
Evolutionary Based Moving Target Cyber Defense

David J. John
djj@wfu.edu

Robert W. Smith
smitrw12@wfu.edu

William H. Turkett
turketwh@wfu.edu

Daniel A. Cañas
canas@wfu.edu

Errin W. Fulp
fulp@wfu.edu

Department of Computer Science
Wake Forest University

Winston-Salem, NC 27109, USA

ABSTRACT
A Moving Target (MT) defense constantly changes a sys-
tem’s attack surface, in an attempt to limit the usefulness of
the reconnaissance the attacker has collected. One approach
to this defense strategy is to intermittently change a system’s
configuration. These changes must maintain functionality
and security, while also being diverse. Finding suitable con-
figuration changes that form a MT defense is challenging.
There are potentially a large number of individual configu-
rations’ settings to consider, without a full understanding of
the settings’ interdependencies.

Evolution-based algorithms, which formulate better so-
lutions from good solutions, can be used to create a MT
defense. New configurations are created based on the se-
curity of previous configurations and can be periodically
implemented to change the system’s attack surface. This
approach not only has the ability to discover new, more se-
cure configurations, but is also proactive and resilient since
it can continually adapt to the current environment in a
fashion similar to systems found in nature.

This article presents and compares two genetic algorithms
to create a MT defense. The primary difference between the
two is based on their approaches to mutation. One mutates
values, and the other modifies the domains from which val-
ues are chosen.

Categories and Subject Descriptors
I.2.8 [Problem solving, Control Methods and Search]:
Heuristic methods—genetic algorithms; K.6.5 [Security and
Protection]: unauthorized access

Keywords
computer security; moving target defense; directed mutation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
Copyright 2014 ACM 978-1-4503-2881-4/14/07 ...$15.00.
http://dx.doi.org/10.2598394.2605437 .

1. INTRODUCTION
Cyber attacks commonly initiate with a reconnaissance

phase, where the adversary attempts to learn as much as
possible about the potential target before launching an at-
tack. This intelligence is very valuable, and it has been
reported that a well-resourced adversary will spend approx-
imately 45 percent of its time on this preliminary task [10].
Given the investment associated with reconnaissance and
the reliance on this knowledge for a successful attack, neu-
tralizing this attack phase has been shown to be a very suc-
cessful defense strategy [7].

A Moving Target (MT) defense is a way to disrupt the
attacker’s attempt to learn how a system operates during
the reconnaissance phase of a cyber attack. MT environ-
ments provide a diversity defense where the attack surface
changes constantly. In the time it takes an attacker to per-
form system reconnaissance and construct an exploit, the
system changes. As a consequence of the modification, the
exploit will have limited impact or cause the attacker to lose
confidence in the reconnoiter. In addition, an attacker act-
ing on false or constantly changing information may expend
more resources and increase the risk of being detected.

MT defenses have been successfully employed to protect
computer systems at different levels. For example, address
randomization is a MT defense that changes the location of
certain portions of a program’s memory [4, 9]. While widely
implemented, this application-level defense only mitigates
a certain type of attack. Another MT strategy alters net-
work configurations to limit the usefulness of an attacker’s
reconnaissance [1, 14]. This MT defense operates at the in-
frastructure level and is somewhat effective, but it requires
coordination of several resources to protect legitimate users,
which is difficult. Host-level MT defenses operate at the sys-
tem level and change the computer’s appearance over time;
however, current implementations simply cloak the system
which is essentially security through obscurity.

This article describes a new type of multiple host-level
MT defense that changes both the host and network attack
surfaces. It does this by manipulating the settings of mul-
tiple computer’s configurations directly. Using evolution-
inspired techniques, the approach proactively discovers mul-
tiple functional and secure configurations and then places
them in service across multiple computers during varying
periods of time. As a result, the attacker faces an unpre-
dictable computing environment which can limit the useful-

1261

Parameter Value Type Description

.htpasswd Binary Allow configuration changes on a per-directory basis

ServerTokens Value from a list Controls the information about server OS and modules.

KeepAlive Binary Allow multiple requests to be sent over the same connection.

KeepAliveTimeout Positive integer Time to wait for a subsequent request before closing the connection.

FollowSymLinks Binary Allow symbolic links in a directory to be followed.

IncludesNoExec Binary Allow server side include execution.

Indexes Binary Allow automatic directory indexing.

LimitRequestBody Positive integer Limit the size of message body.

LimitRequestFields Positive integer Limit number of request HTTP header fields allowed.

LimitRequestFieldSize Positive integer Limit the size of an HTTP request header field.

LimitRequestLine Positive integer Limit the size of a client’s HTTP request-line.

autoindex_module Binary Allow icons for directory listings.

AllowOverride Value from a list Controls if earlier configuration directives can be overridden.

LimitExcept Value from a list Limit request methods.

Table 1: A sample of the Apache configuration parameters used in the MT defense system. Parameter names,
settings types, and brief descriptions for these 14 are shown.

ness of any reconnaissance activities. Unfortunately, finding
configurations that meet these requirements is challenging.
There are potentially a large number of individual config-
urations settings to consider, and for each one of them an
administrator may not know that some are interdependent.
It is also difficult to quantify the security of a computer con-
figuration [18] since the introduction of new security vulner-
abilities and functionalities can make a once secure configu-
ration insecure.

However, evolution-based algorithms, which formulate bet-
ter solutions from good solutions, are well suited for address-
ing such ill-formed and dynamic problems. Similar to na-
ture, selection, crossover, and mutation processes are used
over successive generations to find better solutions, or con-
figurations, for this host-level MT system. As well, specially
designed mutation operators can be developed for this sys-
tem. As a result, this evolution-inspired MT approach can
find secure and diverse configurations over time with appro-
priate feedback. This will be demonstrated with 102 param-
eters, taken from Apache web-server (Apache) on Red Hat
Enterprise Linux 5 (RHEL5) configurations, that becomes
more secure over time, while configurations maintain a level
of diversity across the generations to support multiple fea-
sible system configurations.

2. COMPUTER CONFIGURATIONS
A computer configuration is a set of parameters that gov-

ern operation. This includes operating system settings and
information found in application configuration files. Fur-
thermore, configurations can include transient data, such
as the Linux /proc file system, or persistent data such as
that found in Unix resource files. Collectively, this config-
uration information is a large amount of data that is often
distributed across a number of files and databases.

While these parameters control how the operating system
and applications perform, they also affect security. For in-

stance, the Federal Desktop Core Configuration settings and
the Consensus Security Configuration Checklist managed by
NIST (National Institute for Standards and Technology)
and CIS (Center for Internet Security) provide guidelines
and configuration settings for various applications and op-
erating systems [8, 16]. For example, Table 1 provides 14
Apache configuration parameters, value types, and param-
eter descriptions found in this checklist. Note the variety
of parameter value types, which include binary, integer, and
enumerated values. Furthermore, parameters can be inter-
dependent, so a combination of settings is required to im-
prove security [11]. For example, the NIST guidelines for
Apache 2.2 identifies 4 settings to secure the ScoreBoardFile

directive, which supports interprocess communication. Of
course, other configuration parameters may have unknown
impacts on security.

Although configuration guidelines can help to improve sys-
tem security, they may not apply to all computer installa-
tions. A system may need certain parameter settings to re-
main functional, even though those settings may be deemed
insecure. In addition, future security threats may render
current guidelines useless. Therefore, while intermediately
making configuration changes can provide a MT defense by
rendering an attacker’s reconnaissance ineffective, searching
the large number of parameter values to find functional and
secure changes is very challenging [6].

3. MOVING TARGET DEFENSE
Although searching for secure, functional, and diverse con-

figurations is difficult, evolution-based search algorithms are
well suited for these types of problem environments. Genetic
Algorithms (GAs) are a type of search heuristic that naively
mimic evolution [15]. Like most evolutionary algorithms,
they seek better (more fit) configurations by discovering, re-
combining, and altering portions of current configurations
to generate new ones. However, an MT environment does

1262

not aim to find a single best configuration but to ascertain
and periodically implement a configuration from a set of as-
sorted secure configurations. Before a GA can be applied
to the MT problem, a genetic representation of the problem
domain, methods of determining feasibility, an understand-
ing of configuration fitness, and the design of GA operators
must be carefully addressed.

3.1 Configurations as Chromosomes
In nature, an organism has a set of rules that define how

it is created. These rules are encoded in genes that are con-
nected together into long strings called chromosomes. Each
gene contributes to the traits of the organism, like eye color
or height, and has several different settings. Genes and their
settings are usually referred to as an organism’s genotype.
The phenotype is the physical expression of the genotype,
which is the organism itself.

In this MT defense system, GAs represent the current
configuration generation as a set of chromosomes, each of
which consists of multiple configuration parameter settings.
Each genotype specifies a phenotypic description, though
this relationship may be many to one. Consider the 14 con-
figuration parameters shown in Table 1. There are multiple
possible settings for each parameter. Therefore, each MT
chromosome in this GA represents a configuration, and each
generation consists of multiple MT chromosomes.

It is not necessary for the chromosomes to represent all
possible configuration parameters. It may be advantageous
to initially limit the number of parameters for the purposes
of testing to better understand how they affect security and
diversity. Over time parameters can be added to increase
the search space and to find more complex configuration
settings.

To be considered a potential suitable configuration, a chro-
mosome must be feasible. For computer configurations, a
chromosome is considered feasible if the configuration it rep-
resents provides the necessary functionality for the computer
as defined by the user and/or administrator. For example,
if the computer is a web server, then any configuration that
blocks network access would be infeasible and not be en-
acted. Future implementations will incorporate comprehen-
sive functionality testing, which is discussed in Section 6.

3.2 Chromosome Fitness
Chromosome fitness measures the level of security the con-

figuration provides. While it is difficult to quantify the se-
curity of a configuration directly, it can be inferred based
on the number of security events detected during operation.
The evaluation of the parameter setting is based on the effect
it may have on information security, specifically the effect
on confidentiality, integrity, and assurance, also referred to
as the CIA model [3]. Confidentiality refers to the disclosure
of information to unauthorized individuals, while integrity
refers to the accuracy and consistency of information, and
assurance refers to the availability of information and/or
services.

The security score also takes into account the difficulty
of exploiting the parameter’s vulnerability and the impact if
the associated exploit is performed. These items can then be
combined to create a Common Vulnerability Scoring System
(CVSS) score: a vector of categorical scores associated with
the 6 criteria of access vector (AV), access complexity (AC),

authentication (AU), confidentiality (C), integrity (I), and
assurance (A).

Ideally, attack information about a configured running
system can be gathered, analyzed and then interpreted as
chromosome fitness. However, this type of information is
at best incomplete, and is likely to contain many false pos-
itives. For this research, a CVSS based rubric is applied to
each parameter setting which culminates into a chromosome
fitness score. This fitness score approximates knowledge on
the uncertain quantity of attack information.

3.3 Genetic Algorithms
Genetic Algorithms (GAs) are a heuristic, naively mim-

icking evolution, to search complex or ill-formed problem
spaces. GAs have been extensively researched since the
1960s, and most GA implementations use some combina-
tion of of the selection, crossover, and mutation operators
[15]. These processes are among the tasks associated with
the MT defense, as seen in Fig. 1. For the MT environment
developed thus far, the search space is a subset of possible
Apache and RHEL5 configurations, each consisting of 102
parameters. For many organisms, the selection of parents
is the initial step in the creation of a child, and this sam-
pling occurs in such a way as to bias the next generation
towards the more fit individuals in the current one. The
resultant offspring may have a portion of the genes from
one parent and the remainder from the other. This process,
crossover, encourages the propagation of discovered traits
from the current generation into the next. In addition, some
of the offspring’s genes may be mutated, randomly changing
the gene’s value. The importance of mutation is its potential
to introduce new traits into future generations. Using these
three basic processes, selection, crossover and mutation, or-
ganisms can adapt over time.

Selection identifies members of the current chromosome
pool as parents for new chromosomes. Roulette wheel se-
lection, also known as fitness proportional selection, uses a
probability distribution directly related to chromosome fit-
ness to choose parents. The aim is to encourage chromo-
somes with higher fitnesses to produce even more fit off-
spring, while still allowing for offspring from a lesser fit
parent. Tournament selection choses 4 chromosomes, has
two single elimination rounds of comparisons to determine
a winner. In the first round, two winners are determined
through two pair comparisons, and in the last round, an
overall chromosome is selected by choosing the best of the
two first round winners. Tournament selection is less likely
to pick chromosomes with smaller fitness values.

Possibly the most distinguishing feature of a GA is the
crossover process, the combination of parent chromosomes
to form a new chromosome. Therefore, a new configura-
tion is created by combining portions of existing configura-
tions. The crossover process implemented for this simulation
is known as two point crossover, which has an associated
probability pc. After selecting a parent chromosome in the
current generation, pc is the probability that another chro-
mosome from the current generation is selected and their
genetic information exchanged. If two point crossover is
not applied then the immediate offspring is the first par-
ent; otherwise, two locations along a random permutation
of the genes of the two selected chromosomes are identified
randomly, and the genes between the two loci are traded to
produce a child.

1263

start
select

chromosomes
crossover mutate

make
chromosome

active on VM

feasible?
evaluate

chromosome
performance

update
pool

chromosome
active

on host

new
chromosome

generated

yes

no

update chromosome
performance

Implementing configurations on host Discovering new configurations

Figure 1: Flow chart of the tasks associated with the GA-based MT environment. Double-lined blocks (also
in green) contain traditional GA processes, blocks in blue are associated with the virtual machine (VM)
component, and blocks in orange are part of the assessment component.

The last process is mutation, which randomly changes set-
tings in the offspring chromosomes. Associated with the
mutation operator is a probability, pm. The purposes of
the mutation process are to maintain diversity, to allow ex-
tensive exploration of the chromosomes across the gener-
ations, and to avoid permanent fixation at any particular
locus. With a probability of pm, mutation is applied to a
randomly chosen gene of a chromosome. If the rate of muta-
tion is set too high, the resulting GA is often no better than
mere random search. Mutation is not a uniform operator
across the configuration parameters. Instead, it differs on a
case by case basis between different parameters, according
to their type and prior knowledge of acceptable or common
settings. In fact, there are two mutation operators: one
which applies simple changes to a parameter’s value, and
the other which makes changes to a parameter’s domain.
These two mutation operators result in two searching algo-
rithms: the genetic algorithm with parameter value muta-
tion (GA+PVM), and the genetic algorithm with parameter
domain mutation (GA+PDM).

The parameter value mutation operator modifies the cur-
rent value of a chosen chromosome’s parameter based on its
type. For instance, a single option which may have only
one out of a number of possible values would be mutated
by changing to a different option. Meanwhile a series of op-
tions, each of which may independently be turned on or off,
may be modeled as a bit vector representing which options
are on. Mutation would then flip a bit. Other parameters
may take an integer value. In this case, mutation would
randomly select a new number based on a probability dis-
tribution which takes into account which range of values the
administrator believes is likely to contain secure settings.

The parameter domain mutation operator, a form of di-
rected mutation [2], when given a chosen parameter, uses
machine learning techniques to modify the domain of that
parameter. If a particular parameter setting has historically
been correlated with fitness decreases when adopted, or fit-

ness increases when abandoned, the machine learning algo-
rithm will deem it insecure. This directed mutation operator
then removes that value from the parameter’s domain. Ad-
ditionally, if the parameter happens to be one in which a
distance function can quantitatively compare settings’ simi-
larity, such as bit vectors or numbers, a support vector ma-
chine [5] is used to calculate a region of the domain surround-
ing known insecure values, and this entire subset of values
is removed. Once a domain modification is made, then all
chromosomes in the current generation must be adapted to
comply with the mutated domain. The motivations for this
more aggressive operator are to take advantage of the fitness
function’s convexity to increase the rate of fitness gain, to
reduce the number of low fitness individuals in a generation,
and to export information about the GA’s function across
generations.

The success of this MT strategy depends upon the evo-
lution of diverse populations which are increasingly more
secure. The genetic algorithm operators naturally tend to
move towards a more homogeneous, less diverse, population.
An adaptive selection operator, a diversity based blend of
Tournament and Roulette Wheel selection, assists in keep-
ing the populations more diverse.

The first generation of MT chromosomes is initialized ran-
domly. Creating the next generation begins with the selec-
tion operator choosing parent chromosomes from the cur-
rent chromosome pool. The crossover operator is applied to
the chosen chromosomes, producing the child chromosomes.
The mutation operator is then applied to each of these chil-
dren, which possibly changes some of the chromosome traits
(configuration parameters).

4. MOVING TARGET SYSTEM
Prior simulations have demonstrated the effectiveness of

using evolution-based algorithms to discover secure and di-
verse configurations [6]. Based on these encouraging results,
a Python-based prototype MT system has been developed

1264

GA
(discovery)

Assessment
(scoring)

VM
(management)

Figure 2: Three primary components of the proto-
type GA-based MT system and the general order of
operation.

that can discover, implement, and assess configurations [12].
The prototype performs many of the core tasks necessary for
a complete MT defense and will be used as the primary ex-
ample for explaining system details in this section and Sec-
tion 5. The evolution-based approach is designed to protect
multiple machines.

The information flow of the evolutionary MT defense sys-
tem is shown in Fig. 2, while the individual tasks are shown
in Fig. 1. Three primary components interact to facilitate
the discovery of a new generation of configuration parame-
ters, to manage various hosts using the discovered settings,
to assess the vulnerabilities of the configurations after a pe-
riod of activation, and to pass along the qualitative configu-
ration scores needed for the quantitative computation of fit-
ness. A custom network protocol coordinates the three parts
of the MT system, as well as the communication between the
individual host machines and the system as a whole.

A genetic algorithm comprises the discovery component.
The initiation of the MT system execution is signaled by the
initialization of the first generation of MT chromosomes. In
general, the current generation of chromosomes and associ-
ated fitness scores are passed to the VM management com-
ponent. These Apache and RHEL5 configuration sets are
applied to the virtual machines. After a period of time, the
management component sends security information about
the hosts to the assessment component. Using this infor-
mation, the qualitative bad, medium and good scores are as-
signed based on the scoring rubric. These qualitative scores
are passed along to the discovery component, which then
computes the quantitative fitness scores for each chromo-
some in the current generation. The next generation of MT
chromosomes are evolved using the genetic algorithm oper-
ators of selection, crossover and mutation. The next cycle
of the MT system begins.

This MT defense system is proactive and resilient, since
it constantly searches for new configurations. Converging
to a single set of parameter settings is not the objective of
the MT defense system since security will change as new
vulnerabilities are introduced (e.g. via zero-day attacks or
new software). The objective of the MT defense system is
the discovery, management and assessment of generations of
Apache and RHEL5 configurations.

5. SYSTEM PROTOTYPE AND RESULTS
Experimental results using the prototype will demonstrate

the GA-based system, starting with arbitrary initial configu-

Range CVSS score vector Score

[15,MaxInt] AV:N/AC:L/AU:N/C:N/I:N/A:C 204

(5, 15) AC:N/AC:L/AU:N/C:N/I:N/A:P 213

[0, 5] AV:L/AC:H/AU:M/C:N/I:N/A:N 600

Table 2: Rubric for the assignment of the CVSS
score vector associated with potential vulnerabili-
ties for Apache KeepAliveTimeOut configuration di-
rective (parameter).

rations, can discover diverse and more secure configurations
and create a viable MT defense for the web-server.

For these experiments, it is not practical to gather ac-
tual attacks to measure the security of the configuration.
The Common Vulnerability Scoring System (CVSS) pro-
vides a method for measuring the security of an individual
configuration parameter setting [13, 17], and thereby pro-
vides a method to estimate the number of attacks that will
be successfully executed against a machine with the given
parameter setting. CVSS scores parameter vulnerabilities;
therefore, a configuration will have one CVSS score per pa-
rameter vulnerability, with the CIA scores all set to none
to convey that the vulnerability is not present. Configura-
tion security checklists, such as United States Government
Configuration Baseline (USGCB) and DOD/NSA Security
Technical Implementation Guidelines (STIGs), can then be
used in combination with CVSS initially to assess the fitness
of the configuration.

For this prototype system, MT chromosome fitness is the
sum of values derived for the discovered parameter vulner-
abilities associated with the configuration settings. Though
not as realistic as gathering attack information, it does allow
for a good basis for this initial simulation and measurement
of attacks. The scoring rubric is specific to the parame-
ters represented in the chromosomes and is based on expert
knowledge about security parameter vulnerabilities, which
can be found in NIST guidelines [16]. Each parameter is
assigned a CVSS vector to represent the vulnerabilities it
contains or the lack thereof. The algorithm then grades
each vector’s fields, assigning each a bad, medium, or good
score based on the utility of that field’s value. For example,
the authentication metric can take values of none, single, or
multiple, and these are graded as bad, medium, and good, re-
spectively, as an attack requiring multiple authentications of
credentials is preferable to one which requires only a single
authentication, which is itself better than an attack which
can be executed without providing any credentials at all.
The rubric is intended to simulate the attacks faced by the
computer on which the configuration is implemented. It is
reasonable to assume that the estimated number of success-
ful attacks is correlated with the severity of the security flaw
as measured by the CVSS vector.

In order to quantify the fitness, the security categories of
bad, medium, and good are then assigned numerical values
of 1, 10 and 100, respectively, giving each parameter a set
of six exponentially differing scores which yields a current
population non-uniform probability distribution useful for
selection. A chromosome’s total fitness is the sum of the

1265

0 5 10 15 20 25 30 35 40
3.5

4

4.5

5

5.5

·104

Generation

A
v
er

a
g
e

F
it

n
es

s
S
co

re

GA + PVM

GA + PDM

Random

(a) Average population fitness

0 5 10 15 20 25 30 35 40

20

30

40

50

60

70

80

Generation

A
v
er

a
g
e

P
a
ir

w
is

e
H

a
m

m
in

g
D

is
ta

n
ce

GA + PVM

GA + PDM

Random

(b) Average (sampled) diversity

Figure 3: Diversity and fitness comparisons of the genetic algorithm with parameter value mutation, the
genetic algorithm with parameter domain mutation, and random search. The bars correspond to a 1 standard
deviation above and below the average diversities and fitnesses, respectively. Configurations consisted of 102
parameters for an Apache 2.2 on Red Hat Enterprise Linux Revision 5.

102 individual parameter scores, and it ranges from 612 to
61, 200.

As an illustration of the assignment of the CVSS vector
and the computation of the fitness score, the scoring rubric
for the Apache KeepAliveTimeOut parameter is presented in
Table 2. The KeepAliveTimeOut parameter takes on an un-
signed integer value (measured in seconds) up to MAXINT;
however, only certain ranges of values are reasonable param-
eter settings. The CVSS score vector reflects three ranges.
From the score vector, the KeepAliveTimeOut parameter’s
fitness score is computed. This rubric reflects a more se-
cure situation when the KeepAliveTimeOut value does not
exceed 5 seconds.

Both genetic algorithms, GA+PVM and GA+PDM, con-
sisted of 140 chromosomes per generation. Each chromo-
some represented 102 parameters. The first generation was
initialized randomly and allowed to evolve for 40 genera-
tions. The 40 generations simulate the application of the MT
system for over a month with daily system configuration up-
dates. The selection operation was a blend of roulette wheel
and two round tournament selection, chosen with probabili-
ties of 0.25 and 0.75, respectively. Two point crossover, with
pc = 0.05, and multi-faceted mutation, pm = 0.02, were
implemented. One genetic algorithm employed parameter
value mutation, the other used parameter domain mutation.

For comparison purposes, a random search based system
was also implemented. The random search system operated
similarly, except that crossover was ignored, pc = 0, and
mutation was always applied to every parameter of every
configuration, pm = 1.

Two qualitative measurements provide insight into the
effectiveness of the searches. The average fitness score in
a generation is one performance measure of the searches.
Higher fitness scores correspond to estimates of more secure
web servers. Over the generations of chromosomes, more
secure configurations should be indicated by an increase in
the average fitnesses. The Hamming distance between two

chromosomes is the number of corresponding genes with dif-
ferent values, and the average of these in a generation is
an indicator of the expected number of parameter differ-
ences between any two chromosomes. As the genetic algo-
rithm moves through its generations, the average Hamming
distance should decrease in value, corresponding to some
agreement on secure settings. However, in order to main-
tain chromosome diversity, the average Hamming distance
must not become too small. The computation of the average
Hamming distance between all pairs of chromosomes when
there are a large number of genes is computationally ex-
pensive. As an alternative, a sampling technique estimates
this by choosing 15 chromosomes and computing the aver-
age Hamming distance between all pairs of this subset. In
this research, this approximation has been found to be an
effective measurement of population diversity.

The system based on random searching was not effec-
tive in discovering diverse and more secure configurations.
Fig. 3(a) shows that the average fitness score essentially re-
mained constant across all 40 generations. The standard de-
viation of fitness scores is quite wide, and does not narrow
over time. Fig. 3(b) shows the average Hamming distance
between pairs of chromosomes, and for the random search it
remains essentially constant with a value over 74, i.e. for any
pair of chromosomes the expected number of gene differences
is approximately 74 out of 102. The standard deviation of
the average Hamming distances is quite narrow over all 40
generations.

As GA+PVM moves through the 40 generations of chro-
mosomes guided by the evolutionary operators, the expec-
tation is that the average chromosome fitness and diversity
should increase and decrease, respectively. The average fit-
ness score increases 25.8% from 38, 458.9 to 48, 415.3 across
the generations. As well, the fitness standard deviations sug-
gest that almost all the chromosomes are increasing their fit-
ness scores. Similarly, the diversity has decreased by 44.5%
from 74.9 to 33.4, which indicates that the average number

1266

of agreeing genes between pairs of Apache and RHEL5 con-
figurations initially is 27, but in the final generation is at
least 69.

For GA+PDM, similar changes in fitness and diversity of
40.2% and 56.9%, respectively, are observed. Both average
Hamming distance standard deviations indicate the preser-
vation of a diverse population of configurations. However,
GA+PDM does much better than GA+PVM in terms of
average fitness scores.

Increases in measured fitness correspond to more secure
configurations. For any parameter, the maximum fitness
score difference between a secure and insecure setting is 594
points, the difference between six partial scores of 1 and
six partial scores of 100. Thus, for both GA+PVM and
GA+PDM, the fitness increases of 9, 956 and 15, 508 over
the 40 generations, shown in Fig. 3(a), indicate that, on
average, configurations are susceptible to at least 16 and 25
fewer types of attack each compared to the initial generation.

Many parameters have settled to a subset of the values
across all 140 chromosomes, and at least one of these values
does not contain a security vulnerability. For instance, the
ServerTokens parameter was set to a secure value in 15 of
the final chromosomes using the GA+PVM. However, using
parameter domain mutation, the domain of ServerTokens
was reduced to only two values, and 42 of the chromosomes
in the final generation are set with a secure value. This is
illustrative of how later generations have become less vul-
nerable.

Although GAs tend to find better solutions, there is no
guarantee that the final set of configurations will contain an
optimal solution. This can be seen in Fig. 3(a), in which the
fitness values are generally increasing, but not approaching
a perfect score of 61, 200. For instance, in the first genera-
tions of the two genetic algorithms, 2 and 18 chromosomes
respectively featured a LimitExcept setting insecure enough
to warrant a score of complete for each of C, I, and A. In
the final generations, 6 and 11 chromosomes respectively
featured this score for their LimitExcept setting.

The FollowSymLinks parameter shows remarkably differ-
ent settings under the two genetic algorithms. When using
parameter domain mutation, the domain of FollowSymLinks
was reduced to one setting, the secure one. For parameter
value mutation, in the final generation both possible settings
for FollowSymLinks appeared throughout the population.

6. NEXT STEPS
In the continuing development of the evolution-based MT

system, there are four improvements to be added. The
first is to allow the administrator to weight the CIA scores
and have that weighting be reflected in the fitness function
of the GA. Secondly, the management component of the
MT system must be developed to detect successful attacks.
Third, currently the directed mutation operator shows much
promise, and with further research there is potential of sig-
nificant improvement compared to the simpler mutation op-
eration. Fourth, it is necessary to determine the functional-
ity of a system based on a configuration.

6.1 Prioritization of CIA Scores
At the conclusion of the monitoring of the Apache web

servers configured by the chromosomes, the initial CVSS
scores and information about any security events are given
to the assessment component. Similar to CVSS scores, the

security events are scored based on the impact on confi-
dentiality, integrity, and assurance. The administrator can
weight these three components based on their relative impor-
tance. After passing this vector to the discovery component,
the GA fitness function can then compute the appropriate
weighted sum.

6.2 Detection of Successful Attacks
Currently, the fitness of a chromosome is determined by

the simulation of attacks using rubrics developed from CVSS
information. This simulation has allowed for the develop-
ment and evaluation of a prototype genetic algorithm based
moving target defense. However, it is necessary for the fit-
ness of a chromosome to reflect the exposure of a computer
configured with those parameter settings to the real world.
It is imperative that fitness reflect security based on detected
successful attacks. Ideally, the management component cap-
tures information regarding reconnaissance. Recognition of
successful attacks and reconnaissance is a difficult problem.

Attack detection will be added based on checksums that
can capture a limited number of successful attacks. The
base fitness of a chromosome will be the value based on the
CVSS rubric. This base will be adjusted based on the de-
tection of a successful attack and the number of generations
this chromosome has been implemented without a detected
successful attack.

6.3 Directed Mutation
As clearly seen in Fig. 3, the genetic algorithm using

parameter domain mutation does much better in terms of
fitness than the one using the parameter value mutation op-
erator. This improvement is generally reflected over all ex-
periments. The use of simple machine learning techniques
to modify the parameters’ domains is an effective mecha-
nism. However, this modification removes a value from a
parameter’s domain. Once the value is removed, it can not
be returned to the domain. An alternative strategy is the
assignment of probability distributions associated with the
values of the domain. Instead of removing a value from a
domain, the probability associated with that value can be
decreased, allowing for increases in probabilities for other
values. As well, other machine learning strategies should be
considered.

6.4 Functionality Testing
An important task of the MT defense is to test that new

configurations provide the necessary functionality. Regard-
less of how secure a configuration may be, it cannot be con-
sidered by the system if it is unable to provide the user
a minimum set of required services and capabilities. This
can be achieved by leveraging research that has focused on
identifying and correcting incorrect configurations [11, 19].
Many of these approaches require defining predicates (tests)
that can be instrumented, such as testing for a certain web-
page or measuring the response delay of a system request.
It would be possible to incorporate this form of testing to
provide an understanding of the functionality of the config-
uration.

7. CONCLUSIONS
Moving Target (MT) defenses put the system to be pro-

tected in motion, in an attempt to render the reconnaissance
of the attacker useless after a period of time. This article

1267

discusses how intermittently changing system attributes di-
rectly can provide a suitable MT defense. However, finding
configuration changes that maintain a functional and secure
system is difficult. Configurations consist of a large number
of parameters, with many of these parameters being interde-
pendent, and may require configuration changes in concert
for security to improve.

This article described how secure and diverse configura-
tions could evolve over time based on the operational en-
vironment. Using a Genetic Algorithm (GA) and feedback
about the security status of the system, this MT approach
discovers configurations through a continual process of selec-
tion, crossover, and mutation. These candidate configura-
tions can then be placed in operation over time to provide a
suitable MT defense. Furthermore, the approach is resilient
since it can adapt to system changes, such as the installation
of new software or updates to existing applications.

Results of a prototype system show that both GAs are
able to find secure configurations over the 40 generations.
In addition these configurations remain diverse (configura-
tions do differ in parameter settings), which is important for
providing a MT defense. Perhaps not surprisingly, directed
mutation does allow for the discovery of more secure con-
figurations than the simpler mutation operator. Although
the results are promising, more research and development
are needed to reach the full potential of the system. In-
corporating any feedback obtained when a configuration is
made active would improve the assessment. Similarly more
research is needed to measure diversity that better reflects
how parameter settings are different, in terms of how they
affect the system.

8. ACKNOWLEDGMENTS
The authors would like to thank Brian Lucas for his ini-

tial implementation of the GA-based MT framework as part
of his 2013 Computer Science MS project at Wake Forest
University.

This material is based upon work supported by the Na-
tional Science Foundation (NSF) under Grant No. 1252551.

9. REFERENCES
[1] Spiros Antonatos, Periklis Akritidis, Evangelos P.

Markatos, and Kotas G. Anagostakis. Defending
against hitlist worms using network address space
randomization. Computer Networks, 51:3471–3490,
2007.

[2] Stefan Berlik and Bernd Reusch. Foundations of
directed mutation. In Proceedings of the 2006
Conference on Integrated Intelligent Systems for
Engineering Design, pages 3471–3490, Amsterdam,
The Netherlands, 2006. IOS Press.

[3] Matthew A. Bishop. The Art and Science of Computer
Security. Addison-Wesley Longman, 2002.

[4] Crispin Cowan, Calton Pu, Dave Maier, Heather
Hinton, Jonathan Walpole, Peat Bakke, Steve Beattie,
Aaron Grier, Perry Wagle, and Qian Zhang.
Stackguard: Automatic adaptive detection and
prevention of buffer-overflow attacks. In In
Proceedings of the 7th USENIX Security Symposium,
pages 63–78, 1998.

[5] Nello Cristianini and John Shawe-Taylor. An
Introduction to Support Vector Machines and Other
Kernel-based Learning Methods. Cambridge University
Press, 2000.

[6] Michael B. Crouse and Errin W. Fulp. A moving
target environment for computer configurations using
genetic algorithms. In Proceedings of the 4th
Symposium on Configuration Analytics and
Automation (SafeConfig 2011), 2011.

[7] James F. Dunnigan and Albert A. Nofi. Victory and
Deceit: Deception and Trickery at War. Writers Club
Press, San Jose, California, USA, 2nd edition, 2001.

[8] Center for Internet Security. Security and assessment
benchmarktools. http:
//www.cisecurity.org/resources-publications/.

[9] Stephanie Forrest, Anil Somayaji, and David H.
Ackley. Building diverse computer systems. In
Proceedings of The 6th Workshop Hot Topics in
Operating Systems, 1997.

[10] Dorene Kewley, Russ Fink, John Lowry, and Mike
Dean. Dynamic approaches to thwart adversary
intelligence gathering. In Proc. of the DARPA
Information Survivability Conference & Exposition II
(DISCEX ‘01), volume 1, pages 176–185, 2001.

[11] Emre Kycyman. Discovering correctness constraints
for self-management of system configuration. In
Proceedings of the First International Conference on
Autonomic Computing, pages 28–35, Washington, DC,
USA, 2004. IEEE Computer Society.

[12] Brian F. Lucas. An automated system for evolving
secure systems. Technical report, Department of
Computer Science, Wake Forest University, May 2013.

[13] Peter Mell, Karen Scarfone, and Sasha Romanosky. A
complete guide to the common vulnerability scoring
system version 2.0.
http://www.first.org/cvss/cvss-guide.pdf, 2007.

[14] John Michalski, Carrie Price, Eric Stanton, Erik Lee,
Kuan Seah Chua, Yip Heng Wong, and Chung Pheng
Tan. Final report for the network security mechanisms
utilizing network address translation LDRD project.
SAND Rep. SAND2002-3613, Sandia National
Laboratory, November 2002.

[15] Melanie Mitchell. An Introduction to Genetic
Algorithms. MIT Press, Cambridge, MA, USA, 1998.

[16] NIST. Consensus security configuration checklist.
http://web.nvd.nist.gov/view/ncp/repository.

[17] NIST. NVD common volnerability score system v2.
http://nvd.nist.gov/cvss.cfm.

[18] Sal Stolfo, Steven M. Bellovin, and David Evans.
Measuring security. IEEE Security and Privacy,
9:60–65, 2011.

[19] Andrew Whitaker, Richard S. Cox, and Steven D.
Gribble. Configuration debugging as search: finding
the needle in the haystack. In Proceedings of the 6th
conference on Symposium on Operating Systems
Design & Implementation - Volume 6, 2004.

1268

