1 + ⌊log

10
(n)⌋. Lastly, if FI cannot transform an existing

solution x, the current best solution xbest is returned as the
new offspring o. Figure 1 shows pseudo-code.

4. EFFICIENCY ENHANCEMENTS

4.1 Restricted Initialization
Electricity grids are probably among the most complex

technological networks with numerous interconnected facil-
ities, which have been built over time. The legacy of cur-
rently existing electric components should be taken into ac-
count when conducting any real-world network expansion
planning. Regarding the huge sums of investment that have
been made into the current grid, network operators typi-
cally do not favor expansion plans involving radical changes,
such as re-designing the grid from scratch, because this is
economically unaffordable, resulting in high tariffs for con-
sumers. Favorable solutions for DNEP problem instances
in practice rather consists of incremental changes which dif-
fers from the original network in a few cable connections.
Engineering heuristics and guidelines are employed to dis-
regard impractical solutions, e.g. the addition of new cable
connections should be limited, or the removal of existing
connections are often discouraged. These engineering “rules
of thumb” help to reduce the search space while also limit
the number of changes that can be made to the current grid.
Evolutionary optimization algorithms, such as GA and

GOMEA, usually start from a population of randomly gen-
erated solutions, providing an initial population of good di-
versity to begin with. For DNEP, this means that a com-
plicated expansion plan of radical changes can still be ob-
tained if doing so benefits the objective function. However,
initialization can also be customized to reflect electrical-
engineering expert knowledge and the assumption that only
limited changes are required/desired. Initial solutions can
then be direct clones of the current grid with only a limited

GOMEA //population size n
for i ∈ {1, 2, . . . , n} do

Pi ← CreateRandomSolution()
EvaluateFitness(Pi)

xbest ← argmaxx∈P{fitness[x]}

t← 0; tNIS ← 0
while ¬TerminationConditionsSatisfied do

S ← TournamentSelection(P, n, 2)
LearnLinkageModel(S)
for i ∈ {1, 2, . . . , n} do

Oi ← FI-GOM(Pi)
P ← O

xbest ← argmaxx∈P{fitness[x]}

if fitness[xbest(t)] > fitness[xbest] then

tNIS ← 0;xbest ← xbest(t)
else

tNIS ← tNIS + 1
t← t + 1

FI-GOM(x)
b← o← x; fitness[b]← fitness[o]← fitness[x];
changed← false

for i ∈ {1, 2, . . . , |F|} do

p← Random({P1,P2, . . . ,Pn})
o
F i ← p

F i

if o
F i 6= b

F i then

EvaluateFitness(o)
if fitness[o] ≥ fitness[b] then

b
F i ← o

F i ; fitness[b]← fitness[o]; changed← true

else

o
F i ← b

F i ; fitness[o]← fitness[b]

if ¬changed or tNIS > 1 + ⌊log
10

(n)⌋ then
changed← false

for i ∈ {1, 2, . . . , |F|} do

o
F i ← xbest

F i

if o
F i 6= b

F i then
EvaluateFitness(o)
if fitness[o] > fitness[b] then

b
F i ← o

F i ; fitness[b]← fitness[o]; changed← true

else

o
F i ← b

F i ; fitness[o]← fitness[b]
if changed then breakfor

if ¬changed then

o← xbest; fitness[o]← fitness[xbest]

Figure 1: Pseudo-code for GOMEA

number k of positions having different randomly generated
values. We aim to investigate the balance between the com-
putation budget and the quality of obtained solutions by
experiment with different values of k that governs the size
of the explorable search space of possible alternatives.

4.2 Linkage Filtering
An LT consists of 2l − 2 linkage groups, in which not ev-

ery linkage relation is necessarily beneficial in GOM if such
linkages are of weak (inter-)dependencies. Filtering spurious
linkage groups out of a linkage model is thus an important
research topic for GOMEA. However, determining optimal
filtering thresholds as in [1] often requires intensive analy-
sis and experiments. Here, we consider a simpler filtering
mechanism directly based on the sizes of linkage groups.
Given that the level of changes to an existing grid that a
DNO would favor is often limited, we hypothesize that large
linkage groups of many variables do not contribute much to
the search. As the favorable expansion plans are usually of
incremental changes, it might be more computationally eco-
nomical if GOMEA only attempts mixing events of small
linkage groups. Therefore, larger linkage groups, which can
introduce radical network restructuring, should be filtered
out of the LT. We generalize this filtering mechanism by
introducing a threshold Lmax

FOS for the maximum size of link-
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Figure 2: Topology of the benchmark network.

age groups. If a linkage group contains more than Lmax
FOS

variable indices, it will be ignored when GOM constructs
offspring solutions. Assuming that restricted initialization
will initialize the search near the optimal solution, we will
experiment to see if this linkage filtering mechanism with
different values of Lmax

FOS can further accelerate GOMEA.

5. EXPERIMENTS

5.1 Benchmark Problem
Figure 2 shows the topology of the network that we used

for benchmarking. The network is based on a real MV dis-
tribution grid containing 31 nodes and 59 branches: 30 cur-
rently existing active cable connections, 2 existing reserve
cable connections (NOPs) on the 9-10 and 19-20 branches,
and 27 potential connections branching out from the sub-
station at node 1. The DNO has to make reinforcement
decisions on these 59 cable connections. Note that network
stations at nodes 3, 4, 5, 17, 19, 20, 29 and 31 are connected
with distributed generation facilities. To evaluate an expan-
sion plan for such an electricity grid with DGs, we need to
verify the feasibility of that plan against the 2 situations that
can cause the heaviest power flows on the grid as follows.

• Dominance of load: 100% peak load occurs at all nodes
and all DG facilities are turned off.

• Dominance of DG: All DG facilities are turned on and
operate at their full 100% generation capacity while
the demand at all nodes are only 25% of the peak load.

Details about the peak loads, generation capacities of DGs,
and electric cables can be found in the Appendix. Here, we
consider a planning horizon of T = 30 years.
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Figure 3: Performance of GA and GOMEA on solving
DNEP, averaged over 30 independent runs. Vertical axis:
Total cost (in EUR). Horizontal axis: Number of fitness
evaluations (left) and Population size (right).

5.2 Results & Discussion

5.2.1 Random Initialization

Figure 3 compares the performance of the classical GA
and GOMEA on solving a DNEP problem instance with
random initialization. GOMEA clearly outperforms GA in
terms of obtaining solutions of better quality using fewer net-
work evaluations. It should be noted that GOMEA reaches
near-optimal results and that although the GA seems to
overtake GOMEA for even larger population sizes, this will
not be the case. This will also be corroborated by results
further-on in this paper. The classical GA requires much
larger population sizes and longer computation time until
convergence toward solutions whose fitness values are close
to those found by GOMEA. The fact that the standard de-
viations of the results found by GOMEA are smaller than
those of GA indicate the better reliability of GOMEA com-
pared to GA. We thus propose that it can be beneficial to
employ state-of-the-art EAs, which involve linkage learning,
to solve industrial optimization problems rather than just re-
lying on traditional EAs available in computation software.

5.2.2 Restricted Initialization

Figure 4 shows the performance of the classical GA and
GOMEA on solving a DNEP problem instance with the
restricted initialization mentioned in Section 4.1. We per-
formed experiments for k = 2, 4, 8, 16 (the number of posi-
tions that a candidate solution can different in from the cur-
rently existing network). First, it can be seen that restricted
initialization greatly reduces the diversity of the population,
causing both optimizers GA and GOMEA to quickly con-
verge. With a large enough population size (i.e. > 16), op-
timizers with restricted initialization can obtain solutions
of better quality and using fewer fitness evaluations than
when the same optimizers of similar population sizes are
initialized randomly. Note that using too small population
sizes (i.e. ≤ 16) may lead the optimizers to infeasible solu-
tions, which can not be seen from the results in the graph.
The bottom left graph in Figure 4 indicates that the best
found solution is still the one obtained by GOMEA with ran-
dom initialization that required longer computation time.
Lastly, we concede that under the effect of restricted ini-
tialization GOMEA does not have any advantages over the
classical GA for the tested network. This is likely because
the number of meaningful mixing events is significantly lim-
ited with restricted initialization. While the optimum con-
sisting of only a few incremental changes is not hard to
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Figure 4: Performance of GA and GOMEA on solving
DNEP with restricted initialization. Vertical axis: Total
cost (in EUR). Horizontal axis: Number of fitness evalua-
tions (left) and Population size(right).

find from the initial population, many more different mixing
events, which are now largely superfluous, are attempted by
GOMEA by traversing the whole linkage tree. Furthermore,
solutions found by GOMEA and GA are of similar quality
but GOMEA takes more fitness evaluations until the whole
population converges. Note that the difficulty of a DNEP
problem instance may be strongly related to not only the
network size but also the required level of network changes
needed to obtain the optimum. In this paper, our bench-
mark network contains 59 decision variables (i.e. cable con-
nections) but only a small number of reinforcements (in this
case, 5) are needed to transform the existing grid into the op-
timum. In related work [6], we reduced the search space by
employing electricity expert knowledge, and obtained sim-
ilar results, indicating that the initial population might be
quite close to the optimum for this benchmark network.

5.2.3 Restricted Initialization & Linkage Filtering

Figure 5 shows the performance of GOMEA when com-
bined with restricted initialization and linkage filtering as
mentioned in Section 4. Table 1 shows an example result of
GOMEA with restricted initialization of 16 different com-
ponents, when coupled with linkage filtering for Lmax

FOS = 16,
i.e. removing linkage groups containing more than 16 vari-
ables out of the LT. Our simple linkage filtering slightly im-
proves the quality of the obtained solutions. Different values

Table 1: Performance of GOMEA when coupled the re-
stricted initialization of 16-different components and filter-
ing of linkage groups with Lmax

FOS = 16
INIT 16 INIT 16-MAX 16

Pop.Size Objective #Evaluations Objective #Evaluations
2 367624.54 35.13 355677.71 38.4
4 255586.89 196.5 253368.71 253.06
8 230316.22 445.6 223857.87 738.9

16 212774.28 971.13 200677.04 1646.86
32 203419.42 2172.5 194684.77 3543.93
64 193616.43 4820.43 189295.7 7536.06

128 190555.51 10202.93 184798.1 15573.33
256 187123.88 22471.76 183858.28 32145.13
512 184270.65 47435.8 182483.36 63931.13

1024 182506.32 104579.1 182097.35 116233.86
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Figure 5: Performance of GOMEA in solving DNEP with re-
stricted initialization and linkage filtering. Vert. axis: Total
cost (in EUR). Horiz. axis: Number of fitness evaluations.

(2, 4, 8 or 16) of the linkage filtering threshold Lmax
FOS do not

result in significant differences. However, from closer ob-
servation it appears that the larger Lmax

FOS is, the better the
obtained solutions are. Figure 5 shows that although link-
age filtering with threshold Lmax

FOS improves GOMEA with
restricted initialization, it is still not enough to accelerate
GOMEA to outperform the restrictedly initialized classical
GA. We emphasize that the better performance of GA here
might be very specific to this benchmark network, where
the required level of changes is very small compared to the
total number of decision variables, and restricted initializa-
tion simply generates the initial population very close to
the optimal solution. Therefore, future works are required
to consider more complicated benchmarks with higher level
of necessary changes to give a more accurate answer on the
scalability of GA and GOMEA on the DNEP problem.

6. CONCLUSIONS
Wemeasured the performance of the two population-based

optimization algorithms: a classical GA, and a variant of
a state-of-the-art linkage-learning EA, GOMEA, on solving
the DNEP problem. Without problem-specific assumptions,
starting from randomly generated populations, GOMEA was
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found to outperform GA. Considering DNEP common prac-
tice, we then used a restricted-initialization mechanism to
reduce the size of the explorable search space and to likely
have the initial population close to the optimum. With re-
stricted initialization, GA was found to outperform GOMEA.
Aiming to accelerate GOMEA, we then introduced a simple
linkage filter that disregards overly large linkage groups. Al-
though accelerations are indeed observed, this simple linkage
filtering is still not enough for GOMEA outperform the sim-
ple GA in terms of number of evaluations until convergence
when solving a specific DNEP problem instance. We con-
clude that for easy problem instances, where the optimum
is close to the initial population, it is more beneficial to use
the simple GA. However, in general cases, as shown in ex-
periments with random initialization, GOMEA is found to
be the better optimizer. To study the scalability of GA and
GOMEA on the DNEP problem, future works also need to
consider realistic, tunable and scalable distribution-network
benchmarks that are more meshed and more complex.
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Practice-oriented optimization of distribution network
planning using metaheuristic algorithms. In 18th Power
Systems Computation Conference (PSCC’14), Wroclaw,
Poland, 2014 (submitted).

[7] G. Harik, E. Cantú-Paz, D. E. Goldberg, and B. L. Miller.
The gambler’s ruin problem, genetic algorithms, and the
sizing of populations. Evol. Comp., 7:231–253, 1999.

[8] N. H. Luong, M. O. W. Grond, P. A. N. Bosman, and
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APPENDIX
Cable Parameters

ID R [Ω/km] X [Ω/km] C [µF/km]
1 0.257 0.085 0.38
2 0.20858 0.09592 0.3833
3 0.13517 0.10823 0.43443
4 0.08077 0.09972 0.5344
5 0.0511 0.09272 0.64103

Node Information
Node Load DG
[#] P [kW] Q [kVAR] P [kW] Q [kVAR]
1 0 0
2 35 17
3 1113 539 -1960 -398
4 348 216 -980 -199
5 871 286 -1960 398
6 332 109
7 132 82
8 170 82
9 22 14
10 202 98
11 120 0
12 88 55
13 284 137
14 219 136
15 314 152
16 185 90
17 127 79 -980 -199
18 17 8
19 896 434 -1960 -398
20 314 152
21 125 77
22 248 120
23 85 41
24 123 76
25 209 130
26 566 274 -1960 -398
27 266 129
28 126 61
29 360 174 -980 -199
30 273 169
31 263 163 -980 -199

Cable Distances
Existing Estimated

Branch [#] Distance [m] Branch [#] Distance [m]
1-2 481 1-3 676
1-16 246 1-4 621
1-31 761 1-5 1199
2-3 96 1-6 1306
3-4 48 1-7 980
4-5 498 1-8 1465
5-6 86 1-9 1551
6-7 288 1-10 2135
7-8 935 1-11 2121
8-9 200 1-12 2121
9-10 470 1-13 1635
10-11 851 1-14 1386
11-12 220 1-15 1144
12-13 300 1-17 2218
13-14 284 1-18 2163
14-15 479 1-19 1988
15-16 846 1-20 2003
10-17 736 1-21 1751
17-18 101 1-22 1622
18-19 154 1-23 1720
19-20 283 1-24 1648
20-21 308 1-25 1535
21-22 133 1-26 1451
22-23 132 1-27 1348
23-24 138 1-28 1315
24-25 140 1-29 1057
25-26 103 1-30 1124
26-27 215
27-28 129
28-29 218
29-30 136
30-13 160
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