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ABSTRACT 
Reducing power consumption in LTE networks has become an 
important issue for mobile network operators. The 3GPP 
organization has included such operation as one of SON (Self-
Organizing Networks) functions [1][2]. Using the approach 
presented in this paper the decision about turning Radio Access 
Network (RAN) nodes off and on, according to the network load 
(which is typically low at night), is taken into account. The 
process is controlled using a combination of Fuzzy Logic and Q-
Learning techniques (FQL). The effectiveness of the proposed 
approach has been evaluated using the LTE-Sim simulator with 
some extensions. The simulations are very close to real network 
implementation: we used the RAN node parameters that are 
defined by 3GPP and simulations take into account the network 
behaviour in the micro time scale.  

General Terms 
Algorithms, Network Management, Measurements, Performance, 
Design, Experimentation, Theory. 

Keywords 
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1. INTRODUCTION 
The new generations of mobile systems offer high bitrate streams 
to end users. In order to cope with such high traffic demands, the 
relatively small size of cells in latest mobile systems (LTE) is 
used, and as the consequence, the number of users per cell is 
limited.  Small cell size causes the increased number of cells in 
certain area of operator network, typically in cities. The increased 
number of cells makes cells deployment and operation 
troublesome and increases the overall power consumption by 
RAN. In order to cope with the problem of RAN management and 
having in mind that human-centric management is slow and error 
prone, a Self-Organizing Networks concept has been developed 
[3]. This concept enables automation of certain RAN management 
functions including handover, coverage optimization, load 
balancing, etc. One of the SON functions, the Energy Efficient  
RAN (EE RAN), seamlessly turns off some radio nodes 
(eNodeBs), sector’s carriers or node’s internal blocks in order to 
reduce power consumption when the network load is low 
(typically at night). In fact the radio network is dimensioned to 

cope with peak traffic hours whereas it can be under-utilized in 
off-peak traffic time. Switching a cell (or cell sectors) off is 
possible if network load is low and the neighbouring cells can 
compensate the coverage. In case of the traffic growth the 
switched-off cell has to be dynamically switched on.  

A holistic approach to energy savings in RAN done by 3GPP is 
described in [1]. In this technical report, a case study based on 
different scenarios is made. Some possible solutions, which 
depend on the given RAN topology, are also proposed in the 
report. The document does not describe how the EE RAN 
mechanisms should be implemented. Typically it is assumed that 
for each RAN node the decision of switching off some cells can 
be driven by a pre-programmed policy, which takes into account 
time of day (week) and network traffic patterns. Such simple 
approach can lead to the degradation of offered services or to low 
efficiency of the EE RAN mechanism. There is no doubt that the 
mechanism based on real traffic measurements with appropriate 
decision algorithm will be much more effective.  In this paper, we 
propose to use a cognitive algorithm for EE RAN. We described 
the usage of an algorithm for Inter-eNodeB energy saving 
scenario of [1]. This scenario is based on the so-called capacity 
limited network, which is homogeneous (composed of a group of 
cells with similar size) that is presented in Figure 1.  For the sake 
of simplicity we will consider eNodeBs with omnidirectional 
antennas moreover only switching off of the whole node 
(eNodeB) is taken into account. 

 

Figure 1. Inter-eNodeB energy saving use case [1] 

The usage of machine learning technique automates the EE 
process and minimizes the degradation of offered services when 
the network will learn its proper behaviour. There are two 
situations when the cognitive approach can be applied in EE 
RAN. The first one is a prediction of the time when a cell can go 
to the dormant mode. The second one is appropriate prediction 
when the dormant cell has to be waked-up. If this procedure starts 
too early the cell will be forced again to go into the sleep state. If 
the cell will wake-up too late, the serious network degradation 
will be perceived by the users. The improper behaviour of the 
algorithm that is responsible for the decision will result in higher 
power consumption and increased signalling load – in some cases 
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degraded QoS can be observed as well. The switching events 
should happen not more often than several times per hour and this 
means that the switch off process does not have to be fast. On the 
other hand, in case of high mobility of users, the switching-on 
phase has to be fast. 

The EE process is composed of four phases. Phase 1 lies in a 
continuous monitoring by each eNodeB to check if it is a 
candidate for switching off – potentially a preliminary decision 
about switching off a cell can be taken. During cell monitoring the 
number of active users, the cell load, time of day and other 
parameters related to cell activity are collected. The decision on-
to-off is based on a cognitive algorithm. Phase 2 is related to the 
execution of the decision about switching off a cell by appropriate 
compensation of radio coverage by the neighbouring cells. Phase 
3 is related to the monitoring of the load in the area that is 
compensated by the surrounding cells in order to detect a need for 
switching on of the sleeping cell. The set of monitored parameters 
related to cell activity is the same as in Phase 1. The decision 
about switching a cell on is taken by the cognitive algorithm 
likewise in Phase 1. Phase 4 concerns of restoration of the normal 
state of the network, i.e. turning-on the sleeping cells and does not 
require cognitive techniques. In our approach we used a 
combination of the well-known Fuzzy Logic and Q-Learning 
technique (FQL) to take the decision in Phases 1 and 3. 

The paper is structured as follows: in section 2, the four Phases of 
the EE approach are explained in more detail, though the 
description of cognitive part of the process (i.e. phases 1 and 3) is 
left for the section 3. In section 4 the effectiveness of the approach 
is evaluated and realistic simulation results are presented. Finally, 
section 5 concludes the paper and suggests some further work for 
the improvement of proposed approach. 

2. THE EE PROCESS 
For switching the radio stations off and on we use two 
independent instances of the reinforcement learning (RL) 
technique combined with Fuzzy Logic in order to cope with 
continuous input parameters space. RL learns how to act given 
monitoring information regarding the environment. The 
parameters that are collected from each eNodeB as the input of 
the algorithm for all four phases of EE mechanism are presented 
in Table 1. In this table NAU is the number of active users [4]; the 
AVGTHR parameter defines the sum of each user’s average 
throughput (downlink) and is normalized and cell’s load history 
(LoadHist) is the aggregated load of eNodeB for the whole day. 
In our EE RAN implementation a cell can be in three states [2]: 
NORMAL, SLEEP and COMPENSATE. When a cell has the 
state flag equal to NORMAL, it means that this cell is not 
participating in any energy saving process. The SLEEP mode 
indicates that the cell is turned off or restricted in physical 
resource usage. Finally, when the cell is in COMPENSATE mode 
it means that it has modified power transmission in order to 
provide coverage in the vicinity of the turned off cell. In our case 
study, QoS (Quality of Service) refers to the network performance 
parameters: Handover Failure (HF), Packet Loss Ratio (PLR) and 
Averaged Packet Delay (PDL). Handover procedure is defined in 
[5]. When too low received signal level is detected by the user 
equipment (UE) during the handover execution or due to the lack 
of resource at the target cell to which UE is handed over the 
handover failure happens. PDL parameter determines the packet 
delay in the downlink channel averaged during time period T, 
which is usually defined by the equipment vendor [4]. PLR is the 
number of dropped downlink packets ratio to all transmitted 
packets [4]. The Radio Link Failure (RLF) happens when the 

terminal detects radio link problems – a broken transmission [6]. 
Users’ RxLev list is a list of measured RSRP level per each cell. 
Cell’s RSRP is defined as the linear average over the power 
contributions (in Watts) of the resource elements that carry cell-
specific reference signals within the considered measurement 
frequency bandwidth. Moreover, the following data has to be 
provided for proper operation of the proposed approach: RAN 
network topology with list of neighbors, transmitted power 
defaults for all RAN nodes and parameters reporting period. 

Table 1. Network monitoring and configuration parameters 
used 

Parameter Phase Acronym 

The number of 
active users 

1, 3 NAU 

Cell load 
expressed in 

average 
throughput 

1, 3 AVGTHR 

Time of day and 
load history 

1, 3 [Time, LoadHist] 

Cell mode 
(NORMAL, 

SLEEP, 
COMPENSATE) 
with timer of the 

state 

1, 3 
[StateTimer(min), 

StateFlag] 

Cell QoS vector: 
[HF, PLR, PDL] 

2, 3, 4 [HF, PLR, PDL] 

Radio Link 
Failure 

2, 4 RLF 

Users’ RxLev 
(RSRP) list. 

2, 4 UERxLevList 

Transmission 
Power 

2, 4 TxPower 

 

2.1 Phase 1: Normal state 
In this phase each eNodeB collects monitoring data and sends 
periodically the processed and averaged reports to the node that 
executes the EE algorithm. According to monitoring data, 
configuration parameters (network topology), policy parameters 
(network operator preferences) and history of previous decision 
the algorithm takes the new decision. The decision is binary and 
indicates a cell that should be switched off. It also indicates which 
cells should take part in the cell compensation procedure. The 
decision about switching off the cell is taken using a model-free 
RL (Q-Learning). The results can be positive only if all the 
neighbouring cells are in normal (non-compensating) state. In 
case when the interval time between switching a cell off and on is 
under a defined threshold the previous decision is seen as a 
failure.  

2.2 Phase 2: Switching-off a cell 
The phase is related to the execution of the decision about 
switching a cell off by appropriate compensation of radio 
coverage by the neighbouring cells. The process is relatively 
simple but has to be smooth, i.e. switching the base station off has 
to be preceded by proper increase of coverage of active stations. 
The quality of the process is evaluated by pathological network 
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behaviour during the transition (radio link failure ratio increase, 
interference level increase, etc.). In the proposed approach, in 
order to obtain the proper compensation, a special network pilot 
terminal (a kind of a mobile phone) is collocated with each 
eNodeB. Its role is to monitor the level of the neighbouring cells 
signals when the cell is switched off – it helps in proper cell 
compensation. This terminal is useful in the case when there are 
no real users under the coverage of compensated area.  

The switching-off operation and the consequent coverage 
compensation is based on a multistep procedure described below. 

2.2.1 First step 
This step is composed of a modification of cell state flags of the 
compensating cells, (i.e. NORMAL to COMPENSATE) and 
gradual modification of maximum power transmission of EE 
compensating cells and EE candidate cell. This phase can actually 
be divided into several sub-steps. Each sub-step determines a new 
value of the transmitted power (TxPower) for cells involved in the 
EE procedure. This procedure ensures a gradual change of the 
topology and thus the users should not perceive any decrease of 
their QoS. Number of sub-steps to apply depends on delivered 
QoS in terms of radio link failures (RLF), handover failures (HF) 
and the received signal level (RxLev) of users in the area of the 
dormant cell candidate as well as of the cell’s pilot terminal. The 
first step will finish as soon as the number of users under the EE 
candidate cell will be equal to zero. It is important to note that a 
new sub-step is performed as soon as new monitoring information 
is received, which is determined by the network monitoring 
reports collection frequency. 

2.2.2 Second step 
Once the number of users attached to EE candidate cell is equal to 
zero, and the RxLev list of pilot terminals reflects normal RSRP 
levels from compensation cells, the state flag is set to SLEEP and 
the neighbouring cell list of surrounding cells of EE candidate cell 
must be updated in order to avoid conflicts in next handover (HO) 
procedures. In case of reaching this step and RSRP list of pilot 
terminal reflects power levels below the minimum required, the 
transmission power of these cells is increased by the difference of 
this level and the current RSRP level. 

2.2.3 Third step 
The EE candidate is switched off. Here two options are 
considered. First one, the whole eNodeB is turned off or moved to 
the standby mode. Second option is just the result of reducing the 
transmitted power to zero. This will force all the UEs to handover 
to neighbouring cells. In consequence the power consumed by the 
eNodeB’s radio unit will be zero. 

2.3 Phase 3: Sleeping state monitoring 
This phase is related to the monitoring of the area that is 
compensated in order to detect a need for switching on of the 
sleeping cell. All cells that are compensating cells of the sleeping 
cell are monitored. The set of monitored parameters is the same as 
in Phase 1. The decision about switching a cell on uses cognitive 
techniques, the same algorithmic technique as used in Phase 1. 
Improper behaviour of the algorithm will lead to subsequent 
turning off the station recently turned on, i.e. the EE ping-pong 
effect will occur. Another measure of the success is a non-
degraded QoS offered to users in the compensated area. In the 
case, when the interval time between switching off and on is 
under a defined threshold, the previous decision is seen as a 
failure. 

2.4 Phase 4: Normal state restoration 
The parameters of the switched on cells, TxPower and 
neighbouring cell list as well as their flags to NORMAL are 
restored. However, similarly to Phase 2, a gradual decrease of 
compensate cells’ TxPower parameter is necessary as well as a 
gradual increase of TxPower parameter of the switched off cell. 
The process is non-cognitive one. 

3. THE ALGORITHM 
3.1 Q-Learning and Fuzzy Logic 
We used Reinforcement Learning (RL) algorithm for the 
switching on/off of an eNodeB. From many available RL variants 
we have chosen the Q-learning approach due to its simplicity and 
its proven convergence [7]. In Q-learning, an agent (i.e. in our 
case the EE RAN agent) switches from one state to another by 
performing an action. At each state transition a reward is received 
which measures the quality of the action taken. The goal of the 
algorithm is to find the best action for each state St while 
maximizing the long-term reward. In order to achieve this, Q-
learning keeps a q-value for each state-action pair. This q-value is 
also known as the estimation of the real-valued function Q(S,a). 
This value function estimates the expected cumulative discounted 
reward of performing an action being in the state S and then 
following the optimal policy. At each state, the estimated q-value 
is updated using the formula: 

  ܳ௧ାଵሺݏ௧, ܽ௧ሻ ՚ ܳ௧ሺݏ௧, ܽ௧ሻ  
௧ାଵݎൣߙ  ,௧ାଵݏܳ௧ሺ|ݔܽܯߛ ܽሻ െ ܳ௧ሺݏ௧, ܽ௧ሻ൧  (1)  

where ߙ א ሾ0,1ሿ is the learning rate that defines by how much the 
new value is updated for the current state-action pair. It, therefore, 
determines the learning speed of the agent. ߛ א ሾ0,1ሿ is the 
discount factor and it influences how much the agent considers the 
immediate reward. The closer ߛ is to 1 the more it looks after the 
future payoffs. The reward ݎ௧ାଵ measures the quality of the action 
taken in a certain state (St) and it is calculated when the agent 
arrives to the next state (St+1). 

In a discrete state space environment the state and action spaces 
are counted and each of them keeps a q value in a so called lookup 
table. This becomes very complex and impractical when these 
spaces are continuous. For this reason, the Fuzzy Logic [8] is 
applied to discretize the continuous input values. To keep the 
algorithm simple we use only three input parameters to define the 
cell load state S: number of active users (NAU), cell’s averaged 
throughput (AVGTRGHP) and cell’s load history (see Table 1).  

 

S ൌ  ሾNAU, AVGTHR, LoadHistሿ (2) 

As mentioned before, in order to discretize the continuous space 
of the input variables, the data obtained from eNodeBs are 
fuzzified. For the fuzzification, a finite number of fuzzy labels 
were defined over the domain of each input variables. For the 
input vector, each variable will have three fuzzy labels (Low, 
Medium and High). A membership function that maps the same 
input values to a degree of truth value in the real range from 0 to 1 
is assigned to each label. In this case the triangular (Medium 
Label) and the trapezoidal (Low and High Labels) membership 
function have been used with overlapping areas so that the sum of 
the membership functions at any point of the input space will be 
equal to 1. 
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௫ି
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, ܽ  ݔ  ܾ

0, ݔ  ܾ

  (3) 
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۔
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ۓ

0, ݔ ൏ ܽ
௫ି

ି
, ܽ  ݔ  ܾ

௫ି

ି
, ܾ ൏ ݔ  ܿ

0, ݔ  ܿ

    (4) 

ሻݔுூீுሺߤ   ൌ ቐ

1, ݔ ൏ ܽ
௫ି

ି
, ܽ  ݔ  ܾ

1, ݔ  ܿ

 (5) 

 

3.2 Selecting the candidate cell 
All the parameters used by the algorithm are defined in Table 1. 
In order to get the best candidate cell to switch-off (Phase 1) we 
apply the input [NAU, AVGTHR] of each cell in a particular cell 
cluster to a Fuzzy Rule-Based System [9] to get a value on the 
output parameter., the Quality of Candidate, QoC. Likewise for 
the cell load related parameters, in this fuzzy system output 
parameter we have three fuzzy labels: Low, Medium and High. 
Each label is also assigned to a membership function (eq. 3-5) that 
maps the same input values to a degree of truth value in the real 
range from 0 to 1. The Table 2 consists the conjunctive rules of 
inference based on the observations of the network.  

Table 2. Fuzzy System Rules  

Input Output 

NAU AVGTHR QoC 

L L H 

L M H 

L H M 

M L M 

M M L 

M H L 

H L L 

H M L 

H H L 

 

We use the well-known max-min Mandami implication method of 
inference [8], which is denoted as follows: 

ሻܥொሺܳߤ ൌ     (6) 

max


൛݉݅݊ൣߤேೖሺܷܰܣሻ,  ሻ൧ൟܴܪܶܩܸܣீ்ுோೖሺߤ

The result of this method is a fuzzy set so that it is yet to be 
calculated a final QoC discrete value. This process is known as 
defuzzification and in our case the so-called centre of gravity 
procedure has been applied [8]. 

3.3 Decision making: FQL 
As mentioned before the output action is binary {0;1}. We assign 
the value 1 to the action of switching off and 0 for the action of 
switching on. When the cell is already switched on, the action 0 
then means to keep the cell in the same operating state (Phase 1), 
i.e. the “do-nothing” action. Similarly, if the cell is switched off, 
the action 1 refers to the “do-nothing” action as well. In FQL, 
states and actions are defined using fuzzy membership functions. 

The continuous state variables are first transformed into a finite 
number of fuzzy variable membership functions. This process is 
called fuzzification. From these fuzzy variables, the 
corresponding output is calculated based on the Fuzzy Inference 
System (FIS). Finally the fuzzy output of the FIS is mapped back 
to the continuous output variable through the process of 
defuzzification. In general, the rule based on FIS consists of 
arbitrary number of different rules constructed out of AND and 
OR operators. A FIS has a rule based consisting of N rules, and 
the input vector X has n elements representing the input space. It 
typically expresses an inference as a conclusion (consequent) [9]. 
In our particular case we have three input variables [NAU, 
AVGTHR, LoadHist (time of day)] (see Table 1) with three 
possible labels for each one (Lא[L,M,H]) and two consequents 
denoted by Op. Hence, the total number of rules is 27. Each of 
these rules has the following form: 

 ݂݅  :݅ ݈݁ݑܴ
NAU

AVGTHR
LoadHist

൩ ൌ

 
ଵܮ



ଶܮ


ଷܮ


 ൣ݄݊݁ݐ  ܱ൧ ݅ݏ ൜
௩௨ݍ ݄ݐ݅ݓ 0 ൌ ଵݍ
௩௨ݍ ݄ݐ݅ݓ 1 ൌ ଶݍ

     (7) 

As mentioned above, for each rule, Op represents the action to be 
taken, and in each rule we will have 2 q-values for each action. At 
the beginning, all q-values will be initiated to 0. Its value will be 
updated after the action taken and the reward computed.  

 
 

Figure 2. EE RAN Fuzzy Inference (based) system 

The general structure of the developed fuzzy inference system 
(see Figure 2) consists of three conceptual blocks or components: 
a rule base, which contains a selection of fuzzy rules; a dictionary, 
which defines the membership functions used in the fuzzy rules; 
and a reasoning mechanism, which performs the inference 
procedure upon the rules and given facts to derive a reasonable 
output or conclusion. However, sometimes it is necessary to have 
a crisp output. In such a case the reasoning mechanism has to 
include the defuzzification mechanism to extract a crisp value that 
represents the output fuzzy set in the best way. In our case, the 
entire space of rule will be 27 for all the possibilities state input 
vector. Moreover, each input will have maximum two values of 
membership function (L&M or M&H). As a result, the maximum 
number of activated rules (with result different than zero) will be 
8 for a particular input vector. Therefore, we will have 8 output 
values which will be fed to the defuzzification component in order 
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to get a crisp value indicating the action to be taken. All q values, 
which are associated to a rule and action pair, are kept in a table in 
the following form: 

Table 3.  The Q-Learning table template 

Rule 
Output Action 

Op 
q-value 

R1 
1 v11 

0 v12 

R2 
1 v21 

0 v22 

R3 
1 v31 

0 v32 

… … … 

The Q table represents the memory of what the agent have learned 
through many experiences. Since Phase 1 and Phase 3 have 
independent FQL instances, each phase will have its own Q 
matrix with its own rules. Consequently we use two different 
rewards as well: RWph1 (8) and RWph3 (9) for the phases. In both 
cases we use a continuous reward function based on progress 
estimators. Progress estimators provide a measure of improvement 
towards an objective [9]. Moreover, the Gaussian function in both 
of them has been used in order to accelerate the learning process 
[10]. In order to update the q-value associated to the action 
chosen, the reward should be computed taking into consideration 
the action taken by the agent (Op). Therefore, the reward functions 
for both Q-Learning instances are defined as follows: 

ܴ ܹଵሺܱሻ ൌ

ە
۔

ۓ
1 െ 2 · ݁

ି.ହכ
൫ೈכೂೄభ൯

మ

భ
మ

, ܱ ൌ ଵܱ

2 · ݁
ି.ହכ

൫ೈכೂೄభ൯
మ

భ
మ

െ 1, ܱ ൌ ܱଶ

 (8) 

ܴ ܹଷሺܱሻ ൌ ൞
1 െ ݁

ି.ହכ
ೂೄయ

మ

య
మ

, ܱ ൌ ଵܱ

݁
ି.ହכ

ೂೄయ
మ

య
మ

, ܱ ൌ ܱଶ

  (9) 

ܵܳ ൌ ுிݓ כ ܨܪ  ோݓ כ ܴܮܲ  ݓ כ  (10)  ܮܦܲ

For both cases we have introduced the term QoS אR+ (10). This 
term gathers all the Key Performance Indicators (KPIs) that 
symbolize the network’s performance degradation: handover 
failure (HF), packet lost ratio (PLR) and averaged packet delay 
(PDL). The agent may switch off/on an eNodeB when the cell is 
under a load peak. In consequence, a global degradation of these 
KPIs is expected. QoS1 aggregates these KPIs during the Phase 2 
and Phase 3, and QoS3 aggregates these KPIs during the Phase 3 
and Phase 4. For the reward ܴ ܹଵ the maximum and minimum 
value are 1 and -1 respectively (i.e. ܴ ܹଵ א  ሾെ1,1ሿ). When 
-QoS1 approaches 0, this reward will be closer to 1 for the switch
off action (O2) and it will be near -1 for the switch-on action (O1). 
On the other hand, when QoS1 is high, the switch-off action is 
punished with a reward close to -1 and with a value close to 1 for 
the switch-on action. As for the reward RWph3 the maximum and 
minimum value are 1 and 0 respectively (i.e. ݎ௧ାଵ א ሾ0,1ሿ). When 
 QoS3 increases, for those active rules with action equal to O1 and
O2, the value of RWph3 will approach to 1 and 0 respectively. In 

the same way, when QoS3 decreases, for those active rules with 
action equal to O1 and O2, the value of RWph3 will approach to 0 
and 1 respectively. In equations (8) and (9), parameter σ 
determines the reward gradient influence area. The lower σ is the 
more sensitive the reward will be against an increase of QoS. 
This parameter has been object of study during the algorithm’s 
simulation phase since it has a big impact on its performance and 
convergence speed. The time window in which the reward of 
Phase 1 can punish the action of switching a cell off must be 
limited since the second FQL instance is the responsible to re-
establish the normal state in case of any network performance 
degradation. Therefore, in equation (8), it has been added the 
coefficient ܹ௧ to the ܳ ଵܵ, which represents the QoS 
degradation impact factor for reward of phase 1 when a cell is 
turned off. This is shown in the following equation: 

ܹ௧൫ݐ௦൯ ൌ 1 െ
ଵ

ଵାషరכሺೞషೃೈሻ (11) 

The above function is the scale function with the transition from 1 
to 0 at the cell sleep time (ݐ௦) equal to ܴܹ݅݉݁݉݅ܶ. 
Therefore ܴܹ݅݉݁݉݅ܶ represents the impact time of QoS 
against the reward of Phase 1. In other words, this means that at 
any sleep time after ܴܹ݅݉݁݉݅ܶ the value of this factor is 0 and 
in consequence value of QoS will be irrelevant for the final 
reward, whose value will be 1 (from that time on) for the switch-
off action and 0 for the switch-on action. 

The first step of the FQL algorithm is to evaluate the current state 
of the network. A set of new values for the input variables will be 
provided and the degree of truth of each FIS rule i will be 
computed. The degree of true is the product of membership values 
of each input state label (L) for the specific rule i: 

 

       ݐݑ݊ܫ ݄݉ݐ݅ݎ݈݃ܣ
ܷܣܰ

ܴܪܶܩܸܣ
LoadHist

൩ ൌ ቈ
ݔ
ݕ
ݖ

 

ሺ݅ሻߙ ൌ ߤ
భሺݔሻ כ ߤ

మሺݕሻ כ ߤ
యሺݖሻ    (12) 

The output action for each activated rule is denoted by Op , and it 
can take only two possible values: 0 or 1. The way in which one 
of the actions is selected depends on whether the agent is on the 
learning stage (exploration stage) or exploitation stage. The 
exploration/exploitation policy (EEP) followed to decide which 
action to take is described via the equation (13). Where ε is the 
tradeoff between exploration and exploitation. In the exploitation 
phase (i.e. ε = 1), the agent has achieved the global optimal 
behaviour; thus the output chosen is the one with maximum q-
value out of the two present the Q-Learning table.  

 ൌ ቊ
argmaxఢ ,ܮ൫ݍ 

൯ , ߝ ݕݐ݈ܾܾ݅݅ܽݎ ݄ݐ݅ݓ

random 
 , 1 ݕݐ݈ܾܾ݅݅ܽݎ ݄ݐ݅ݓ െ ߝ

 (13) 

If ߙ is the degree of truth for each rule and P is the total number of 
activated rules, the final action will be:  

ܽሺݏሻ ൌ ∑ ሺ݅ሻߙ כ ܱሺܮሻఢ   (14) 

where i is the number of active rule. The final action given here 
belongs to the continuous space with minimum value 0 and 
maximum 1, i.e. [0,1]. However, a final decision (whether to 
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switch a cell off or on) is yet missing. To solve this, we have 
introduced a rule based on a variable threshold (η), that is: 

ܽ ൌ  ൜
1 ݂݅ ܽሺݏሻ  ߟ 

0 ݂݅ ܽሺݏሻ  ߟ 
 (15) 

Therefore, the action to be applied depends on the final action 
value ܽሺݏሻ, where η shows the strictness of the current condition 
given (in terms of cell load) that will allow the switching-off/on of 
a cell. Likewise σ, the value to assign to η has been a topic of 
study during the simulation phase of the algorithm. 

After applying the final action, the agent moves to the next state 
 ௧ାଵ and the reward will be calculated. Then the next step is toݏ
update those elements of Q-Learning table whose pair rule-action 
coincide with those activated rules ܮ and its corresponding action 
chosen ܱ. This is done as showed with the following equation: 

,ܮ௧ାଵ൫ݍ ܱ൯ ՚ ,ܮ௧൫ݍ ܱ൯  ߚ כ ௧ሻݏሺߙ כ ∆ܳ (16) 

First of all, before the agent applies the action, the q-value for the 
current state ݏ௧  must be calculated as follows: 

ܳ൫ݏ௧, ܽሺݏ௧ሻ൯ ൌ ∑ ௧ሻݏሺߙ ఢೞכ
,ܮሺݍ ܱሻ (17) 

Where ௦ܲ is the set of activated rules and ݍ൫ܮ, ܱ൯ is the q-value 
for the pair label ܮ and output ܱ, which is taken from the Q-
Learning table. In equation (16) the quantity ∆Q is defined as the 
difference between the old and new value of Q(x,a(x)): 

∆ܳ ൌ ௧ାଵݎ  ߛ ௧ܸሺݏ௧ାଵሻ െ ܳ൫ݏ௧, ܽሺݏ௧ሻ൯  (18) 

In the above equation, ݎ௧ାଵ is the reward computed for the new 
state ݏ௧ାଵ (via monitoring the network status after the action is 
taken) and ௧ܸሺݏ௧ାଵሻ measures the aggregated maximum q-value 
achievable for the new state. The former is calculated following 
equations (8) or (9) and the latter is obtained from the formula 
shown below.  

௧ܸሺݏ௧ାଵሻ ൌ ∑ ௧ାଵሻݏሺߙ ఢೄశభכ
argmax ሼݍ൫ܮ, ܱ൯ሽ     (19) 

Both factors, β and γ, have range value from 0 to 1  (0  ߚ ൏ 1 
and 0  ߛ ൏ 1). β is the learning rate which determines the 
influence of new information on the previous knowledge at the 
moment of taking a decision. The closer β is to 0 means the less 
learning and the closer it is to 1 means the only newest 
information is considered. The closer γ is to 0 the more the agent 
will consider only immediate rewards. If γ is closer to 1, the agent 
considers future reward with grater preference, willing to delay 
the immediate payoff.  

3.4 Exploration and exploitation phases 
The essence of Q-Learning is that the agent learns through 
experience without external supervision. This agent will explore 
from state to state, from transition to transition, until it reaches the 
goal. Each exploration process is known as an episode. In one 
episode the agent will move from initial state to another and so on 
until the goal state. In our case the goal state will be the execution 
of EE without a degradation of delivered QoS. Once the agent 
completes one episode it starts a new one. This exploration phase 
is also known as the training session. The longer the training is, 
the more global optimal way the agent will take the decisions. 
Based on the action taken, each episode includes two possible 
paths per each FQL instance. For the FQL instance of phase 1, 
first path belongs to the whole cycle Phase 1  Phase 2  Phase 
3  Phase 4  Phase 1 (i.e. in time t the agent decides to switch-
off the candidate cell), and second one to the cycle Phase 1  
Phase 1 (i.e. in time t the agent decides to not to switch-off the 

candidate cell). Once the agent finishes the execution of Phase 4, 
the reward (RWph1) is computed, the values of Q-table 1 are 
updated and the agent moves to Phase 1. Similarly to Phase 1, 
when the agent is in phase 3 and its FQL instance is used, the 
episode also includes two possible paths based on the action 
taken: first one belongs to the cycle Phase 3  Phase 3 (i.e. in 
time t the agent decides to not to switch-on the switched-off cell) 
and the second one to the cycle Phase 3  Phase 4  Phase 1 
(i.e. in time t the agent decides to switch-on the switched-off cell). 
In both cases, whenever the agent reaches the Phase 3 or Phase 1 
the reward (RWph3) is computed and the values of Q-table 2 are 
updated. 

In both FQL instances the exploration happens by the selection of 
a lower than 1 value of ε in EEP (eq. 13). The parameter is 
increased exponentially in each iteration. Once ε reaches the value 
of 1 only the exploitation iterations are present.  

4. SIMULATIONS AND DISCUSSION 
For the evaluation of the presented algorithm the LTE-Sim 
simulator has been used [11]. Two main modifications have been 
made in order to facilitate the interaction of our EE RAN agent 
with the simulated network. First one is the enhancement of the 
simulator in order to obtain of the algorithm input parameters, 
such: NAU, State Flag, State Timer and RLF (see Table 1). 
Second one is the implementation of a new traffic and mobility 
patterns. The simulated network’s topology is composed of 7 cells 
with omnidirectional antennas. Each one has a radio range of 400 
meters and 12 mobile terminals when the simulation starts. The 
initial transmission power is set to 23 dBm. Simulations are 
divided by simulation slots, each one representing a typical 
working day (from Monday to Friday). Users’ traffic patterns (TP) 
are deterministic. For each simulation run we have set 7 slots (i.e. 
week). As it is shown in Figure 3 the TP for one slot (second 1-
200) it can be differentiated three parts in terms of traffic load: 
two traffic peaks (90-100%) and one off-traffic peak (0-5%). The 
off-peak traffic represents cell’s activity at night (e.g. 10 pm-6 
am).  

Figure 3. Users’ traffic pattern 

For all simulations VoIP (G.729 codec) and Video traffic models 
with 128Kb download transmission rate have been used. Each 
user receives one VoIP session and one video stream in the 
medium traffic intervals (approx. 0-30 and 170-200 sec.), one 
VoIP session in the off-peak traffic and 2 VoIP and 3 video 
applications at the traffic peak. User’s mobility pattern is 
deterministic: at the peak traffic time, 90% of the users of one cell 
move towards some of its neighbouring cell to stay there until the 
time of the second traffic peak when they move back towards the 
initial position.  
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 In this way, within the simulated topology (see Fig. 1) the cell at 
centre would emulate the business area of a big city which usually 
has no users at night. 

Both Q-learning instances of our algorithm (the EE RAN agents) 
should achieve the convergence not longer than in the first 2-3 
time slots. Thus, the selection of some Q-Learning parameters 
(i.e. from the reward and the real-valued functions) is critical for 
the algorithm’s convergence speed and performance. For this 
reason, the process of tuning of some parameters is necessary. In 
our case, in order to get the optimal learning parameters’ values of 
the algorithm and robust algorithm behaviour the tuning process, 
which lied on changing of mutual importance of QoS parameters 
and learning parameters, has been very long one. The selected 
values of the parameters are shown in Table 4. 

Table 4. Algorithm learning settings 

Algorithm parameter Parameter value 

 learning rate 0.7 :ߚ

 discount factor 0.9 :ߛ

 explotation/exploration :ߝ
trade-off 

50% (beginning of slot 1) 

100% (Slot 2-7) 

WHF 0.4 

WPLR 10.0 

WPDL 10.0 

 

Table 5. Membership function thresholds 

Input a b c 

NAU 4 12 14 

AVGTHR (%) 10 50 80 

QoC 0.5 0.6 0.7 

Additionally, the membership functions described in equations 3-
5 have been implemented using the values presented in Table 5. 
Algorithm performance is checked by the evaluation of the 
following indicators: averaged packet delay (PDL), packet loss 
ratio (PLR), handover failures (HF) and power consumption 

(PWR). Results are provided in form of charts with data changing 
over the simulation time (7 slots of 200 seconds each). In fact, 
four charts are being shown: first one shows the power 
consumption (in W) for the whole network, i.e. 7 cells (see Fig. 
4). In this chart the EE episodes can be seen in form of down steps 
within the Power(t) function. The used power consumption model 
is described in [13]. The second, third and fourth charts (Fig. 5, 6 
and 7) show the network performance via the KPIs: PDL, PLR 
and HOF respectively. These indicators show the network 
performance degradation as a consequence of the action taken by 
the algorithm (switch off/on the cell) when the cell is congested. If 
the algorithm achieves the convergence on its actions in a 
relatively short time, two key results are expected. First one is a 
decrease of switch-off events when the cell is congested while 
prolonging them at the time within the slot when the off-peak 
traffic is given. The second one is a decrease of the delivered QoS 
degradation along the simulation as a consequence of the less and 
less wrong decisions that are being taken.  

 

Figure 5. Averaged packet delay 

Two main observations can be drawn from these charts. First one 
is related to the learning speed and convergence of both Q-
learning instances of our agent. According to the expectations, 
from the third slot the agent achieves the coherence on its 
decisions about the proper time when a cell must enter and leave 
the dormant state. If we compare Fig. 4 and Fig. 3 we can see that 
EE episodes are aligned with the off-peak traffic interval. 
However, it is also noticeable that the Q-learning instance that 
decides about entering the dormant cell has a relatively slower 
learning in comparison to the instance that decides about leaving 
the dormant, whose convergence is achieved from second slot. 
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Figure 6. Packet Loss Ratio 

 
Figure 7. Handover failure 

The second observation is depicted from the charts showing the 
network performance degradation indicators (i.e. Fig. 5-7). Here 
the progressive decrease of these indicators is observed. This is 
because of the reduction of the amount of switch-off actions 
during the peak traffic intervals at the time of agent’s exploration. 

5. CONCLUSIONS 
In the paper a cognitive EE RAN approach based on machine 
learning has been presented. We have successfully applied the 
reinforcement learning to define the proper moments of switching 
off or on the mobile network radio stations.  During simulations 
we have verified the proper behavior of the proposed approach via 
realistic simulations. In fact, the concept can be easily transferred 
to real networks, because it uses the network parameters that are 
used by real radio stations of LTE RAN as defined by 3GPP 
standards. Moreover, our simulations took into account all the 
processes which exist in real network (handovers, users’ mobility, 
etc.). We decided to use the learning algorithm in order to have 
adaptive behavior of the EE RAN procedure and to avoid a design 
of an algorithm by an expert, however we noticed that the 
algorithm require a lot of efforts related to tuning it in order to 
obtain proper and robust behavior of the algorithm. The final 
result is satisfactory, but in real networks the initial learning can 

lead to the perceived by the users degradation of services. In the 
future work we intend to minimize the problem and make more 
simulations with differentiated users’ traffic and behavior. 
Moreover we will use cells with directional antennas. 
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