
A Comparison of Antenna Placement Algorithms

Abhinav Jauhri
Dept. of Electrical & Computer

Engineering
Carnegie Mellon University

Pittsburgh, PA, USA
ajauhri@cmu.edu

Jason D. Lohn
Dept. of Electrical & Computer

Engineering
Carnegie Mellon University

Pittsburgh, PA, USA
jlohn@ece.cmu.edu

Derek S. Linden
X5 Systems

Ashburn, VA, USA
dlinden@x5systems.com

ABSTRACT
Co-location of multiple antenna systems on a single fixed
or mobile platform can be challenging due to a variety of
factors, such as mutual coupling, individual antenna con-
straints, multipath, obstructions, and parasitic effects due
to the platform. The situation frequently arises where a
new communication capability, and hence antenna system,
is needed on an existing platform. The problem of plac-
ing new antennas requires a long, manual effort in order to
complete an antenna placement study. An automated pro-
cedure for determining such placements would not only save
time, but would be able to optimize the performance of all
co-located antenna systems. In this paper we examine a set
of stochastic algorithms to determine their effectiveness at
finding optimal placements for multiple antennas on a plat-
form. To our knowledge, this is the first study to investigate
optimizing multiple antenna placement on a single platform
using multiple stochastic algorithms. Of the four algorithms
studied, simulated annealing and evolutionary strategy were
found to be most effective in finding optimal placements.

Categories and Subject Descriptors
I.2.8 [Aritifical Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods; I.6.3 [Simulation
and Modeling]: Applications

General Terms
Algorithms, Performance

Keywords
Antenna Placement, Placement Optimization, Genetic Al-
gorithm, Simulated Annealing, Hill Climber, Evolutionary
Strategy, Multi-Objective Optimization

1. INTRODUCTION
Antenna placement on a multi-antenna platform currently

involves a manual process that is challenging, time-consuming,
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and may result in sub-optimal placements leading to lowered
communication systems’ performance. Moreover, the search
space becomes exponentially large with regard to the num-
ber of antennas to be placed (|search space| = mn, where m
is the number of allowable placements for each antenna and
n is number of antennas).

Applying an evolutionary algorithm (EA) to this problem
could greatly improve this process by automatically deter-
mining acceptable antenna placements. Evolutionary algo-
rithms encompass a variety of computer search technologies,
with the Genetic Algorithm (GA) being the most well-known
[10]. EAs have proven very capable in discovering high per-
formance antenna designs and previous work has been re-
sponsible for a number of advances [9], including the semi-
nal patent for this process and genetically-evolved antennas
deployed in space [14, 16]. Additionally, our work is highly
generic such that any type of a platform may be used to
find optimal placement of antennas.

Our main contributions are:

• Applying existing stochastic algorithms to help deter-
mining optimal or near-optimal antenna placements on
a platform

• Our approach is agnostic of the type of platform used

• We apply experiments on different types of platforms
and antennas to demonstrate the effectiveness of dif-
ferent stochastic algorithms

In Section 2, we provide some related work done with
finding optimal antenna placements. Section 3 formally de-
scribes the problem statement, fitness calculation, and the
representation of an individual which we shall refer to as
hypothesis. Different algorithms used in our study to find
optimal antenna placements are formally described in Sec-
tion 4. Experimental setup is described in Section 5. Section
6 has simulation results and comparison of algorithms. Se-
lection of parameters for certain algorithms is also described
in Section 6. In the last section, we conclude, and provide
future directions for further investigation.

2. RELATED WORKS
The problem of optimizing the placement of multiple an-

tennas on a single platform has rarely been studied, if at all.
The closest research we have found concerns algorithms for
locating and configuring infrastructure for cellular wireless
networks with the assumption of isotropic radiation pattern,
for example [25]. Another related is work used characteristic
mode analysis to compute optimal antenna locations for an
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Figure 1: Platform used for test case 1 (tc1) & 4
(tc4)

antenna placed within a mobile device [24, 7]. In our work,
none of the algorithms discussed have prior information of
good antenna placements or type of antennas to be placed
on the platform.

In addition, the related problem of co-designing antennas
for a given platform (in-situ design) using EAs has been
investigated in [15] with encouraging results. Because an-
tenna placement bears many similarities to antenna design,
we believe that such algorithms will prove effective.

3. PROBLEM FORMULATION
A platform for our problem formulation could vary from

a simple rectangular box to an aircraft.

3.1 Inputs
Our inputs to an algorithm shall comprise of a platform

and set of antennas each with allowable placements on the
platform. Formally, a platform, P , in 3-dimensional space
with its surface discretized into a regular grid with some
spacing consisting of potential antenna placement points
(see Figure 1). Let m denote the number of antennas to
be placed on P such that m > 1, and let A represent the set
of antennas: A = {A1, ..., Am}. For each antenna Ai, let Li
denote the set allowable placement coordinates ∈ R3 on P
such that | Li |= ni, and ∀i, ni > 1:

Li = {(x1, y1, z1), ..., (xni , yni , zni)}

Using the inputs, a hypothesis (an individual is re-
ferred to as hypothesis in this paper1), H, is formed by
a set of m antenna locations. In other words, a hypothesis
is a placement configuration i.e. a set having m placements,
one for each of the m antennas, in 3-dimensional space:

H = {(x1, y1, z1), · · · , (xm, ym, zm)}

The reader should note that the number of allowable place-
ments for any antenna are finite. We shall elaborate how
that is ensured later in Section 5.

1Hypotheses are described as bit strings with interpretation
based on the application [20]

3.2 Fitness Evaluation
The placement optimization aims to find the best hypoth-

esis, H∗, such that the radiation pattern and mutual cou-
pling are optimal. For optimal radiation pattern, we shall
minimize the difference between the free-space gain pattern
(FSG) of antenna Ai, and its pattern when placed on P and
in the presence of all remaining antennas (in-situ gain, or
ISG). Thus, for each gain point for Ai we compute:

FRP (Ai) =
∑
θ

∑
φ

‖ISGi(θ, φ)− FSGi(θ, φ)‖2, (1)

where θ & φ define the spherical and cylindrical coordi-
nates of a field point respectively (see Section 5 for more
information).

For the second objective, it is desired to minimize the mu-
tual coupling between the antennas for a given placement
configuration because strong mutual coupling reduces an-
tenna efficiency [13]. This is computed in a pairwise manner
where the CP function computes the coupling between two
antennas:

FMC =

m−1∑
i=1

m∑
j=i+1

CP (Ai, Aj) (2)

The overall optimization for a given placement configu-
ration is to minimize fitness, F , as follows optimal antenna
placement for mobile terminals using characteristic analysis:

F = αFMC + β
∑
i

FRP (Ai), (3)

where α and β are constants which satisfy: α+β = 1. Values
for FMC and FRP are positively correlated [30], and there-
fore we can set α and β to some value ∈ [0, 1] without loss
of generality. F will be provided by an antenna simulation
software which will be introduced in Section 5.

Radiation pattern and antenna coupling are measured in
decibels (dB) which is a logarithmic unit used to express the
ratio between two quantities i.e. 10 · log x1/x2. For radia-
tion pattern fitness parameter, the antenna strength or gain
shown in Eq.(1), at any given point on a sphere is the ratio
of the signal strength of the antenna being tested to a per-
fectly isotropic antenna, expressed in dB. For coupling, the
ratio compares the energy absorbed by one antenna when
the another antenna is operating nearby. For our antenna
placement problem, this absorption is undesirable because
we want the energy to be radiated away in order to establish
a communication link, and not be absorbed by a nearby an-
tenna. This coupling thus reduces the antenna’s efficiency.
For example, if the coupling (FMC) was −10 dB for an hy-
pothesis instead of the best, let’s say −13 dB, then this
reflects a difference ∆c of 3 dB which translates to a dou-
bling of energy absorbed in the -10 dB case compared to the
-13 dB case. Shown in Table 1 is the equivalence of overall
fitness (F ) to ∆c. Also shown is the equivalence to expected
gain defined as:

Eg =
1

N ·m

m∑
i

FRP (Ai), (4)

where N = | θ | · | φ |.
Each test case has its specific bounds on the different fit-

ness parameters, and therefore the equivalence values are
dependent on the test case as shown Table 1.
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Table 1: Equivalence of fitness to efficiency
ID Eg ∆c (dB)
tc1 872.277 0.5474
tc2 862.082 1.3034
tc3 861.845 1.5180
tc4 871.049 0.5693

For a particular test case, fitness change of 0.01 is equiv-
alent to either the corresponding value under Eg column,
or difference in coupling (∆c).

4. STOCHASTIC SEARCH ALGORITHMS
Here, we formally describe all stochastic algorithms used

for experiments and comparative analysis. Following details
are similar between algorithms and should be highlighted for
easy reproduction of this work:

• A hypothesis used by any algorithm is similar to as
defined in the previous Section 3.1.

• For any hypothesis, no two antenna placements over-
lap. It may be the case that two different antennas
have overlapping set of allowable placements, but the
formation of any hypothesis avoids such a case as it
may result in imprecise calculation of fitness.

• The fitness(H) function used in all four algorithms is
the equivalent of Eq.(3), assuming we have its inputs
i.e. FMC and FRP .

4.1 Genetic Algorithm
Genetic algorithms aims to model different DNA opera-

tions in nature like crossover and mutation. They have been
used extensively as stochastic search procedures for numer-
ous applications [23]. We have used elitism in our algorithm
since results in [36, 26] have shown performance speed up of
a GA significantly.

Operators in Antenna Placement Genetic Algorithm(AP-
GA, Algorithm 1) are one-point crossover and mutation.
Each pair for one-point crossover operation comprises of one
hypothesis uniformly selected from the population and the
other hypothesis from a tournament selection [18]. The size
of the hypothesis is not arbitrarily large, and therefore it
was preferred to keep the mutation restricted to just manip-
ulating one antenna placement of an hypothesis. For arbi-
trarily large number of antennas, one may need to consider
changing the mutation operator to manipulate more than
one antenna placement. The mutation operator described
in Algorithm 1 is common to all other algorithms compared
in this work.

We shall discuss about intuition for selecting values of pm
and pc in Section 6.

4.2 Evolutionary Strategy
The evolutionary strategy (µ+ λ) [27, 8] is different from

a genetic algorithm in the following ways: mutation is the
primary operator here for maintaining diversity in the pop-
ulation since there are no crossover operations. Survivor
selection is done by selecting only fittest µ hypotheses to
the next generation. See Algorithm 2. A 1/7 ratio was
maintained between µ and λ as suggested in [6].

Since we have a discrete set of placements (end points
of wires of a platform), mutation’s step size involves a new

Algorithm 1: AP-GA

Data: Set of placements L = {L1, · · · , Lm}; p -
population size; pm - percentage of population
to be with mutation operator; pc - crossover
probability; e - ratio of elite population; genmax
- maximum number of generations

Result: H∗ from P
1 Initialize P ← generate p random hypothesis. Each

hypothesis contains a placement for all m antennas. A
placement is chosen uniformly from each Li, for all
antennas ;

2 Compute the fitness(hi), i = 1, . . . , p ;
3 Order hypotheses in P such that
fitness(hi) < fitness(hj), where i < j ;

4 genid = 0 ;
5 while genid < genmax do
6 Elitism - Select top e · p hypotheses, elites, to add to

P ′ ;
7 Crossover - Select ((1− e) · p)/2 pairs of hypotheses.

Each pair is formed by choosing one hypothesis
using tournament selection and other uniformly
randomly from the population. For each pair M : ;

8 if rand(0, 1) < pc then
9 Apply one-point crossover operator to get two

offsprings O ;
10 Add O to P ′ ;

11 else
12 Add M to P ′ ;
13 end
14 Mutation - Uniformly select pm · p hypothesis from

P . For each, modify one uniformly at random
selected antenna location to a different allowable
location also selected uniformly at random ;

15 Update P ← P ′ ;
16 Compute fitness(hi); i = 1, . . . , p, and order new

population based on fitness ;
17 Update genid ← genid + 1 ;

18 end

placement from the set of allowable placements for an an-
tenna only. Both the antenna and its new placement are
selected uniformly at random. Mutation operator is surely
applied once on an hypothesis to generate the offspring.

Algorithm 2: AP-ES

Data: Set of placements L = {L1, · · · , Lm}; µ; λ;
genmax - maximum number of generations

Result: H∗ from P
1 Initialize P ← generate µ random hypothesis ;
2 genid = 0 ;
3 while genid < genmax do
4 Create λ/µ offsprings from each µ hypotheses by

applying mutation operator, and add all offsprings
to P ;

5 Compute the fitness(hi), i = 1, . . . , λ ;
6 Keep µ best hypotheses in P, and discard remaining

λ− µ hypotheses ;
7 Update genid ← genid + 1

8 end
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4.3 Simulated Annealing
Simulated annealing models thermodynamics [12] by in-

cluding a temperature cooling schedule. Numerous applica-
tions [28, 5] have compared simulated annealing with evolu-
tionary techniques. AP-SA (Algorithm 3) is similar to [35].
However, we perform some extra computation to determine
initial temperature using an approach stated in [2].

Algorithm 3: AP-SA

Data: Set of placements L = {L1, · · · , Lm}; T - initial
temperature; im - maximum iterations; fcooling -
cooling factor

Result: H∗ from P
1 Initialize H ← generate a random hypothesis ;
2 Compute fitness(H) ;
3 i = 0 ;
4 while i < im do
5 Mutation - Apply the operation on H as stated in

Algorithm 1. Call the pertubrated/mutated
hypothesis C ;

6 Compute δf = fitness(C)− fitness(H) ;
7 if δf > 0 then
8 Generate a random number ε using a uniform

distribution over [0, 1] ;

9 if ε < e−δf/T then
10 H ← C
11 end

12 else
13 H ← C ;
14 end
15 T ← T · fcooling ;
16 i← i+ 1 ;

17 end

4.4 Hill-Climbing
Hill climbing is different from a simulated annealing since

there is no cooling schedule. This makes a hill-climbing
prone to getting stuck in locally optimal solutions [17, 3].
However, the ease of implementation and effectiveness in nu-
merous optimization problems [29, 34] makes hill-climbing
a popular approach for stochastic search spaces. Here is
a simple hill-climbing algorithm, similar to [29], to provide
a basis on how a naive random search algorithm would do
on the antenna placement problem in comparison to other
stochastic techniques.

5. EXPERIMENTAL SETUP
We used an open source antenna modeling software called

Numerical Electromagnetic Code(NEC)[4] to calculate the
fitness of an hypothesis. NEC has been widely used for elec-
tromagnetic analysis and simulation work [32, 22]. More-
over, NEC provides a convenient interface to input details
about platform with antennas mounted, and to collect simu-
lation results which are mutual coupling and radiation pat-
tern. Our application, Evolutionary Antenna Placement2

(EAP), interacts with NEC to provide the input, and sub-
sequently uses the output generated by NEC to calculate
fitness.
2Link to code repository: https://github.com/ajauhri/
evol-ant-placement

Algorithm 4: AP-HC

Data: Set of placements L = {L1, · · · , Lm}; im -
maximum iterations

Result: H
1 Initialize H ← generate a random hypothesis ;
2 Compute fitness(H) ;
3 i = 0 ;
4 while i < im do
5 Mutation - Apply the operator on H & assign the

slightly perturbated hypothesis to C ;
6 Compute δf = fitness(C)− fitness(H) ;
7 if δf < 0 then
8 H ← C
9 end

10 i← i+ 1

11 end

Figure 2: Platform used for test case 2 (tc2)

For our purposes, the hypothesis is written to an input file
(to be referred as Nin) which is used by NEC modeler to gen-
erate an output file (to be referred as Nout). The platform
and all antennas of an hypothesis are written to Nin as a set
of wires with a start-point and an end-point in 3-dimensional
space. For instance, consider a wire represented by 2-tuple,
w, of real-valued coordinates; {(0, 0, 0.1), (0, 0.1, 0)}.

Figure 2 shows the meshed platform depicting a squared
plate with box and a sloped front used in test case 2 of our
experiments. The platform and antenna are just a set of
tuples similar to w. A square plate with box and sides fixed
was the platform for test case 3 (Figure 3). Possible antenna
locations, for all test cases, are defined by either start-points
or end-points of platform wires. Experiments with multiple
platforms highlight the technique to be highly generic for
platforms with any shape and design.

NEC has pre-defined cards which are inserted in Nin to
enable collection of fitness parameters. Radiation pattern,
generated by the RF card, is calculated using a set of field
points around a sphere. The number of field points in a radi-
ation pattern is determined by the product of total number
of spherical(θ) and cylindrical(φ) values which encompass
points in a sphere. All experiments computed the radiation
gain over 4140 points i.e.= | θ | · | φ |.
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Figure 3: Platform used for test case 3 (tc3)

Table 2: Antenna Placement Test Cases
ID Antennas Total allowable placements3

tc1 2 7,056 (83x83)
tc2 3 50,625 (45x45x25)
tc3 3 126,025 (71x71x25)
tc4 4 20,736 (12x12x12x12)

For our placement study, m input files would be gener-
ated by EAP for an hypothesis with m antennas and with
only one of the m antennas excited in each input file. Sub-
sequently, NEC would generate m output files with perfor-
mance measures. By exciting one antenna in each input
file, we are able to quantify the radiation pattern of an an-
tenna in presence of the platform and other antennas. To
determine the free-space gain pattern(FSG) for an antenna,
an input file is formed with just the antenna and no plat-
form. FRP is then calculated by EAP parsing 2m(m files
with platform and antennas; m files for free space pattern)
output files generated by NEC and performing a summation
over squared difference in gain between free-space and in the
presence of the platform and antennas (Eq.(1)).

The second fitness parameter - mutual coupling, is gener-
ated by inserting the CP card in the (m + 1)th file gener-
ated by EAP . A single file is needed for NEC to generate an
output file with mutual coupling results between all possible
pairs of antenna placements of an hypothesis.

All test cases were subjected to the same frequency of 100
MegaHertz using the FR card. For a detailed description of
formatting of Nin and Nout files, refer to the NEC manual
[4].

6. SIMULATION RESULTS
Comparative study of algorithms is based on multiple test

cases listed in Table 2. Test cases were evaluated by NEC
simulator which was run in parallel using GNU Parallel soft-
ware package [31].

Each test case was first evaluated with an exhaustive search
to determine fitness for all allowable placements and anten-

3Allowable placements for each antenna are provided within
parenthesis
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Figure 4: Mutation rates for AP-GA. The mean fit-
ness is calculated over a population size of 500 using
test case 1

nas. The results from exhaustive search were also used to
normalize fitness function values between [0, 1]. For all ex-
periments α = β = 0.5 in Eq.(3).

Prior to collection of results, a series of trial and error runs
were conducted in the case of Algorithm 1 to determine an
appropriate mutation rate. Intuitively, a high mutation rate,
referred as pm in Section 4.1, drives the algorithm into a ran-
dom search and renders evolutionary aspect of the algorithm
weak. This is ascertained in Figure 4 where the mean fit-
ness for each generation is shown over 10 runs of AP-GA.
However, it is preferred to have a high value for pc[19]. For
all test cases, AP-GA uses pm = 0.1 & pc = 0.6. genmax for
AP-GA and AP-ES is 10.

For similuted annealing, the cooling factor was kept as
1− τ , where τ = 0.01 ·miters. Maximum iterations(miters)
were about 70% of the total allowable placements of a test
case. The initial temperature calculated using technique
described in [2] ranged ∈ [0.23, 0.27].

Table 3 summarizes the average best fitness over 10 runs
found by all four algorithms. The best hypothesis H∗’s fit-
ness is shown under the Exhaustive algorithm column.

The reader should observe in Table 3 that effectiveness of
a stochastic algorithm can be computed by the difference
in the fitness found by the exhaustive search algorithm and
stochastic algorithms. Formally:

Merror =| fitness(H∗)−
n=10∑
i=1

bi/n |, (5)

where bi is the best fitness of the hypothesis found in a run
by the stochastic search algorithm. For a test case, this is
equivalent to the difference of the cell values of Exhaustive
column and any one of the stochastic search algorithms in
Table 3. Omitted here due to brevity.

Table 3 depicts the mean fitness found by AP-ES for all
test cases is equivalent to the optimal, H∗. This is also true
for AP-SA for test cases 3 & 4. Hence, on such instances
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Table 3: Mean Best Fitness`````````test case
method

Exhaustive(H∗) AP-GA AP-ES AP-SA AP-HC

tc1 0.496 841 0.499 33 0.496 841 0.499 485 0.501 59
tc2 0.496 877 0.497 957 0.496 877 0.504 270 0.5138
tc3 0.497 47 0.497 646 0.497 47 0.497 47 0.498 728
tc4 0.499 26 0.499 26 0.499 26 0.499 26 0.499 26

these two algorithms were able to find the best hypothesis
on all runs.

The other important observation is of how many num-
ber of fitness function evaluations did each algorithm take
to find a good hypothesis? Evolutionary strategy and simu-
lated annealing outperformed the genetic algorithm in terms
of mean number of fitness evaluations to find the best hy-
pothesis as seen in Table 4. These evaluations were recorded
for the same runs as shown previously in Table 3. The num-
ber of evaluations recorded were until the algorithm found
the best hypothesis or got stuck at some local optimal hy-
pothesis. Number of function evaluations is more appropri-
ate here rather than the CPU clock time as the time may
vary for each machine based on the hardware configuration.

We also visualized the fitness terrain of the best hypoth-
esis followed by each of the stochastic algorithms4. Such
visualization is a good tool to observe the correctness of the
algorithm. For instance, a simulated annealing is prone to
have an event of accepting a bad hypothesis with a higher
probability initially in the run and this event should happen
with low probability as algorithm proceeds. For all simu-
lated annealing graphs in Figures 5, 6, 7, & 8, we observe
that the gap between any two consecutive events of such na-
ture increases as the algorithm proceeds in the search space.

The genetic algorithm in Figure 6 accepted a worse hy-
pothesis because of the fact that mutation could happen
even in the group of elite hypothesis as stated in Algorithm
1. The elites were included in the mutation pool to main-
tain diversity. For evolutionary strategy and hill climbing,
the fitness terrain does not have unorthodox patterns. The
values in parenthesis for all population based algorithms viz.
genetic algorithm and evolutionary strategy, represent the
population size. They were kept at approximately the same
ratio with the corresponding size of the search space in Table
2.

It may be incorrectly depicted from Table 3 that hill-
climbing performed quite well for test case 3. This is not
the case, since the top ten hypotheses lie within a small
fitness range of [0.49747, 0.498428]. As known in general,
the hill-climbing algorithm made progress only in the ini-
tial phases of the run and got stuck in local optimums for
80% of the runs for test case 3. The purpose for inclusion
of such a random search algorithm was to highlight that an-
tenna placements may not be a trivial task to solve with high
probability, if the search space is large as in the case of test
case 3. For smaller test cases like test case 4, hill-climbing
may be appropriate.

7. CONCLUSION
A comparison of four stochastic search algorithms applied

to antenna placement optimization was presented. The re-

4The best hypothesis’s fitness curve was almost similar for
all 10 runs
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Table 4: Mean evaluations`````````test case
method

AP-GA AP-ES AP-SA AP-HC

tc1 2350 1728 667 164
tc2 31 680 11 165 1653 174
tc3 45 900 26 880 4809 227
tc4 6150 4466 423 90
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Figure 7: Test Case 3 Comparison
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Figure 8: Test Case 4 Comparison

sults showed that a trade-off space exists: faster, less suc-
cessful simulated annealing (AP-SA) search versus slower,
more successful search by evolutionary strategy (AP-ES).
The other generation-based algorithm (AP-GA) did not prove
as effective as evolutionary strategy, and also much slower
to find the optimal placements. Also, a random search was
studied to ascertain that the antenna placement problem
may not be effectively solved by a naive algorithm for large
search spaces.

Our work showed that a simple formulation of the antenna
placement problem and the usage of open-source technolo-
gies (NEC) can be applied effectively for a hard problem.
Moreover, our methodology can be applied to any type of a
platform which otherwise may be time consuming and ex-
pensive in case of large objects like satellites and aircrafts.

7.1 Future Work
Most of the stochastic algorithms presented here were ele-

mentary and there were no variations to them. For instance,
scheduling problems have been effectively solved using hy-
brid versions of genetic algorithms [33]. Similarly, variations
of algorithms mentioned here should also be looked at for the
antenna placement problem.

More experiments need to be conducted for population
based algorithms with different population sizes, and to sta-
tistically compare how this may affect the performance of
the algorithm. Also, bigger search spaces need to be con-
sidered with more number of antennas. Other evolutionary
techniques like ALPS [11], differential evolution algorithm
[21], and genetic programming [1] need to be compared in
terms of how quickly they find the optimal solution.
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