
Reinforcement Learning Based Energy Efficient LTE RAN
Joan Meseguer Llopis

Orange Polska
Warsaw
Poland

+48 797 318 373
joan.llopis@orange.com

Lukasz Rajewski
Orange Polska

Warsaw
Poland

+48 519 310 854
lukasz.rajewski@orange.com

Slawomir Kuklinski
Orange Polska and Warsaw University

of Technology
Warsaw
Poland

+48 601 213 013
slawomir.kuklinski@orange.com

ABSTRACT
Reducing power consumption in LTE networks has become an
important issue for mobile network operators. The 3GPP
organization has included such operation as one of SON (Self-
Organizing Networks) functions [1][2]. Using the approach
presented in this paper the decision about turning Radio Access
Network (RAN) nodes off and on, according to the network load
(which is typically low at night), is taken into account. The
process is controlled using a combination of Fuzzy Logic and Q-
Learning techniques (FQL). The effectiveness of the proposed
approach has been evaluated using the LTE-Sim simulator with
some extensions. The simulations are very close to real network
implementation: we used the RAN node parameters that are
defined by 3GPP and simulations take into account the network
behaviour in the micro time scale.

General Terms
Algorithms, Network Management, Measurements, Performance,
Design, Experimentation, Theory.

Keywords
Energy savings; LTE; SON; machine learning; reinforcement
learning.

1. INTRODUCTION
The new generations of mobile systems offer high bitrate streams
to end users. In order to cope with such high traffic demands, the
relatively small size of cells in latest mobile systems (LTE) is
used, and as the consequence, the number of users per cell is
limited. Small cell size causes the increased number of cells in
certain area of operator network, typically in cities. The increased
number of cells makes cells deployment and operation
troublesome and increases the overall power consumption by
RAN. In order to cope with the problem of RAN management and
having in mind that human-centric management is slow and error
prone, a Self-Organizing Networks concept has been developed
[3]. This concept enables automation of certain RAN management
functions including handover, coverage optimization, load
balancing, etc. One of the SON functions, the Energy Efficient
RAN (EE RAN), seamlessly turns off some radio nodes
(eNodeBs), sector’s carriers or node’s internal blocks in order to
reduce power consumption when the network load is low
(typically at night). In fact the radio network is dimensioned to

cope with peak traffic hours whereas it can be under-utilized in
off-peak traffic time. Switching a cell (or cell sectors) off is
possible if network load is low and the neighbouring cells can
compensate the coverage. In case of the traffic growth the
switched-off cell has to be dynamically switched on.

A holistic approach to energy savings in RAN done by 3GPP is
described in [1]. In this technical report, a case study based on
different scenarios is made. Some possible solutions, which
depend on the given RAN topology, are also proposed in the
report. The document does not describe how the EE RAN
mechanisms should be implemented. Typically it is assumed that
for each RAN node the decision of switching off some cells can
be driven by a pre-programmed policy, which takes into account
time of day (week) and network traffic patterns. Such simple
approach can lead to the degradation of offered services or to low
efficiency of the EE RAN mechanism. There is no doubt that the
mechanism based on real traffic measurements with appropriate
decision algorithm will be much more effective. In this paper, we
propose to use a cognitive algorithm for EE RAN. We described
the usage of an algorithm for Inter-eNodeB energy saving
scenario of [1]. This scenario is based on the so-called capacity
limited network, which is homogeneous (composed of a group of
cells with similar size) that is presented in Figure 1. For the sake
of simplicity we will consider eNodeBs with omnidirectional
antennas moreover only switching off of the whole node
(eNodeB) is taken into account.

Figure 1. Inter-eNodeB energy saving use case [1]

The usage of machine learning technique automates the EE
process and minimizes the degradation of offered services when
the network will learn its proper behaviour. There are two
situations when the cognitive approach can be applied in EE
RAN. The first one is a prediction of the time when a cell can go
to the dormant mode. The second one is appropriate prediction
when the dormant cell has to be waked-up. If this procedure starts
too early the cell will be forced again to go into the sleep state. If
the cell will wake-up too late, the serious network degradation
will be perceived by the users. The improper behaviour of the
algorithm that is responsible for the decision will result in higher
power consumption and increased signalling load – in some cases

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.

Copyright 2014 ACM 978-1-4503-2881-4/14/07…$15.00.
http://dx.doi.org/10.1145/2598394.2605694

1197

GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.

degraded QoS can be observed as well. The switching events
should happen not more often than several times per hour and this
means that the switch off process does not have to be fast. On the
other hand, in case of high mobility of users, the switching-on
phase has to be fast.

The EE process is composed of four phases. Phase 1 lies in a
continuous monitoring by each eNodeB to check if it is a
candidate for switching off – potentially a preliminary decision
about switching off a cell can be taken. During cell monitoring the
number of active users, the cell load, time of day and other
parameters related to cell activity are collected. The decision on-
to-off is based on a cognitive algorithm. Phase 2 is related to the
execution of the decision about switching off a cell by appropriate
compensation of radio coverage by the neighbouring cells. Phase
3 is related to the monitoring of the load in the area that is
compensated by the surrounding cells in order to detect a need for
switching on of the sleeping cell. The set of monitored parameters
related to cell activity is the same as in Phase 1. The decision
about switching a cell on is taken by the cognitive algorithm
likewise in Phase 1. Phase 4 concerns of restoration of the normal
state of the network, i.e. turning-on the sleeping cells and does not
require cognitive techniques. In our approach we used a
combination of the well-known Fuzzy Logic and Q-Learning
technique (FQL) to take the decision in Phases 1 and 3.

The paper is structured as follows: in section 2, the four Phases of
the EE approach are explained in more detail, though the
description of cognitive part of the process (i.e. phases 1 and 3) is
left for the section 3. In section 4 the effectiveness of the approach
is evaluated and realistic simulation results are presented. Finally,
section 5 concludes the paper and suggests some further work for
the improvement of proposed approach.

2. THE EE PROCESS
For switching the radio stations off and on we use two
independent instances of the reinforcement learning (RL)
technique combined with Fuzzy Logic in order to cope with
continuous input parameters space. RL learns how to act given
monitoring information regarding the environment. The
parameters that are collected from each eNodeB as the input of
the algorithm for all four phases of EE mechanism are presented
in Table 1. In this table NAU is the number of active users [4]; the
AVGTHR parameter defines the sum of each user’s average
throughput (downlink) and is normalized and cell’s load history
(LoadHist) is the aggregated load of eNodeB for the whole day.
In our EE RAN implementation a cell can be in three states [2]:
NORMAL, SLEEP and COMPENSATE. When a cell has the
state flag equal to NORMAL, it means that this cell is not
participating in any energy saving process. The SLEEP mode
indicates that the cell is turned off or restricted in physical
resource usage. Finally, when the cell is in COMPENSATE mode
it means that it has modified power transmission in order to
provide coverage in the vicinity of the turned off cell. In our case
study, QoS (Quality of Service) refers to the network performance
parameters: Handover Failure (HF), Packet Loss Ratio (PLR) and
Averaged Packet Delay (PDL). Handover procedure is defined in
[5]. When too low received signal level is detected by the user
equipment (UE) during the handover execution or due to the lack
of resource at the target cell to which UE is handed over the
handover failure happens. PDL parameter determines the packet
delay in the downlink channel averaged during time period T,
which is usually defined by the equipment vendor [4]. PLR is the
number of dropped downlink packets ratio to all transmitted
packets [4]. The Radio Link Failure (RLF) happens when the

terminal detects radio link problems – a broken transmission [6].
Users’ RxLev list is a list of measured RSRP level per each cell.
Cell’s RSRP is defined as the linear average over the power
contributions (in Watts) of the resource elements that carry cell-
specific reference signals within the considered measurement
frequency bandwidth. Moreover, the following data has to be
provided for proper operation of the proposed approach: RAN
network topology with list of neighbors, transmitted power
defaults for all RAN nodes and parameters reporting period.

Table 1. Network monitoring and configuration parameters
used

Parameter Phase Acronym

The number of
active users

1, 3 NAU

Cell load
expressed in

average
throughput

1, 3 AVGTHR

Time of day and
load history

1, 3 [Time, LoadHist]

Cell mode
(NORMAL,

SLEEP,
COMPENSATE)
with timer of the

state

1, 3
[StateTimer(min),

StateFlag]

Cell QoS vector:
[HF, PLR, PDL]

2, 3, 4 [HF, PLR, PDL]

Radio Link
Failure

2, 4 RLF

Users’ RxLev
(RSRP) list.

2, 4 UERxLevList

Transmission
Power

2, 4 TxPower

2.1 Phase 1: Normal state
In this phase each eNodeB collects monitoring data and sends
periodically the processed and averaged reports to the node that
executes the EE algorithm. According to monitoring data,
configuration parameters (network topology), policy parameters
(network operator preferences) and history of previous decision
the algorithm takes the new decision. The decision is binary and
indicates a cell that should be switched off. It also indicates which
cells should take part in the cell compensation procedure. The
decision about switching off the cell is taken using a model-free
RL (Q-Learning). The results can be positive only if all the
neighbouring cells are in normal (non-compensating) state. In
case when the interval time between switching a cell off and on is
under a defined threshold the previous decision is seen as a
failure.

2.2 Phase 2: Switching-off a cell
The phase is related to the execution of the decision about
switching a cell off by appropriate compensation of radio
coverage by the neighbouring cells. The process is relatively
simple but has to be smooth, i.e. switching the base station off has
to be preceded by proper increase of coverage of active stations.
The quality of the process is evaluated by pathological network

1198

behaviour during the transition (radio link failure ratio increase,
interference level increase, etc.). In the proposed approach, in
order to obtain the proper compensation, a special network pilot
terminal (a kind of a mobile phone) is collocated with each
eNodeB. Its role is to monitor the level of the neighbouring cells
signals when the cell is switched off – it helps in proper cell
compensation. This terminal is useful in the case when there are
no real users under the coverage of compensated area.

The switching-off operation and the consequent coverage
compensation is based on a multistep procedure described below.

2.2.1 First step
This step is composed of a modification of cell state flags of the
compensating cells, (i.e. NORMAL to COMPENSATE) and
gradual modification of maximum power transmission of EE
compensating cells and EE candidate cell. This phase can actually
be divided into several sub-steps. Each sub-step determines a new
value of the transmitted power (TxPower) for cells involved in the
EE procedure. This procedure ensures a gradual change of the
topology and thus the users should not perceive any decrease of
their QoS. Number of sub-steps to apply depends on delivered
QoS in terms of radio link failures (RLF), handover failures (HF)
and the received signal level (RxLev) of users in the area of the
dormant cell candidate as well as of the cell’s pilot terminal. The
first step will finish as soon as the number of users under the EE
candidate cell will be equal to zero. It is important to note that a
new sub-step is performed as soon as new monitoring information
is received, which is determined by the network monitoring
reports collection frequency.

2.2.2 Second step
Once the number of users attached to EE candidate cell is equal to
zero, and the RxLev list of pilot terminals reflects normal RSRP
levels from compensation cells, the state flag is set to SLEEP and
the neighbouring cell list of surrounding cells of EE candidate cell
must be updated in order to avoid conflicts in next handover (HO)
procedures. In case of reaching this step and RSRP list of pilot
terminal reflects power levels below the minimum required, the
transmission power of these cells is increased by the difference of
this level and the current RSRP level.

2.2.3 Third step
The EE candidate is switched off. Here two options are
considered. First one, the whole eNodeB is turned off or moved to
the standby mode. Second option is just the result of reducing the
transmitted power to zero. This will force all the UEs to handover
to neighbouring cells. In consequence the power consumed by the
eNodeB’s radio unit will be zero.

2.3 Phase 3: Sleeping state monitoring
This phase is related to the monitoring of the area that is
compensated in order to detect a need for switching on of the
sleeping cell. All cells that are compensating cells of the sleeping
cell are monitored. The set of monitored parameters is the same as
in Phase 1. The decision about switching a cell on uses cognitive
techniques, the same algorithmic technique as used in Phase 1.
Improper behaviour of the algorithm will lead to subsequent
turning off the station recently turned on, i.e. the EE ping-pong
effect will occur. Another measure of the success is a non-
degraded QoS offered to users in the compensated area. In the
case, when the interval time between switching off and on is
under a defined threshold, the previous decision is seen as a
failure.

2.4 Phase 4: Normal state restoration
The parameters of the switched on cells, TxPower and
neighbouring cell list as well as their flags to NORMAL are
restored. However, similarly to Phase 2, a gradual decrease of
compensate cells’ TxPower parameter is necessary as well as a
gradual increase of TxPower parameter of the switched off cell.
The process is non-cognitive one.

3. THE ALGORITHM
3.1 Q-Learning and Fuzzy Logic
We used Reinforcement Learning (RL) algorithm for the
switching on/off of an eNodeB. From many available RL variants
we have chosen the Q-learning approach due to its simplicity and
its proven convergence [7]. In Q-learning, an agent (i.e. in our
case the EE RAN agent) switches from one state to another by
performing an action. At each state transition a reward is received
which measures the quality of the action taken. The goal of the
algorithm is to find the best action for each state St while
maximizing the long-term reward. In order to achieve this, Q-
learning keeps a q-value for each state-action pair. This q-value is
also known as the estimation of the real-valued function Q(S,a).
This value function estimates the expected cumulative discounted
reward of performing an action being in the state S and then
following the optimal policy. At each state, the estimated q-value
is updated using the formula:

 ܳ௧ାଵሺݏ௧, ܽ௧ሻ ՚ ܳ௧ሺݏ௧, ܽ௧ሻ
௧ାଵݎൣߙ ,௧ାଵݏܳ௧ሺ|ݔܽܯߛ ܽሻ െ ܳ௧ሺݏ௧, ܽ௧ሻ൧ (1)

where ߙ א ሾ0,1ሿ is the learning rate that defines by how much the
new value is updated for the current state-action pair. It, therefore,
determines the learning speed of the agent. ߛ א ሾ0,1ሿ is the
discount factor and it influences how much the agent considers the
immediate reward. The closer ߛ is to 1 the more it looks after the
future payoffs. The reward ݎ௧ାଵ measures the quality of the action
taken in a certain state (St) and it is calculated when the agent
arrives to the next state (St+1).

In a discrete state space environment the state and action spaces
are counted and each of them keeps a q value in a so called lookup
table. This becomes very complex and impractical when these
spaces are continuous. For this reason, the Fuzzy Logic [8] is
applied to discretize the continuous input values. To keep the
algorithm simple we use only three input parameters to define the
cell load state S: number of active users (NAU), cell’s averaged
throughput (AVGTRGHP) and cell’s load history (see Table 1).

S ൌ ሾNAU, AVGTHR, LoadHistሿ (2)

As mentioned before, in order to discretize the continuous space
of the input variables, the data obtained from eNodeBs are
fuzzified. For the fuzzification, a finite number of fuzzy labels
were defined over the domain of each input variables. For the
input vector, each variable will have three fuzzy labels (Low,
Medium and High). A membership function that maps the same
input values to a degree of truth value in the real range from 0 to 1
is assigned to each label. In this case the triangular (Medium
Label) and the trapezoidal (Low and High Labels) membership
function have been used with overlapping areas so that the sum of
the membership functions at any point of the input space will be
equal to 1.

1199

ሻݔைௐሺߤ ൌ ቐ

1, ݔ ൏ ܽ
௫ି

ି
, ܽ ݔ ܾ

0, ݔ ܾ

 (3)

ሻݔொூெሺߤ ൌ

ە
ۖ
۔

ۖ
ۓ

0, ݔ ൏ ܽ
௫ି

ି
, ܽ ݔ ܾ

௫ି

ି
, ܾ ൏ ݔ ܿ

0, ݔ ܿ

 (4)

ሻݔுூீுሺߤ ൌ ቐ

1, ݔ ൏ ܽ
௫ି

ି
, ܽ ݔ ܾ

1, ݔ ܿ

 (5)

3.2 Selecting the candidate cell
All the parameters used by the algorithm are defined in Table 1.
In order to get the best candidate cell to switch-off (Phase 1) we
apply the input [NAU, AVGTHR] of each cell in a particular cell
cluster to a Fuzzy Rule-Based System [9] to get a value on the
output parameter., the Quality of Candidate, QoC. Likewise for
the cell load related parameters, in this fuzzy system output
parameter we have three fuzzy labels: Low, Medium and High.
Each label is also assigned to a membership function (eq. 3-5) that
maps the same input values to a degree of truth value in the real
range from 0 to 1. The Table 2 consists the conjunctive rules of
inference based on the observations of the network.

Table 2. Fuzzy System Rules

Input Output

NAU AVGTHR QoC

L L H

L M H

L H M

M L M

M M L

M H L

H L L

H M L

H H L

We use the well-known max-min Mandami implication method of
inference [8], which is denoted as follows:

ሻܥொሺܳߤ ൌ (6)

max

൛݉݅݊ൣߤேೖሺܷܰܣሻ, ሻ൧ൟܴܪܶܩܸܣீ்ுோೖሺߤ

The result of this method is a fuzzy set so that it is yet to be
calculated a final QoC discrete value. This process is known as
defuzzification and in our case the so-called centre of gravity
procedure has been applied [8].

3.3 Decision making: FQL
As mentioned before the output action is binary {0;1}. We assign
the value 1 to the action of switching off and 0 for the action of
switching on. When the cell is already switched on, the action 0
then means to keep the cell in the same operating state (Phase 1),
i.e. the “do-nothing” action. Similarly, if the cell is switched off,
the action 1 refers to the “do-nothing” action as well. In FQL,
states and actions are defined using fuzzy membership functions.

The continuous state variables are first transformed into a finite
number of fuzzy variable membership functions. This process is
called fuzzification. From these fuzzy variables, the
corresponding output is calculated based on the Fuzzy Inference
System (FIS). Finally the fuzzy output of the FIS is mapped back
to the continuous output variable through the process of
defuzzification. In general, the rule based on FIS consists of
arbitrary number of different rules constructed out of AND and
OR operators. A FIS has a rule based consisting of N rules, and
the input vector X has n elements representing the input space. It
typically expresses an inference as a conclusion (consequent) [9].
In our particular case we have three input variables [NAU,
AVGTHR, LoadHist (time of day)] (see Table 1) with three
possible labels for each one (Lא[L,M,H]) and two consequents
denoted by Op. Hence, the total number of rules is 27. Each of
these rules has the following form:

 ݂݅ :݅ ݈݁ݑܴ
NAU

AVGTHR
LoadHist

൩ ൌ

ଵܮ

ଶܮ

ଷܮ

 ൣ݄݊݁ݐ ܱ൧ ݅ݏ ൜
௩௨ݍ ݄ݐ݅ݓ 0 ൌ ଵݍ
௩௨ݍ ݄ݐ݅ݓ 1 ൌ ଶݍ

 (7)

As mentioned above, for each rule, Op represents the action to be
taken, and in each rule we will have 2 q-values for each action. At
the beginning, all q-values will be initiated to 0. Its value will be
updated after the action taken and the reward computed.

Figure 2. EE RAN Fuzzy Inference (based) system

The general structure of the developed fuzzy inference system
(see Figure 2) consists of three conceptual blocks or components:
a rule base, which contains a selection of fuzzy rules; a dictionary,
which defines the membership functions used in the fuzzy rules;
and a reasoning mechanism, which performs the inference
procedure upon the rules and given facts to derive a reasonable
output or conclusion. However, sometimes it is necessary to have
a crisp output. In such a case the reasoning mechanism has to
include the defuzzification mechanism to extract a crisp value that
represents the output fuzzy set in the best way. In our case, the
entire space of rule will be 27 for all the possibilities state input
vector. Moreover, each input will have maximum two values of
membership function (L&M or M&H). As a result, the maximum
number of activated rules (with result different than zero) will be
8 for a particular input vector. Therefore, we will have 8 output
values which will be fed to the defuzzification component in order

1200

to get a crisp value indicating the action to be taken. All q values,
which are associated to a rule and action pair, are kept in a table in
the following form:

Table 3. The Q-Learning table template

Rule
Output Action

Op
q-value

R1
1 v11

0 v12

R2
1 v21

0 v22

R3
1 v31

0 v32

… … …

The Q table represents the memory of what the agent have learned
through many experiences. Since Phase 1 and Phase 3 have
independent FQL instances, each phase will have its own Q
matrix with its own rules. Consequently we use two different
rewards as well: RWph1 (8) and RWph3 (9) for the phases. In both
cases we use a continuous reward function based on progress
estimators. Progress estimators provide a measure of improvement
towards an objective [9]. Moreover, the Gaussian function in both
of them has been used in order to accelerate the learning process
[10]. In order to update the q-value associated to the action
chosen, the reward should be computed taking into consideration
the action taken by the agent (Op). Therefore, the reward functions
for both Q-Learning instances are defined as follows:

ܴ ܹଵሺܱሻ ൌ

ە
۔

ۓ
1 െ 2 · ݁

ି.ହכ
൫ೈכೂೄభ൯

మ

భ
మ

, ܱ ൌ ଵܱ

2 · ݁
ି.ହכ

൫ೈכೂೄభ൯
మ

భ
మ

െ 1, ܱ ൌ ܱଶ

 (8)

ܴ ܹଷሺܱሻ ൌ ൞
1 െ ݁

ି.ହכ
ೂೄయ

మ

య
మ

, ܱ ൌ ଵܱ

݁
ି.ହכ

ೂೄయ
మ

య
మ

, ܱ ൌ ܱଶ

 (9)

ܵܳ ൌ ுிݓ כ ܨܪ ோݓ כ ܴܮܲ ݓ כ (10) ܮܦܲ

For both cases we have introduced the term QoS אR+ (10). This
term gathers all the Key Performance Indicators (KPIs) that
symbolize the network’s performance degradation: handover
failure (HF), packet lost ratio (PLR) and averaged packet delay
(PDL). The agent may switch off/on an eNodeB when the cell is
under a load peak. In consequence, a global degradation of these
KPIs is expected. QoS1 aggregates these KPIs during the Phase 2
and Phase 3, and QoS3 aggregates these KPIs during the Phase 3
and Phase 4. For the reward ܴ ܹଵ the maximum and minimum
value are 1 and -1 respectively (i.e. ܴ ܹଵ א ሾെ1,1ሿ). When
-QoS1 approaches 0, this reward will be closer to 1 for the switch
off action (O2) and it will be near -1 for the switch-on action (O1).
On the other hand, when QoS1 is high, the switch-off action is
punished with a reward close to -1 and with a value close to 1 for
the switch-on action. As for the reward RWph3 the maximum and
minimum value are 1 and 0 respectively (i.e. ݎ௧ାଵ א ሾ0,1ሿ). When
 QoS3 increases, for those active rules with action equal to O1 and
O2, the value of RWph3 will approach to 1 and 0 respectively. In

the same way, when QoS3 decreases, for those active rules with
action equal to O1 and O2, the value of RWph3 will approach to 0
and 1 respectively. In equations (8) and (9), parameter σ
determines the reward gradient influence area. The lower σ is the
more sensitive the reward will be against an increase of QoS.
This parameter has been object of study during the algorithm’s
simulation phase since it has a big impact on its performance and
convergence speed. The time window in which the reward of
Phase 1 can punish the action of switching a cell off must be
limited since the second FQL instance is the responsible to re-
establish the normal state in case of any network performance
degradation. Therefore, in equation (8), it has been added the
coefficient ܹ௧ to the ܳ ଵܵ, which represents the QoS
degradation impact factor for reward of phase 1 when a cell is
turned off. This is shown in the following equation:

ܹ௧൫ݐ௦൯ ൌ 1 െ
ଵ

ଵାషరכሺೞషೃೈሻ (11)

The above function is the scale function with the transition from 1
to 0 at the cell sleep time (ݐ௦) equal to ܴܹ݅݉݁݉݅ܶ.
Therefore ܴܹ݅݉݁݉݅ܶ represents the impact time of QoS
against the reward of Phase 1. In other words, this means that at
any sleep time after ܴܹ݅݉݁݉݅ܶ the value of this factor is 0 and
in consequence value of QoS will be irrelevant for the final
reward, whose value will be 1 (from that time on) for the switch-
off action and 0 for the switch-on action.

The first step of the FQL algorithm is to evaluate the current state
of the network. A set of new values for the input variables will be
provided and the degree of truth of each FIS rule i will be
computed. The degree of true is the product of membership values
of each input state label (L) for the specific rule i:

 ݐݑ݊ܫ ݄݉ݐ݅ݎ݈݃ܣ
ܷܣܰ

ܴܪܶܩܸܣ
LoadHist

൩ ൌ ቈ
ݔ
ݕ
ݖ

ሺ݅ሻߙ ൌ ߤ
భሺݔሻ כ ߤ

మሺݕሻ כ ߤ
యሺݖሻ (12)

The output action for each activated rule is denoted by Op , and it
can take only two possible values: 0 or 1. The way in which one
of the actions is selected depends on whether the agent is on the
learning stage (exploration stage) or exploitation stage. The
exploration/exploitation policy (EEP) followed to decide which
action to take is described via the equation (13). Where ε is the
tradeoff between exploration and exploitation. In the exploitation
phase (i.e. ε = 1), the agent has achieved the global optimal
behaviour; thus the output chosen is the one with maximum q-
value out of the two present the Q-Learning table.

 ൌ ቊ
argmaxఢ ,ܮ൫ݍ

൯ , ߝ ݕݐ݈ܾܾ݅݅ܽݎ ݄ݐ݅ݓ

random
 , 1 ݕݐ݈ܾܾ݅݅ܽݎ ݄ݐ݅ݓ െ ߝ

 (13)

If ߙ is the degree of truth for each rule and P is the total number of
activated rules, the final action will be:

ܽሺݏሻ ൌ ∑ ሺ݅ሻߙ כ ܱሺܮሻఢ (14)

where i is the number of active rule. The final action given here
belongs to the continuous space with minimum value 0 and
maximum 1, i.e. [0,1]. However, a final decision (whether to

1201

switch a cell off or on) is yet missing. To solve this, we have
introduced a rule based on a variable threshold (η), that is:

ܽ ൌ ൜
1 ݂݅ ܽሺݏሻ ߟ

0 ݂݅ ܽሺݏሻ ߟ
 (15)

Therefore, the action to be applied depends on the final action
value ܽሺݏሻ, where η shows the strictness of the current condition
given (in terms of cell load) that will allow the switching-off/on of
a cell. Likewise σ, the value to assign to η has been a topic of
study during the simulation phase of the algorithm.

After applying the final action, the agent moves to the next state
 ௧ାଵ and the reward will be calculated. Then the next step is toݏ
update those elements of Q-Learning table whose pair rule-action
coincide with those activated rules ܮ and its corresponding action
chosen ܱ. This is done as showed with the following equation:

,ܮ௧ାଵ൫ݍ ܱ൯ ՚ ,ܮ௧൫ݍ ܱ൯ ߚ כ ௧ሻݏሺߙ כ ∆ܳ (16)

First of all, before the agent applies the action, the q-value for the
current state ݏ௧ must be calculated as follows:

ܳ൫ݏ௧, ܽሺݏ௧ሻ൯ ൌ ∑ ௧ሻݏሺߙ ఢೞכ
,ܮሺݍ ܱሻ (17)

Where ௦ܲ is the set of activated rules and ݍ൫ܮ, ܱ൯ is the q-value
for the pair label ܮ and output ܱ, which is taken from the Q-
Learning table. In equation (16) the quantity ∆Q is defined as the
difference between the old and new value of Q(x,a(x)):

∆ܳ ൌ ௧ାଵݎ ߛ ௧ܸሺݏ௧ାଵሻ െ ܳ൫ݏ௧, ܽሺݏ௧ሻ൯ (18)

In the above equation, ݎ௧ାଵ is the reward computed for the new
state ݏ௧ାଵ (via monitoring the network status after the action is
taken) and ௧ܸሺݏ௧ାଵሻ measures the aggregated maximum q-value
achievable for the new state. The former is calculated following
equations (8) or (9) and the latter is obtained from the formula
shown below.

௧ܸሺݏ௧ାଵሻ ൌ ∑ ௧ାଵሻݏሺߙ ఢೄశభכ
argmax ሼݍ൫ܮ, ܱ൯ሽ (19)

Both factors, β and γ, have range value from 0 to 1 (0 ߚ ൏ 1
and 0 ߛ ൏ 1). β is the learning rate which determines the
influence of new information on the previous knowledge at the
moment of taking a decision. The closer β is to 0 means the less
learning and the closer it is to 1 means the only newest
information is considered. The closer γ is to 0 the more the agent
will consider only immediate rewards. If γ is closer to 1, the agent
considers future reward with grater preference, willing to delay
the immediate payoff.

3.4 Exploration and exploitation phases
The essence of Q-Learning is that the agent learns through
experience without external supervision. This agent will explore
from state to state, from transition to transition, until it reaches the
goal. Each exploration process is known as an episode. In one
episode the agent will move from initial state to another and so on
until the goal state. In our case the goal state will be the execution
of EE without a degradation of delivered QoS. Once the agent
completes one episode it starts a new one. This exploration phase
is also known as the training session. The longer the training is,
the more global optimal way the agent will take the decisions.
Based on the action taken, each episode includes two possible
paths per each FQL instance. For the FQL instance of phase 1,
first path belongs to the whole cycle Phase 1 Phase 2 Phase
3 Phase 4 Phase 1 (i.e. in time t the agent decides to switch-
off the candidate cell), and second one to the cycle Phase 1
Phase 1 (i.e. in time t the agent decides to not to switch-off the

candidate cell). Once the agent finishes the execution of Phase 4,
the reward (RWph1) is computed, the values of Q-table 1 are
updated and the agent moves to Phase 1. Similarly to Phase 1,
when the agent is in phase 3 and its FQL instance is used, the
episode also includes two possible paths based on the action
taken: first one belongs to the cycle Phase 3 Phase 3 (i.e. in
time t the agent decides to not to switch-on the switched-off cell)
and the second one to the cycle Phase 3 Phase 4 Phase 1
(i.e. in time t the agent decides to switch-on the switched-off cell).
In both cases, whenever the agent reaches the Phase 3 or Phase 1
the reward (RWph3) is computed and the values of Q-table 2 are
updated.

In both FQL instances the exploration happens by the selection of
a lower than 1 value of ε in EEP (eq. 13). The parameter is
increased exponentially in each iteration. Once ε reaches the value
of 1 only the exploitation iterations are present.

4. SIMULATIONS AND DISCUSSION
For the evaluation of the presented algorithm the LTE-Sim
simulator has been used [11]. Two main modifications have been
made in order to facilitate the interaction of our EE RAN agent
with the simulated network. First one is the enhancement of the
simulator in order to obtain of the algorithm input parameters,
such: NAU, State Flag, State Timer and RLF (see Table 1).
Second one is the implementation of a new traffic and mobility
patterns. The simulated network’s topology is composed of 7 cells
with omnidirectional antennas. Each one has a radio range of 400
meters and 12 mobile terminals when the simulation starts. The
initial transmission power is set to 23 dBm. Simulations are
divided by simulation slots, each one representing a typical
working day (from Monday to Friday). Users’ traffic patterns (TP)
are deterministic. For each simulation run we have set 7 slots (i.e.
week). As it is shown in Figure 3 the TP for one slot (second 1-
200) it can be differentiated three parts in terms of traffic load:
two traffic peaks (90-100%) and one off-traffic peak (0-5%). The
off-peak traffic represents cell’s activity at night (e.g. 10 pm-6
am).

Figure 3. Users’ traffic pattern

For all simulations VoIP (G.729 codec) and Video traffic models
with 128Kb download transmission rate have been used. Each
user receives one VoIP session and one video stream in the
medium traffic intervals (approx. 0-30 and 170-200 sec.), one
VoIP session in the off-peak traffic and 2 VoIP and 3 video
applications at the traffic peak. User’s mobility pattern is
deterministic: at the peak traffic time, 90% of the users of one cell
move towards some of its neighbouring cell to stay there until the
time of the second traffic peak when they move back towards the
initial position.

0.0

20.0

40.0

60.0

80.0

100.0

120.0

5 20 35 50 65 80 95 11
0

12
5

14
0

15
5

17
0

18
5

20
0

L
oa

d
%

Simulation time (sec.)

1202

 In this way, within the simulated topology (see Fig. 1) the cell at
centre would emulate the business area of a big city which usually
has no users at night.

Both Q-learning instances of our algorithm (the EE RAN agents)
should achieve the convergence not longer than in the first 2-3
time slots. Thus, the selection of some Q-Learning parameters
(i.e. from the reward and the real-valued functions) is critical for
the algorithm’s convergence speed and performance. For this
reason, the process of tuning of some parameters is necessary. In
our case, in order to get the optimal learning parameters’ values of
the algorithm and robust algorithm behaviour the tuning process,
which lied on changing of mutual importance of QoS parameters
and learning parameters, has been very long one. The selected
values of the parameters are shown in Table 4.

Table 4. Algorithm learning settings

Algorithm parameter Parameter value

 learning rate 0.7 :ߚ

 discount factor 0.9 :ߛ

 explotation/exploration :ߝ
trade-off

50% (beginning of slot 1)

100% (Slot 2-7)

WHF 0.4

WPLR 10.0

WPDL 10.0

Table 5. Membership function thresholds

Input a b c

NAU 4 12 14

AVGTHR (%) 10 50 80

QoC 0.5 0.6 0.7

Additionally, the membership functions described in equations 3-
5 have been implemented using the values presented in Table 5.
Algorithm performance is checked by the evaluation of the
following indicators: averaged packet delay (PDL), packet loss
ratio (PLR), handover failures (HF) and power consumption

(PWR). Results are provided in form of charts with data changing
over the simulation time (7 slots of 200 seconds each). In fact,
four charts are being shown: first one shows the power
consumption (in W) for the whole network, i.e. 7 cells (see Fig.
4). In this chart the EE episodes can be seen in form of down steps
within the Power(t) function. The used power consumption model
is described in [13]. The second, third and fourth charts (Fig. 5, 6
and 7) show the network performance via the KPIs: PDL, PLR
and HOF respectively. These indicators show the network
performance degradation as a consequence of the action taken by
the algorithm (switch off/on the cell) when the cell is congested. If
the algorithm achieves the convergence on its actions in a
relatively short time, two key results are expected. First one is a
decrease of switch-off events when the cell is congested while
prolonging them at the time within the slot when the off-peak
traffic is given. The second one is a decrease of the delivered QoS
degradation along the simulation as a consequence of the less and
less wrong decisions that are being taken.

Figure 5. Averaged packet delay

Two main observations can be drawn from these charts. First one
is related to the learning speed and convergence of both Q-
learning instances of our agent. According to the expectations,
from the third slot the agent achieves the coherence on its
decisions about the proper time when a cell must enter and leave
the dormant state. If we compare Fig. 4 and Fig. 3 we can see that
EE episodes are aligned with the off-peak traffic interval.
However, it is also noticeable that the Q-learning instance that
decides about entering the dormant cell has a relatively slower
learning in comparison to the instance that decides about leaving
the dormant, whose convergence is achieved from second slot.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 60 13
2

19
7 65 14
3 15 81 15
4 29 96 16
5 42 11
3

18
2 54 13
0

19
6 65 14
4

PD
L

Simulation time (sec.)

Figure 4. Power consumption for the whole network

14500
15000
15500
16000
16500
17000
17500
18000

0 33 57 87 12
2

15
2

18
2 20 50 80 11
9

15
1

18
2 21 51 81 11
9

15
1

18
0 18 49 79 11
7

15
0

18
0 19 49 80 11
9

15
1

18
2 21 50 81 11
9

15
0

18
0 18 49 80 11
9

15
2

18
2

P
W

R
 (

W
)

Simulation time (sec.)

1203

Figure 6. Packet Loss Ratio

Figure 7. Handover failure

The second observation is depicted from the charts showing the
network performance degradation indicators (i.e. Fig. 5-7). Here
the progressive decrease of these indicators is observed. This is
because of the reduction of the amount of switch-off actions
during the peak traffic intervals at the time of agent’s exploration.

5. CONCLUSIONS
In the paper a cognitive EE RAN approach based on machine
learning has been presented. We have successfully applied the
reinforcement learning to define the proper moments of switching
off or on the mobile network radio stations. During simulations
we have verified the proper behavior of the proposed approach via
realistic simulations. In fact, the concept can be easily transferred
to real networks, because it uses the network parameters that are
used by real radio stations of LTE RAN as defined by 3GPP
standards. Moreover, our simulations took into account all the
processes which exist in real network (handovers, users’ mobility,
etc.). We decided to use the learning algorithm in order to have
adaptive behavior of the EE RAN procedure and to avoid a design
of an algorithm by an expert, however we noticed that the
algorithm require a lot of efforts related to tuning it in order to
obtain proper and robust behavior of the algorithm. The final
result is satisfactory, but in real networks the initial learning can

lead to the perceived by the users degradation of services. In the
future work we intend to minimize the problem and make more
simulations with differentiated users’ traffic and behavior.
Moreover we will use cells with directional antennas.

6. ACKNOWLEDGMENTS
The work presented in this paper has been supported by the Celtic
COMMUNE project CP08-001 entitled Cognitive Network
Management under Uncertainty [13]

7. REFERENCES
[1] 3GPP, “LTE; Evolved Universal Terrestrial Radio Access

(E-UTRA); Potential solutions for energy saving for E-
UTRAN (Release 11)”, TR 36.927, 2012.

[2] 3GPP, “Technical Specification Group Services and System
Aspects; Telecommunication management; Study on Energy
Savings Management (ESM) (Release 10)”, TR32.826,
2010.

[3] 3GPP, “Technical Specification Group Services and System
Aspects; Telecommunication Management; Self-Organizing
Networks (SON); Concepts and requirements (Release 10)”,
TS 32.500, 2010.

[4] 3GPP, “Evolved Universal Terrestrial Radio Access (E-
UTRA); Layer 2 – Measurements (Release 11)”, TS 36.314,
2012.

[5] 3GPP, “E-UTRA Radio Resource Control (RRC); Protocol
specification (Release 11)”, TS 36.331, 06.2012.

[6] 3GPP, “Evolved Universal Terrestrial Radio Access (E-
UTRA); Radio Resource Control (RRC); Protocol
specification (Release 12) ”, TS 36.331, 03.2014.

[7] R Sutton “Reinforcement learning: An introduction” MIT
Press 1998.

[8] T. J.Ross, Fuzzy logic With Engineering Applications, 2010.

[9] Mataric, M.J.: Reward functions for accelerated learning. In:
Proc. of the 11th ICML. (1994) 181–189.

[10] L. Matignon et all. Reward Function and Initial Values:
Better Choices for Accelerated Goal-Directed Reinforcement
Learning. Artificial Neural Networks – ICANN 2006.
Lecture Notes in Computer Science Volume 4131, 2006, pp
840-849.

[11] G. Piro, L. A. Grieco, G. Boggia, F. Capozzi and P.
Camarda, ”Simulating LTE Cellular Systems: an Open
Source Framework", online,
http://telematics.poliba.it/publications/2010/TVT/PiroTVT20
10.pdf

[12] W. Keating, “Reducing Energy Consumption in Access
Networks”, August 2011. School of Electronic Engineering,
Dublin City University.

[13] http://www.celtic-initiative.org/Projects/Celtic-
projects/Call8/COMMUNE/commune-default.asp.

0

0.1

0.2

0.3

0.4

0.5

0.6
0 60 13
2

19
7 65 14
3 15 81 15
4 29 96 16
5 42 11
3

18
2 54 13
0

19
6 65 14
4

PL
R

Simulation time (sec.)

0

1

2

3

4

5

6

7

8

0 58 12
4

18
4 52 12
4

18
7 55 12
6

18
8 56 12
7

19
1 57 13
2

19
5 60 13
5

19
6 61 13
7

H
O

F

Simulation time (sec.)

1204

