
Balancing Performance, Resource Efficiency and Energy
Efficiency for Virtual Machine Deployment in DVFS-enabled

Clouds: An Evolutionary Game Theoretic Approach

Yi Ren
Dept. of Computer Science
University of Massachusetts
Boston, Boston, MA, USA
yiren001@cs.umb.edu

Junichi Suzuki
Dept. of Computer Science
University of Massachusetts
Boston, Boston, MA, USA

jxs@cs.umb.edu

Chonho Lee
Nanyang Technological

University
Singapore

leechonho@ntu.edu.sg
Athanasios V. Vasilakos

Computer Science Dept.
Kuwait University

Safat 13060, Kuwait
th.vasilakos@gmail.com

Shingo Omura
OGIS International, Inc.

San Mateo, CA 94404, USA
omura@ogis-international.com

Katsuya Oba
OGIS International, Inc.

San Mateo, CA 94404, USA
oba@ogis-international.com

ABSTRACT
This paper proposes and evaluates a multiobjective evolu-
tionary game theoretic framework for adaptive and stable
application deployment in clouds that support dynamic volt-
age and frequency scaling (DVFS) for CPUs. The proposed
framework, called Cielo, aids cloud operators to adapt the
resource allocation to applications and their locations ac-
cording to the operational conditions in a cloud (e.g., work-
load and resource availability) with respect to multiple con-
flicting objectives such as response time performance, re-
course utilization and power consumption. Moreover, Cielo
theoretically guarantees that each application performs an
evolutionarily stable deployment strategy, which is an equi-
librium solution under given operational conditions. Simula-
tion results verify this theoretical analysis; applications seek
equilibria to perform adaptive and evolutionarily stable de-
ployment strategies. Cielo allows applications to successfully
leverage DVFS to balance their response time performance,
resource utilization and power consumption.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods; C.2.4 [Computer-
Communication Networks]: Distributed Systems—Dis-
tributed applications

Keywords
Cloud computing, power-aware virtual machine placement,
multiobjective optimization, evolutionary game theory

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2881-4/14/07 ...$15.00.
http://dx.doi.org/10.1145/2598394.2605693.

1. INTRODUCTION
It is a challenging issue for cloud operators to deploy ap-

plications so that the applications can keep expected lev-
els of performance (e.g. response time) while maintaining
their utilization of resources (e.g. CPUs and bandwidth) and
power consumption. In order to ensure these requirements,
they are required to dynamically (re-)deploy applications by
adjusting their locations and resource allocation according
to various operational conditions such as workload and re-
source availability. This paper investigates two important
properties of application deployment in clouds:

• Adaptability: Adjusting the locations of and resource
allocation for applications according to operational con-
ditions with respect to given objectives.

• Stability: Minimizing oscillations (non-deterministic in-
consistencies) in making adaptation decisions.

Cielo is an evolutionary game theoretic framework for
adaptive and stable application deployment in clouds that
support dynamic voltage and frequency scaling (DVFS) for
CPUs. This paper describes its design and evaluates its
adaptability and stability. In Cielo, each application main-
tains a set (or a population) of deployment strategies, each
of which indicates the location of and resource allocation
for that application. Cielo theoretically guarantees that,
through a series of evolutionary games between deployment
strategies, the population state (i.e., the distribution of strate-
gies) converges to an evolutionarily stable equilibrium, which
is always converged to regardless of the initial state. (A dom-
inant strategy in the evolutionarily stable population state
is called an evolutionarily stable strategy.) In this state, no
other strategies except an evolutionarily stable strategy can
dominate the population. Given this theoretical property,
Cielo aids each application to operate at equilibria by using
an evolutionarily stable strategy for application deployment
in a deterministic (i.e., stable) manner.

Simulation results verify this theoretical analysis; applica-
tions seek equilibria to perform evolutionarily stable deploy-
ment strategies and adapt their locations and resource allo-
cations to given operational conditions. Cielo allows applica-
tions to successfully leverage DVFS to balance their response

1205

time performance, resource utilization and power consump-
tion. In comparison to existing heuristics, Cielo outperforms
a well-known multiobjective genetic algorithm, NSGA-II [4],
while maintaining 74% less computational cost. It also ex-
hibits 29% higher stability (lower oscillations) among dif-
ferent simulation runs than NSGA-II. Moreover, Cielo out-
performs first-fit and best-fit algorithms (FFA and BFA),
which have been widely used for adaptive cloud application
deployment [1, 7, 15,16].

2. PROBLEM STATEMENT
This section formulates an application deployment prob-

lem where M hosts are available to operate N applications.
Each application is designed with three-tiered servers (Fig. 1).
Using a certain hypervisor, each server is assumed to run on
a virtual machine (VM) atop a host. A host can run multiple
VMs. They share resources available on their local host.

Each message is sequentially processed from a Web server
to a database server through an application server. A reply
message is generated by the database server and forwarded
in the reverse order (Fig. 1). This paper assumes that dif-
ferent applications utilize different sets of servers. (Servers
are not shared by different applications.)

The goal of this problem is to find evolutionarily stable
strategies that deploy N applications (i.e., N × 3 VMs) on
M hosts so that the applications adapt their locations and
resource allocation to given workload and resource availabil-
ity with respect to five objectives described below. (All ob-
jectives are to be minimized.)

CPU allocation: A certain CPU time share (in percentage)
is allocated to each VM. (The CPU share of 100% means
that a CPU is fully allocated to a VM.) It represents the
upper limit for the VM’s CPU utilization. This objective is
computed as

∑3
t=1 ct where ct denotes the CPU time share

allocated to the t-th tier server in an application.
Bandwidth allocation: A certain amount of bandwidth (in

bits/second) is allocated to each VM. It is the upper limit for
the VM’s bandwidth consumption. This objective is com-
puted as

∑3
t=1 bt where bt denotes the bandwidth allocated

to the t-th tier server in an application.
Response time: This objective is indicated as the time

required for a message to travel from a web server to a
database server: T p + Tw + T c where T p denotes the to-
tal time for an application to process an incoming message
from a user at three servers, Tw denotes the waiting time
for a message to be processed at servers, and T c denotes the
total communication delay to transmit a message among
servers. T p, Tw and T c are estimated with the M/M/1
queuing model, in which message arrivals follow a Poisson
process and a server’s message processing time is exponen-
tially distributed.
T p is computed as follows where T p

t denotes the time re-
quired for the t-th tier server to process a message.

T p =
3∑

t=1

T p
t (1)

Tw is computed as follows.

Tw =
1

λ

3∑
t=1

ρ2t
1− ρt

where ρt = λt
T p
t

ct
ft

fmax

(2)

λ is the message arrival rate for an application (i.e., the
number of messages the application receives from users in
the unit time). λ = 1

3

∑3
t=1 λt. (Currently, λ = λ1 =

λ2 = λ3.) ρt is the CPU utilization of the t-th tier server.

fmax and ft are the maximum CPU frequency and the CPU
frequency of a host that the t-th tier server resides on.
T c is computed as follows where B is the size of a message

(in bits).

T c =

2∑
t=1

T c
t→t′ ≈

3∑
t′=2

B · λt′
bt

, t′ = t+ 1 (3)

Power Consumption: This objective indicates the total
power consumption (in W) by the hosts that operate three
VMs in an application.

3∑
t=1

{P ft
idle + (P ft

max − P
ft
idle) · ct ·

ft

tmax
} (4)

P ft
idle and P ft

max denote the power consumption of a host
that the t-th tier server resides on when its CPU utilization
is 0% and 100% at the frequency of ft, respectively.

Cielo considers a CPU capacity constraint: wi ≤ 1 for all
M hosts. wi is the total CPU share allocated to the i-th
host. The violation of this constraint is computed as:

cv =
M∑
i=1

(Ii · (wi − 1)) (5)

Ii = 1 if wi > 1. Otherwise, Ii = 0.
Cielo also considers a bandwidth capacity constraint: yi ≤

1 for all M hosts. yi is the total bandwidth allocated to
the i-th host (in percentage). The violation of bandwidth
constraint is computed as:

bv =

M∑
i=1

(Ii · (yi − 1)) (6)

Ii = 1 if yi > 1. Otherwise, Ii = 0.

Figure 1: Three Tiers of Web, Application and Database Servers

3. EVOLUTIONARY GAME THEORY
In a conventional game, the objective of a player is to

choose a strategy that maximizes its payoff. In contrast,
evolutionary games are played repeatedly by players ran-
domly drawn from a population. This section overviews key
elements in evolutionary games: evolutionarily stable strate-
gies (ESS) and replicator dynamics.

3.1 Evolutionarily Stable Strategies (ESS)
Suppose all players in the initial population are programmed

to play a certain (incumbent) strategy k. Then, let a small
population share of players, x ∈ (0, 1), mutate and play a
different (mutant) strategy `. When a player is drawn for a
game, the probabilities that its opponent plays k and ` are
1−x and x, respectively. Thus, the expected payoffs for the
player to play k and ` are denoted as U(k, x`+(1−x)k) and
U(`, x`+ (1− x)k), respectively.

Definition 1. A strategy k is said to be evolutionarily
stable if, for every strategy ` 6= k, a certain x̄ ∈ (0, 1) exists,
such that the inequality

U(k, x`+ (1− x)k) > U(`, x`+ (1− x)k) (7)

holds for all x ∈ (0, x̄).

1206

If the payoff function is linear, Equation 7 derives:

(1− x)U(k, k) + xU(k, `) > (1− x)U(`, k) + xU(`, `) (8)

If x is close to zero, Equation 8 derives either
U(k, k) > U(`, k) or U(k, k) = U(`, k) and U(k, `) > U(`, `) (9)

This indicates that a player associated with the strategy
k gains a higher payoff than the ones associated with the
other strategies. Therefore, no players can benefit by chang-
ing their strategies from k to the others. This means that
an ESS is a solution on a Nash equilibrium. An ESS is a
strategy that cannot be invaded by any alternative (mutant)
strategies that have lower population shares.

3.2 Replicator Dynamics
The replicator dynamics describes how population shares

associated with different strategies evolve over time [20]. Let
λk(t) ≥ 0 be the number of players who play the strategy
k ∈ K, where K is the set of available strategies. The

total population of players is given by λ(t) =
∑ |K|

k=1λk(t).
Let xk(t) = λk(t)/λ(t) be the population share of players
who play k at time t. The population state is defined by
X(t) = [x1(t), · · · , xk(t), · · · , xK(t)]. Given X, the expected
payoff of playing k is denoted by U(k,X). The population’s
average payoff, which is same as the payoff of a player drawn
randomly from the population, is denoted by U(X,X) =∑ |K|

k=1xk ·U(k,X). In the replicator dynamics, the dynamics
of the population share xk is described as follows. ẋk is the
time derivative of xk.

ẋk = xk · [U(k,X)− U(X,X)] (10)

This equation states that players increase (or decrease)
their population shares when their payoffs are higher (or
lower) than the population’s average payoff.

Theorem 1. If a strategy k is strictly dominated, then
xk(t)t→∞ → 0.

A strategy is said to be strictly dominant if its payoff is
strictly higher than any opponents. As its population share
grows, it dominates the population over time. Conversely, a
strategy is said to be strictly dominated if its payoff is lower
than that of a strictly dominant strategy. Thus, strictly
dominated strategies disappear in the population over time.

There is a close connection between Nash equilibria and
the steady states in the replicator dynamics, in which the
population shares do not change over time. Since no play-
ers change their strategies on Nash equilibria, every Nash
equilibrium is a steady state in the replicator dynamics. As
described in Section 3.1, an ESS is a solution on a Nash equi-
librium. Thus, an ESS is a solution at a steady state in the
replicator dynamics. In other words, an ESS is the strictly
dominant strategy in the population on a steady state.

Cielo maintains a population of deployment strategies for
each application. In each population, strategies are ran-
domly drawn to play games repeatedly until the population
state reaches a steady state. Then, Cielo identifies a strictly
dominant strategy in the population and deploys VMs based
on the strategy as an ESS.

4. CIELO
Cielo maintains N populations, {P1,P2, ...,PN}, for N

applications and performs games among strategies in each
population. A strategy s is defined to indicate the locations
of and resource allocation for three VMs in an application:

s(ai) =
⋃

t∈1,2,3
(hi,t, ci,t, bi,t, fi,t), 1 < i < N (11)

Figure 2: Example Deployment Strategies

ai denotes the i-th application. hi,t is the ID of a host
that operates ai’s t-th tier VM. ci,t and bi,t are the CPU
and bandwidth allocation for ai’s t-th tier VM. fi,t denotes
the CPU frequency of host hi,t. Fig. 2 shows two example
strategies for two applications (a1 and a2) (N = 2 and M =
3). a1’s strategy (s(a1)) places the first-tier VM on host 1
(h1,1 = 1), which operates at 1 GHz CPU frequency and
consumes 30% CPU share and 80 Kbps bandwidth for the
VM (c1,1 = 30 and b1,1 = 80). The second-tier VM is placed
on host 1 (h1,2 = 1), which consumes 30% CPU share and
85 Kbps bandwidth for the VM (c1,2 = 30 and b1,2 = 85).
The third-tier VM is placed on host 2 (h1,3 = 2), which
operates at 2 GHz CPU frequency and consumes 45% CPU
share and 120 Kbps bandwidth for the VM (c1,3 = 45 and
b1,3 = 120). Given s(a1), a1’s objective values for CPU
allocation and bandwidth allocation are 105% (30 + 30 +
45) and 285 kbps (80 + 85 + 120).

Algorithm 1 Evolutionary Process in Cielo

1: g = 0
2: Randomly generate the initial N populations for N applica-

tions: P = {P1,P2, ...,PN}
3: while g < Gmax do
4: for each population Pi randomly selected from P do
5: P ′i ← ∅
6: for j = 1 to |Pi|/2 do
7: s1 ← randomlySelect(Pi)
8: s2 ← randomlySelect(Pi)
9: winner ← performGame(s1, s2)

10: replica ← replicate(winner)
11: if random() ≤ Pm then
12: replica ← mutate(winner)
13: end if
14: Pi \ {s1, s2}
15: P ′i ∪ {winner, replica}
16: end for
17: Pi ← P ′i
18: di ← argmaxs∈Pi

xs
19: while di is infeasible do
20: Pi \ {di}
21: di ← argmaxs∈Pi

xs
22: end while
23: Deploy VMs for the current application based on di.
24: end for
25: g = g + 1

26: end while

Algorithm 1 shows how Cielo seeks an evolutionarily sta-
ble strategy for each application through evolutionary games.
In the 0-th generation, strategies are randomly generated
for each population (Line 2). In each generation (g), a se-
ries of games are carried out on every population (Lines 4
to 24). A single game randomly chooses a pair of strategies
(s1 and s2) and distinguishes them to the winner and the

1207

loser with respect to the objectives described in Section 2
(Lines 7 to 9). The loser disappears in the population. The
winner is replicated to increase its population share and mu-
tated with a certain rate Pm (Lines 10 to 15). Mutation
randomly chooses one of three VMs in the winner and alters
its hi,t, ci,t and bi,t values at random (Line 12).

Once all strategies play games in the population, Cielo
identifies a feasible strategy whose population share (xs) is
the highest and determines it as a dominant strategy (di)
(Lines 18 to 22). A strategy is said to be feasible if it never
violate the CPU and bandwidth capacity constraints (cv = 0
in Eq. 5 and bv = 0 in Eq. 6). It is said to be infeasible if
cv > 0 or bv > 0. Cielo deploys three VMs for an application
in question based on the dominant strategy.

In performGame() (Algorithm 1), the selection of a win-
ner depends on the dominance relationship between given
two strategies and their feasibility. A strategy s1 is said to
dominate another strategy s2 (denoted by si � sj) iif:

• s1’s objective values are superior than, or equal to, s2’s
in all objectives, and

• s1’s objective values are superior than s2’s in at least
one objectives.

A strategy s1 is said to win over another strategy s2 if:

• s1 is feasible and s2 is infeasible.

• Both s1 and s2 are feasible, and s1 � s2.

• Both s1 and s2 are infeasible, and s1’s constraint vio-
lation is lower than s2’s (cvs1 + bvs1 < cvs2 + bvs2).

5. STABILITY ANALYSIS
This section analyzes Cielo’s stability (i.e., reachability

to at least one of Nash equilibria) by proving the state of
each population converges to an evolutionarily stable equi-
llibrium. The proof consists of three steps: (1) designing
differential equations that describe the dynamics of the pop-
ulation state, (2) proving an strategy selection process has
equilibria, and (3) proving the the equilibria are asymptoti-
cally (or evolutionarily) stable. The proof uses the following
terms and variables.

• S denotes the set of available strategies. S∗ denotes a
set of strategies that appear in the population.

• X(t) = {x1(t), x2(t), · · · , x|S∗|(t)} denotes a popula-
tion state at time t where xs(t) is the population share
of a strategy s ∈ S.

∑
s∈S∗(xs) = 1.

• Fs is the fitness of a strategy s. It is a relative value
determined in a game against an opponent based on
the dominance relationship between them. The winner
of a game earns a higher fitness than the loser.

• psk = xk · φ(Fs − Fk) denotes the probability that a
strategy s is replicated by winning a game against an-
other strategy k. φ(Fs − Fk) is the probability that
the fitness of s is higher than that of k.

The dynamics of the population share of s is described as:

ẋs =
∑

k∈S∗,k 6=s

{xspsk − xkp
k
s}

= xs
∑

k∈S∗,k 6=s

xk{φ(Fs − Fk)− φ(Fk − Fs)} (12)

Note that if s is strictly dominated, xs(t)t→∞ → 0.

Theorem 2. The state of a population converges to an
equilibrium.

Proof. It is true that different strategies have different
fitness values. In other words, only one strategy has the
highest fitness among others. Given Theorem 1, assuming
that F1 > F2 > · · · > F|S∗|, the population state converges
to an equilibrium: X(t)t→∞ = {x1(t), x2(t), · · · , x|S∗|(t)}t→∞
= {1, 0, · · · , 0}.

Theorem 3. The equilibrium found in Theorem 2 is asymp-
totically stable.

Proof. At the equilibrium X = {1, 0, · · · , 0}, a set of
differential equations can be downsized by substituting x1 =
1− x2 − · · · − x|S∗|

żs = zs[cs1(1− zs) +

|s∗|∑
i=2,i6=s

zi · csi], s, k = 2, ..., |S∗| (13)

where csk ≡ φ(Fs−Fk)−φ(Fk−Fs)) and Z(t) = {z2(t), z3(t),
· · · , z|S∗|(t)} denotes the corresponding downsized popula-
tion state. Given Theorem 1, Zt→∞ = Zeq = {0, 0, · · · , 0}
of (|S∗| − 1)-dimension.

If all Eigenvalues of Jaccobian matrix of Z(t) has nega-
tive real parts, Zeq is asymptotically stable. The Jaccobian
matrix J ’s elements are

Jsk =

[
∂żs

∂zk

]
|Z=Zeq

=

∂zs[cs1(1− zs) +
∑|S∗|

i=2,i6=s zi · csi]
∂zk

|Z=Zeq

(14)

for s, k = 2, ..., |S∗|

Therefore, J is given as follows, where c21, c31, · · · , c|S∗|1
are J ’s Eigenvalues.

J =

c21 0 · · · 0
0 c31 · · · 0
...

...
. . .

...
0 0 · · · c|S∗|1

 (15)

cs1 = −φ(F1−Fs) < 0 for all s; therefore, Zeq = {0, 0, · · · , 0}
is asymptotically stable.

6. SIMULATION EVALUATION
This section evaluates Cielo’s adaptability and stability

through simulations. This paper uses a simulated cloud data
center that consists of 100 hosts in a 10 × 10 grid topology
(M = 100). The grid topology is chosen based on recent
findings on efficient topology configurations in clouds [8, 9].
This paper also assumes five types of applications. Table 1
shows the message arrival rate (the number of incoming mes-
sages per second) and message processing time (second) for
each of the five application types. This configuration follows
Zipf’s law. This paper simulates 40 application instances for
each type (200 application instances in total; N = 200).

Table 1: Message Arrival Rate and Message Processing Time

Application type 1 2 3 4 5

Message arrival rate (λ) 110 70 40 20 10

Web server (T p
1) 0.02 0.02 0.04 0.04 0.08

App server (T p
2) 0.03 0.08 0.04 0.13 0.11

DB server (T p
3) 0.05 0.05 0.12 0.08 0.11

This paper assumes each host is equipped with an AMD
Opteron 2218 CPU, which has six frequency and voltage

1208

operating points (P-states). Table 2 shows the power con-
sumption at each P-state under the 0% and 100% CPU uti-
lization [10, 17]. This setting is used in Eq. 4 to compute
power consumption objective values.

In Cielo, the number of strategies is 100 in each popula-
tion. Mutation rate (Pm in Algorithm 1) is set to 0.01. The
maximum number of generations (Gmax in Algorithm 1) is
set to 400. Every simulation result is the average with 20
independent simulation runs.

Table 2: P-states in AMD Opteron 2218

CPU frequency (f) P f
idle P f

max

1.0 GHz 34 W 68 W
1.8 GHz 51 W 80 W
2.0 GHz 55 W 84 W
2.2 GHz 66 W 89 W
2.4 GHz 90 W 97 W
2.6 GHz 96 W 108 W

Figs. 3 to 9 illustrate how Cielo evolves deployment strate-
gies through generations and improve their objective values
with respect to a given objective(s). Figs. 3 to 6 show the
changes of objective values over generations when one of
four objectives is considered. For example, Cielo considers
the CPU allocation objective in Fig. 3.

In Fig. 3, CPU allocation decreases through generations
because it is considered as the objective. Its average reaches
17.6% in the last generation, which is the best performance
among Figs. 3a, 4a, 5a and 6a. The other objective values
do not improve because they are not considered.

In Fig. 4, bandwidth allocation improves over time be-
cause it is considered as the objective. Its average reaches
185 Kbps in the last generation. This is the best perfor-
mance among Figs. 3c, 4c, 5c and 6c. The improvement in
bandwidth allocation contributes to the increase of response
time because these two objectives conflict with each other.

In Fig. 5, response time improves over time because it is
considered as the objective. Its average reaches 440 milisec-
onds in the last generation, which is the best result among
Figs. 3b, 4b, 5b and 6b. As response time decreases, band-
width allocation and power consumption increases because
they are conflicting with each other.

In Fig. 6, power consumption decreases over time because
it is considered as the objective. Its average reaches 150 W
in the last generation, which is the best performance among
Figs. 3d, 4d, 5d and 6d. For reducing power consumption,
Cielo attempts to collocate as many VMs as possible on some
hosts and turn off the other hosts that operate no VMs. It
also attempts to run hosts at lower CPU frequencies. Fig. 10
confirms this analysis. It shows the number of hosts at each
P-state in the last generation. With power consumption
considered, 32 hosts are turned-off (indicated as 0 GHz),
and 33 hosts run at the lowest P-state (1 GHz). Only four
hosts run at the highest P-state (2.6 GHz). In Figs. 6 and 10
demonstrate that Cielo successfully leverage DVFS to reduce
power consumption. Note that response time increases as
power consumption decreases because they are conflicting.

Figs. 3 to 6 demonstrate that Cielo successfully evolves
deployment strategies so that applications improve their ob-
jective values with respect to a given objective(s).

In Figs. 7 and 8, two objectives are considered simultane-
ously. All objectives are considered simultaneously in Fig. 9.
As these figures show, Cielo successfully balance objective
values by following the trade-offs among given objectives.

Table 3 compares Cielo with a well-known evolutionary
multiobjective genetic algorithm, NSGA-II [4]1, as well as
existing heuristics, FFA (first-fit algorithm) and BFA (best-
fit algorithm), which have been widely used for VM place-
ment in clouds [1, 7, 15, 16]. The table shows the minimum,
average and maximum objective values in the last gener-
ation. In all objectives, Cielo outperforms NSGA-II. The
largest difference is in the minimum bandwidth allocation
with DVFS disabled (40%), and the smallest difference is in
the maximum response time with DVFS enabled (16.60%).
On average, Cielo outperforms NSGA-II by 24.19%. With
DVFS disabled, FFA yields the lowest power consumption
because it is designed to deploy VMs on the minimum num-
ber of hosts; however, it sacrifices the other objectives. BFA
is the best in CPU allocation and the worst in power con-
sumption because it is designed to deploy VMs on the hosts
that maintain higher resource availability. With all five ob-
jectives considered, Cielo maintains balanced objective val-
ues in between FFA and BFA while yielding the best per-
formance in response time and bandwidth allocation.

Table 4 shows the variance of objective values that Cielo
and NSGA-II yield at the last generation in 20 different sim-
ulation runs. A lower variance means higher stability (or
higher similarity) in objective value results (i.e., lower os-
cillation in objective value results) among different simula-
tion runs. Cielo consistently maintains higher stability than
NSGA-II. Cielo’s average stability is 29.32% higher than
NSGA-II’s. This result exhibits Cielo’s stability property
(i.e. ability to seek evolutionarily stable strategies), which
NSGA-II does not have.

Fig. 11 shows the time required for Cielo and NSGA-II
to execute given numbers of generations. Simulations were
carried out with a Java VM 1.7 on a Windows 8.1 PC with
a 3.6 GHz AMD A6-5400K APU and 6 GB memory space.
For running a single simulation (i.e., 400 generations), Cielo
is 74.1% faster than NSGA-II.

Figure 10: # of hosts at each P-state in the last generation

7. RELATED WORK
Numerous research efforts have been made to study heuris-

tic algorithms for application placement problems in clouds
(e.g., [1,3,7,13,15,16,21,23]). Most of them assume single-
tier application architecture and considers a single objective.
For example, in [3,13,21,23], only energy saving is considered

1NSGA-II and Cielo use the same population size and the
same limit of generations. All other configurations are bor-
rowed from [4].

1209

(a) CPU allocation (b) Response time (c) Bandwidth allocation (d) Power consumption

Figure 3: Configuration C1: With the CPU Allocation Objective Considered

(a) CPU allocation (b) Response time (c) Bandwidth allocation (d) Power consumption

Figure 4: Configuration C2: With the Bandwidth Allocation Objective Considered

(a) CPU allocation (b) Response time (c) Bandwidth allocation (d) Power consumption

Figure 5: Configuration C3: With the Response Time Objective Considered

(a) CPU allocation (b) Response time (c) Bandwidth allocation (d) Power consumption

Figure 6: Configuration C4: With the Power Consumption Objective Considered

1210

(a) CPU allocation (b) Response time (c) Bandwidth allocation (d) Power consumption

Figure 7: Configuration C5: With the Response Time and Power Consumption Objectives Considered

(a) CPU allocation (b) Response time (c) Bandwidth allocation (d) Power consumption

Figure 8: Configuration C6: With the Response Time and Bandwidth Allocation Objectives Considered

(a) CPU allocation (b) Response time (c) Bandwidth allocation (d) Power consumption

Figure 9: Configuration C7: With All Four Objectives Considered

Figure 11: Computational Costs for Cielo and NSGA-II

as the objective. In contrast, Cielo assumes a multi-tier ap-
plication architecture and considers multiple objectives. It
is intended to reveal the trade-off relationships among con-
flicting objectives.

Game theoretic algorithms have been used for a few as-
pects of cloud computing; e.g., application placement [5,12,
24], task allocation [18] and data replication [11]. In [5, 12,
24], greedy algorithms seek equilibria in application place-
ment problems. This means they do not attain the stability
to reach equilibria as Cielo does.

Several genetic algorithms (e.g., [19,22]) and other stochas-
tic optimization algorithms (e.g., [2,6]) have been studied to
solve application placement problems in clouds. They seek
the optimal placement solutions; however, they do not con-
sider stability. In contrast, Cielo aids applications to seek
evolutionarily stable solutions and stay at equilibria.

This paper reports a set of extensions to the authors’ prior
work [14]. For the problem formulation, this paper consid-
ers two extra objectives (bandwidth allocation and power
consumption) and an extra parameter in each deployment
strategy (bandwidth allocation), all of which are not studied
in [14]. This paper also considers constraints in CPU and
bandwidth allocation and investigates a constraint-handling
algorithm (Section 4), while no constraints are assumed in [14].
Moreover, this paper carries out larger-scale simulations with

1211

Table 3: Performance of Cielo, NSGA-II, FFA and BFA

Objectives Min Avg Max

Power
consumption

(W)

Cielo w/ DVFS 4,370 5,000 5,830
Cielo w/o DVFS 8,806 9,090 9,280
NSGA-II w/ DVFS 6,143 6,643 6,960
NSGA-II w/o DVFS 10,032 10,033 10,036
FFA w/o DVFS 4,380 4,380 4,381
BFA w/o DVFS 10,090 10,103 10,127

CPU
allocation
(%/host)

Cielo w/ DVFS 68.4 70.4 72
Cielo w/o DVFS 65.6 68.8 71.6
NSGA-II w/ DVFS 85.5 86.1 86.4
NSGA-II w/o DVFS 83.4 84.9 85.8
FFA w/o DVFS 96.9 96.9 96.9
BFA w/o DVFS 40.65 40.65 40.65

Bandwidth
allocation

(kbps/host)

Cielo w/ DVFS 430 440 450
Cielo w/o DVFS 420 420 430
NSGA-II w/ DVFS 530 540 550
NSGA-II w/o DVFS 520 530 530
FFA w/o DVFS 290 290 290
BFA w/o DVFS 305 305 305

Response
time

(msec)

Cielo w/ DVFS 174.9 185.51 200.15
Cielo w/o DVFS 172.21 190 204
NSGA-II w/ DVFS 282.3 287 290.6
NSGA-II w/o DVFS 287 289.37 290.75
FFA w/o DVFS 206 206 206
BFA w/o DVFS 203.75 203.75 203.75

Table 4: Stability of Objective Values in Cielo and NSGA-II

Objectives Cielo NSGA-II Diff (%)

Power consumption (W) 150 199.3 24.73
CPU allocation (%) 17.6 28.7 38.67
Response time (ms) 440 540 18.51
Bandwidth allocation (kbps) 185.51 287.08 35.38

Average Difference (%) 29.32

more realistic configurations than [14], which uses only five
hosts and simple topologies among them on a cloud that
never support DVFS.

8. CONCLUSIONS
This paper proposes and evaluates Cielo, an evolutionary

game theoretic framework for adaptive and stable applica-
tion deployment in DVFS-enabled clouds. It theoretically
guarantees that every application seeks an evolutionarily
stable deployment strategy, which is an equilibrium solution
under given workload and resource availability. Simulation
results verify that Cielo performs application deployment in
an adaptive and stable manner. Cielo outperforms existing
well-known heuristics in the quality, stability and computa-
tional cost of application deployment.

9. REFERENCES
[1] H. Casanova, M. Stillwell, and F. Vivien. Virtual machine

resource allocation for service hosting on heterogeneous
distributed platforms. In Proc. IEEE Int’l Parallel &
Distributed Processing Symposium, 2012.

[2] X. Chang, B. Wang, L. Jiqiang, W. Wang, and
K. Muppala. Green cloud virtual network provisioning
based ant colony optimization. In Proc. ACM Int’l
Conference on Genetic and Evol. Computat, 2013.

[3] S. Chen, K. R. Joshi, M. A. Hiltunen, R. D. Schlichting,
and W. H. Sanders. Blackbox prediction of the impact of
DVFS on end-to-end performance of multitier systems.
ACM SIGMETRICS Performance Eval. Rev., 37(4), 2010.

[4] K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan. A fast
elitist non-dominated sorting genetic algorithm for

multi-objective optimization: NSGA-II. In Proc. Conf.
Parallel Problem Solving from Nature, 2000.

[5] N. Doulamis, A. Doulamis, A. Litke, A. Panagakis,
T. Varvarigou, and E. Varvarigos. Adjusted fair scheduling
and non-linear workload prediction for QoS guarantees in
grid computing. Elsevier Computer Comm., 30(3), 2007.

[6] Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu. A
multi-objective ant colony system algorithm for virtual
machine placement in cloud computing. J. Computer and
System Sciences, 79(8), 2013.

[7] H. Goudarzi and M. Pedram. Energy-efficient virtual
machine replication and placement in a cloud computing
system. In Proc. IEEE Int’l Conf. on Cloud Comput., 2013.

[8] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian,
Y. Zhang, and S. Lu. Bcube: A high performance,
server-centric network architecture for modular data
centers. In Proc. of ACM SIGCOM, 2009.

[9] C. Guo, H. Wu, K. Tan, L. Shiy, Y. Zhang, and S. Lu.
Dcell: A scalable and fault-tolerant network structure for
data centers. In Proc. of ACM SIGCOM, 2008.

[10] B. Kerby. Managing data center power and cooling with
AMD Opteron processors and AMD PowerNow!
technology. Technical report, Dell Inc., 2007.

[11] S. Khan and I. Ahmad. A pure Nash equilibrium based
game theoretical method for data replication across
multiple servers. IEEE T. Knowl. Data En., 21(4), 2009.

[12] S. U. Khan and C. Ardil. Energy efficient resource
allocation in distributed computing systems. In Proc. of
Int’l Conf. on Distrib., High-Perf. and Grid Comp., 2009.

[13] D. Kliazovich, P. Bouvry, and S. U. Khan. DENS: data
center energy-efficient network-aware scheduling. Cluster
Computing, 16(1), 2013.

[14] C. Lee, J. Suzuki, A. V. Vasilakos, Y. Yamano, and
K. Oba. An evolutionary game theoretic approach to
adaptive and stable application deployment in clouds. In
Proc. IEEE Workshop on Bio-Inspired Algorithms for
Distributed Systems, 2010.

[15] X. Lia, Z. Qiana, S. Lua, and J. Wu. Energy efficient
virtual machine placement algorithm with balanced and
improved resource utilization in a data center.
Mathematical and Computer Modelling, 58(5-6), 2013.

[16] F. Ma, F. Liu, and Z. Liu. Multi-objective optimization for
initial virtual machine placement in cloud data center. J.
Infor. and Computational Science, 9(16), 2012.

[17] J.-M. Pierson and H. Casanova. On the utility of DVFS for
power-aware job placement in clusters. In Proc. Int’l Conf.
on Parallel Processing, 2011.

[18] R. Subrata, A. Y. Zomaya, and B. Landfeldt. Game
theoretic approach for load balancing in computational
grids. IEEE Trans. Parall. Distr., 19(1), 2008.

[19] H. A. Taboada, J. F. Espiritu, and D. W. Coit.
MOMS-GA: A Multi-Objective Multi-State Genetic
Algorithm for System Reliability Optimization Design
Problems. IEEE Trans. Reliability, 57(1), 2008.

[20] P. Taylor and L. Jonker. Evolutionary stable strategies and
game dynamics. Elsevier Mathematical Biosci., 40(1), 1978.

[21] von Laszewski, L. Wang, A. J. Younge, and X. He.
Power-aware scheduling of virtual machines in
DVFS-enabled clusters. In Proc. IEEE Int’l Conf. on
Clusters, 2009.

[22] H. Wada, J. Suzuki, Y. Yamano, and K. Oba. E3: A
multiobjective optimization framework for sla-aware service
composition. IEEE Trans. Services Computing, 5(3), 2012.

[23] Q. Wang, Y. Kanemasa, J. Li, C. A. Lai, M. Matsubara,
and C. Pu. Impact of DVFS on n-tier application
performance. In Proc. ACM Conference on Timely Results
in Operating Systems, 2010.

[24] G. Wei, A. V. Vasilakos, Y. Zheng, and N. Xiong. A
game-theoretic method of fair resource allocation for cloud
computing services. J. Supercomputing, 54(2), 2009.

1212

