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ABSTRACT 
The use of robotic sensor networks (RSNs) for Territorial Security 
(TerrSec) applications has earned an increasing popularity in 
recent years. In Critical Infrastructure Protection (CIP) 
applications, the RSN goal is to provide the information needed to 
maintain a secure perimeter around the desired infrastructure and 
efficiently coordinate a corporate response to any event that arises 
in the monitored region. Such a response will only involve the 
most suitable robotic nodes and must successfully counter any 
detected vulnerability in the system. This paper is a preliminary 
study of the role played by multi-objective optimization (MOO) in 
the elicitation of responses from a risk-aware RSN that is 
deployed around a critical infrastructure. Contrary to previous 
studies showcasing a pre-optimization auctioning scheme, where 
the RSN nodes bid on the basis of their knowledge of the event, 
we introduce a post-optimization auctioning scheme in which the 
nodes place their bids knowing what their final positions along the 
perimeter will be, hence calling for a more informed decision at 
the node level. The impact of the pre- vs. post-optimization stage 
in a first-price sealed bid auction system over the risk mitigation 
strategies elicited by the RSN is evaluated and discussed. 
Empirical results reveal that the pre-optimization auctioning is 
more suitable for dense RSNs whereas the post-optimization one 
is preferred in sparse RSNs. To the best of our knowledge, this is 
the first attempt to assess the role of MOO in risk mitigation for 
CIP with RSNs. 

Categories and Subject Descriptors 
I.2.9 [Robotics]: – autonomous vehicles, sensors 

General Terms 
Algorithms, Measurement, Experimentation, Security 

Keywords 
critical infrastructure protection; robotic sensor network; risk 
management; evolutionary multi-objective optimization; self-
organization; auction protocols; computational intelligence 

1. INTRODUCTION 
A robotic sensor network (RSN) is a collection of autonomous, 
often wirelessly connected devices that are capable of sensing, 
communicating and actuating, both upon each other and on the 
environment. An RSN could be thought of as a more advanced 
mobile sensor network [14] in which nodes possess typical robotic 
features such as gripping or lifting objects. Because of the various 
benefits provided by their proactive and reactive capabilities, 
RSNs are increasingly being used in the TerrSec arena, for 
instance to maintain a secure perimeter around a critical 
infrastructure [6] [8] [9] [12] and to efficiently coordinate a 
corporate response to any event that arises in the monitored 
region.  

Recently, risk-aware RSNs for critical infrastructure protection 
(CIP) that can react to single or multiple events were proposed in 
[8] and [9], respectively. Two innovative features stand behind 
this novel class of CIP solutions: (1) the self-organization of the 
RSN nodes, (i.e., the crafting of a risk mitigation response), is the 
outcome of a thorough risk analysis conducted on every robotic 
node as well as on the entire network; this analysis is driven by a 
group of risk features [3] which, in turn, are extracted from the 
raw data streams emanating from each node in the monitoring 
region, and (2) evolutionary MOO algorithms are used by the 
response coordinator (i.e., the RSN node that best perceives the 
event) to locally derive a set of promising candidate responses, 
each of which is judged according to several conflictive 
objectives, such as latency or cost.  

When multiple concurrent events arise in the region of interest, 
the framework in [9] allows the RSN nodes to formulate their bids 
for each event by taking into account important aspects such as 
their current battery level, the distance to the event or the amount 
of redundant coverage in that area. The bids are submitted to the 
response coordinator for that event, which selects the winners 
following the first-price sealed bid auction rules and then 
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proceeds to optimize their final locations along the perimeter. 
Subsequently, the winners are instructed to relocate to such 
positions.  

Despite the encouraging results in terms of perimeter coverage 
and response efficiency obtained with the above approach, there 
are key factors in the entire risk mitigation process whose 
influence remains largely unexplored. One of them is the MOO 
component and its relation with the bidding phase. One could 
imagine that, under different bidding conditions and node-specific 
valuation systems, the responses could considerably vary, hence 
impacting the overall quality of the CIP solution. 

This paper is a preliminary study of the role played by MOO in 
the elicitation of responses from a risk-aware RSN that is 
deployed around a critical infrastructure. Contrary to the pre-
optimization auctioning scheme described in [8] and [9], where 
the RSN nodes bid on the basis of their knowledge of the event, 
we consider a post-optimization auctioning scheme in which the 
nodes place their bids knowing what their final positions along the 
perimeter will be, hence calling for a more informed decision at 
the node level. The impact of the pre- vs. post-optimization stage 
in a first-price sealed bid auction system over the risk mitigation 
strategies elicited by the RSN is evaluated and discussed. 
Empirical results reveal that the pre-optimization auctioning is 
more suitable for dense RSNs whereas the post-optimization one 
is preferred in sparse RSNs. To the best of our knowledge, this is 
the first attempt to assess the role of MOO in risk mitigation for 
CIP with RSNs. 

The rest of the paper is structured as follows. Section II reviews 
some relevant works. Section III elaborates on the proposed post-
optimization bidding scenario. Experimental results are discussed 
in Section IV while conclusions are outlined in Section V. 

2. RELATED WORK 
This section briefly reviews several works in the areas of market-
based robot coordination and risk-aware robotic systems for CIP.  

2.1 Market-based Robot Coordination 
Market-based task allocation is a well-studied and quite successful 
coordination paradigm in robotics [1] [4] [5] [7-10][12]. The idea 
of casting different tasks in the system as auctions and letting 
robots bid on them to maximize their individual profit has proved 
valuable in improving the overall team efficiency.  

Gerkey and Mataric [4] developed MURDOCH, an auction-based 
task allocation system which features a publish/subscribe 
communication model. The main goal is to create an inter-robot 
collaboration framework in which responses to tasks are decided 
in a cooperative manner. The protocol can handle robots of 
dissimilar types and capabilities. Only robots that are properly 
equipped to handle a particular task can bid in response to the 
corresponding broadcast auction. MURDOCH names a single 
winner and monitors its progress in real-time.  

Mezei et al [10] address robot-to-robot collaboration with the goal 
of optimizing several objectives like communication costs, task 
execution costs and latency. The proposed task allocation 
framework relies on the aggregation of different auctions in a 
distributed fashion.  Five auction protocols are discussed and 
compared to a simple auction protocol. The authors only focus on 
a single-robot, single-task scenario in which the cost metric is 
inversely proportional to the distance from the event.  

Pustowka and Caicedo [12] introduce multi-robot collaboration in 
a surveillance application. Given a grid representation of a known 

environment, the goal is to have robots cover least frequently 
visited cells. Nearby grid cells are clustered with K-means. These 
clusters of cells become the tasks robots will bid for. The cost 
used in the utility function is the length of the path to the desired 
location, as computed by the A* search algorithm. The highest 
bidder for each task becomes the winner. This approach, however, 
requires full a priori knowledge of the environment and suffers 
from sensitivity to crucial parameters like the number of clusters 
(K) to be found.  

Kaleci et al [5] consider a team of heterogeneous robots with three 
types of tasks: cleaning, carrying and monitoring. The sensing and 
motion models of each robot contribute to the formulation of the 
price and cost of a task and the authors employ two schemes to 
determine the auction winners. Additionally, the Hungarian 
algorithm is used to solve the robot-to-task assignment problem.  

The above approaches illustrate the effectiveness of market-based 
robot cooperation. However, none of them features either MOO or 
risk analysis in the elicitation of candidate responses to the events. 
They are neither concerned with CIP. 

2.2 Risk-Aware Robotic Systems for CIP 
Safeguarding a critical infrastructure with an RSN typically 
involves appropriate situational assessment, risk detection, 
mitigation and prevention. The lifecycle portrayed in Fig. 1 
governs the operational workflow of the RSN in this context. 

 

Figure 1. Lifecycle of a RSN for CIP. 

An RSN for CIP is proposed in [8].  The novelty with this 
approach is that the RSN implements the risk management 
framework put forth in [2]. From the information submitted by 
each RSN node, three risk features are extracted: degree of 
distress, intruder proximity factor and terrain maneuverability. 
The overall risk posed by any RSN node is assessed on the basis 
of these local risk features and those nodes exceeding a 
permissible risk threshold are flagged as “nodes in distress” 
(NIDs), i.e., robotic entities likely to originate a security breach in 
the perimeter. The response from the RSN is to self-organize in 
order to maintain as much coverage as possible around the critical 
infrastructure while minimizing the cost of doing so. For each 
NID, a restricted group of candidate topologies are evolved with 
NSGA-II [2] as the evolutionary MOO algorithm of choice and 
then ranked following some network operator preferences. The 
network manager then decides on the most suitable response 
topology, which is enacted upon the environment.  

The above framework could only handle a single response to a 
single event. That is, a network response must be effectuated 
before another response (such as one to another event) could be 
orchestrated. With this limitation in mind, the authors in [9] later 
augmented this approach to handle multiple concurrent events, 
hence creating several independent network regions which can 
autonomously evolve their own response sets and thus mitigate 
their local risks. Each response coordinator (i.e. the perimeter 
node that best perceives the event) initiates an auction to all RSN 

1270



nodes by advertising the event location. The nodes calculate their 
availability by using a Sugeno fuzzy inference system (FIS) [11] 
and decide whether to bid or not. The response coordinator selects 
the winners according to the rules of the first-price sealed bid 
auction and then evolves their final positions with NSGA-II. 
Finally, the winner nodes relocate to these positions along the 
perimeter.  

The bidding phase in [8] and [9] takes place before the actual 
optimization of the responses. A more informed approach would 
be to evolve the target perimeter locations first, advertise them to 
all nodes and then conduct the bidding process. This paper is 
aimed at gauging the impact that pre- vs. post-optimization has 
over the risk mitigation strategies elicited by the RSN. 

3. PROPOSED METHODOLOGY 
In this section, we unfold the methodological approach involving 
MOO and market-based robot coordination for a risk-aware RSN 
in a CIP scenario.  

As envisioned in [8] and [9], the robotic nodes surrounding the 
critical infrastructure play multiple roles in the system. First, they 
can detect high-risk events that could jeopardize the integrity of 
the surveillance conducted by the RSN upon the region of interest. 
Second, they can become auctioneers for a particular event, which 
means they are responsible for advertising some event-related 
information to the rest of the RSN nodes, gathering the received 
bids and clear off the auction, i.e., announce the winner(s). 
Finally, they could participate as bidders in any auction 
circulating around the network.  

3.1 Risk-Driven Event Detection 
The RSN nodes in our study can detect two types of events that 
are quite relevant to the CIP context: (1) another node’s failure 
(e.g., because of battery depletion) or (2) an attempted perimeter 
intrusion. Both events demand a corporate RSN response in the 
form of a topological self-organization, whether to fill the 
coverage gap brought forth by the failed node or to increase the 
sampling capabilities around a portion of the perimeter where the 
intrusion attempt might have taken place.  

The Risk Management Framework (RMF) in [3] enunciated by 
Falcon et al is the backbone of the event detection phase in our 
study. From the raw data stream periodically submitted by each 
RSN node to the operations center, a parallel risk stream is 
dynamically extracted. This risk stream consists of a collection of 
user-defined risk features which are modeled after different 
constructs. In our example, each RSN node reports: (1) its current 
battery level, in percentage; (2) its distance, in meters, from a 
potential intruder and (3) the terrain maneuverability index 
associated with its geographical location. The distance from a 
potential intruder can be gauged with the help of a laser range 
finder in order to provide the RSN node with depth perception. 
The terrain maneuverability index corresponding to the node’s 
location can be queried from the Knowledge Base of the RSN’s 
deployment environment. In this study, a random number in [0; 1] 
has been used for each location. Table 1 depicts the raw-feature-
to-risk-feature mapping in our CIP case study. 

Table 1. Risk feature extraction  

Raw Feature 
Risk 

Feature 
Modeling 
Construct 

Parameters / 
Expression 

Battery Level 
(%) 

Degree of 
Distress 
([0;1]) 

Fuzzy set with a 
triangular 
membership 
function 

A = 0 
B = 0  

    C = 100 

Distance to 
Potential 

Intruder (m) 

Intrusion 
Risk 

([0;1]) 

Fuzzy set with a 
trapezoidal 
membership 
function 

A = 0 
B = 0 
C = 1 
D = 5 

Geographical 
position  

(x, y) 

Terrain 
Risk 

([0;1]) 
Linear mapping 

1 – terrain 
maneuverability 

index of the 
node’s position 

 

The raw data input vector submitted by each RSN node is mapped 
onto an output risk vector, defined as a collection of local risk 
values, one per risk feature. The local risk value of any risk 
feature is determined by applying its modeling construct and 
parameters/expression to the corresponding input (raw feature 
data) in Table 1. As per the RMF flow in [3], the overall risk 
assessment for an RSN unit is obtained after the application of an 
FIS to the collection of local risk values. For simplicity, our 
Mamdani-type FIS [11] consists of a single fuzzy rule that reads 
as follows: 

IF Degree of Distress is DD-HIGH OR 
Intrusion Risk is IR-HIGH OR  
Terrain Risk in TR-HIGH THEN 
Overall Risk is OR-HIGH 

The linguistic terms DD-HIGH, IR-HIGH, TR-HIGH and OR-
HIGH are modeled as fuzzy sets by taking into account the 
network manager’s knowledge about these local risks. If the 
overall risk of any RSN node exceeds a user-set threshold, then it 
is flagged as a “node in distress” and the pursuit of a corporate 
risk mitigation strategy to assist that node is initiated.  

3.2 Pre-Optimization Auctioning Scheme 
As explained in Section 1, a market-based approach is the 
mechanism through which inter-robot coordination emerges in [8] 
and [9]. The node that best perceives the event (NID) becomes its 
auctioneer and starts advertising the NID’s location to all 
remaining RSN nodes. Upon receipt of this message, an available 
RSN node (i.e., one that is not currently part of any other risk 
mitigation strategy) will formulate its bid and communicate it 
back to the auctioneer. Once all bids have been gathered, the 
auctioneer determines the winner(s) and begins the optimization 
phase to find out which among those winning nodes will be used 
in the response and where they should relocate.  

3.2.1 Node Bidding 
Each robotic node formulates its availability metric (bid) to the 
announced task by considering three major factors: its current 
battery level, its distance to the event and its coverage 
redundancy. A Sugeno FIS [11] is employed to render the final 
bid value. Figure 2 depicts the fuzzy system embedded on each 
robotic node. 

 
Figure 2. Sugeno fuzzy model for node bidding 

The battery metric is an incentive to bid based on the node’s 
remaining energy. We treat it as a linguistic variable with the 
following set of linguistic terms and their configurations: 
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 Poor battery: Triangular membership function with 
A=0.0, B=0.0 and C=0.4 

 Average battery: Trapezoidal membership function 
with A=0.1, B=0.35, C=0.65 and D=0.9 

 Good battery: Triangular membership function with 
A=0.6, B=1.0 and C=1.0 

The distance metric is the node’s incentive to bid based on the 
distance from the risk event. The closer the robotic node is to the 
event, the higher its motivation as it will not spend too much 
energy in locomotion. The normalized node-to-NID distance is 
the input to all the linguistic terms of this linguistic variable: 

 Far distance: Trapezoidal membership function 
with A=0.0, B=0.0, C=0.65 and D = 1.0 

 Near distance: Triangular membership function 
with A=0.5, B=1.0 and C=1.0 

Finally, the redundancy metric is the node’s incentive to bid given 
the amount of redundant coverage in its section of the perimeter, 
i.e., the overlap among the field of views of the RSN nodes w.r.t 
the set of perimeter points in that section. The more overlap, the 
higher the node’s incentive to leave its current position and 
relocate somewhere else. The redundancy metric linguistic 
variable accepts a redundancy ratio as an input to its collection of 
linguistic terms. The redundancy ratio is the percentage of the 
perimeter points surveyed by this node that are also covered by 
nearby nodes. The linguistic terms for this fuzzy variable and their 
configurations are given below: 

 Low redundancy: Triangular membership function 
with A=0.0, B=0.0 and C=0.4 

 Medium redundancy: Triangular membership 
function with A=0.1, B=0.5 and C=0.9 

 High redundancy: Triangular membership function 
with A=0.6, B=1.0 and C=1.0 

The membership grade for a linguistic variable is the highest 
among the membership grades of its linguistic terms. Then, the 
availability metric of the bidder node is simply the average of the 
membership grades for the three linguistic variables under 
consideration. An ideal bidder yields 1.0 for availability while a 
rejection of the bid yields 0.0. All nodes not rejecting the bid 
submit their availabilities to the auctioneer, who then selects the 
winners and notifies them accordingly. 

3.2.2 Multi-Objective Optimization 
The auctioneer then proceeds to optimize the number of the 
winner nodes that are actually required to respond to the event and 
their target locations via NSGA-II [2].  

3.2.2.1 Chromosome Encoding 
Figure 3 portrays the structure of a solution (i.e. chromosome) in 
the MOO scheme conducted after the bidding phase has finished. 

 
Figure 3. A two-layered chromosome encoding. The node 
selection layer decides on the inclusion of a winner node in the 
event response. The target location layer represents the index 
of the perimeter point where it should be relocated. 

3.2.2.2 Genetic Operators 
After two parent chromosomes are selected, crossover is 
probabilistically decided. Two crossover operators are proposed: 

 One-point crossover for the node selection layer. This 
means that a single crossover point is randomly chosen 
and both parents exchange genetic segments in the node 
selection layer. 

 Uniform crossover for the target selection layer. This 
means that genes in the target selection layer are drawn, 
one at a time, from a random parent, until a child 
chromosome is completed. 

Mutation is also probabilistically decided for each population 
member. When a chromosome is mutated, either layer could be 
affected. A random gene is chosen in the node selection layer and 
its value is negated. On the target selection layer, if a gene is to be 
mutated, a new random target index on the interval of [0; T] will 
be selected, where T is the number of target perimeter points. 

3.2.2.3 Objective Functions 
Each population individual (risk mitigation strategy) is evaluated 
according to two mutually conflictive objectives: the perimeter 
coverage it provides and the energy cost involved in enacting its 
response, i.e., the energy spent in relocating all participant nodes 
to their target positions. 

It is clear from the above description that in this pre-optimization 
auctioning scenario, the RSN nodes do not possess any knowledge 
about their final deployment along the perimeter; hence their bids 
are solely based on the circumstances governing their current 
deployment and on the location of the event. 

3.3 Post-Optimization Auctioning Scheme 
An interesting alternative to the aforementioned risk mitigation 
methodology in Section 3.2 is to conduct the optimization phase 
first and, based on its results, let the RSN nodes place their bids.  

3.3.1 Multi-Objective Optimization 
In this case, the auctioneer proceeds to optimize via NSGA-II the 
target locations of the hypothetical responders, i.e., where should 
the responders be placed along the perimeter so that the coverage 
is restored as much as possible and the amount of overlap among 
the responders is reduced as little as possible. 

3.3.1.1 Chromosome Encoding 
A variable-length chromosome encoding is considered, where 
each gene contains the <x, y> coordinates of the target location for 
a hypothetical responder. The cardinality of the chromosome 
(number of genes) varies from 1 to the maximum number of 
possible responders in the RSN. Figure 4 displays a response 
orchestrated by four RSN nodes (not decided yet). 

Gene 1 Gene 2 Gene 3 Gene 4 

x1 x2 x3 x4 

y1 y2 y3 y4 

 
Figure 4. A variable-length chromosome encoding the target 

locations of four hypothetical responder nodes 

When the population is first initialized, solutions of different 
cardinality are injected in the population, with their coordinates 
within the <x, y> bounding box of the perimeter section subject to 
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intrusion/node failure. This bounding box can be easily computed 
by the auctioneer prior to the execution of the NSGA-II scheme. 

3.3.1.2 Genetic Operators 
A single-point crossover operator is applied probabilistically. A 
single-gene mutation operator is also probabilistically enforced on 
each population member. The mutation is interpreted as the 
random generation of another <x, y> pair within the vicinity of the 
existing one and inside the bounding box. 

3.3.1.3 Objective Functions 
The maximization of the perimeter coverage achieved by the 
chromosome (response) and the minimization of the overlap 
among the nodes in the response stand as the two decision 
objectives to be evolved via NSGA-II.  

3.3.2 Node Bidding 
The bidding process in this scenario follows the same procedure 
outline in Section 3.2.1 with the addition of a fourth indicator: the 
delta overage metric, i.e., the difference between robot coverage 
at the optimized position minus the coverage of the robot at its 
original position. 
݁݃ܽݎ݁ݒ݋ܥܽݐ݈݁ܦ ൌ ሼ݊݋݅ݐ݅ݏ݋ܲ_݀݁ݖ݅݉݅ݐ݌ܱ_݁݃ܽݎ݁ݒ݋ܥሽ െ
ሼ݊݋݅ݐ݅ݏ݋ܲ_ݐ݊݁ݎݎݑܥ_݁݃ܽݎ݁ݒ݋ܥሽ.  

It is easy to notice that the coverage gain ratio is a more 
informative measure for the bidder as it takes into account the 
consequences of leaving the node’s current location and the 
benefits (in terms of coverage restored) of doing so. Hence, the 
bidder’s utility function (availability metric) is more reflective of 
the true internal valuation of a node in a multi-agent system. The 
downside is that nodes behave more selfishly and this implies that 
the high-risk events the network is currently experiencing might 
not receive a suitable degree of responsiveness. 

4. EXPERIMENTAL VALIDATION 
This section is devoted to the empirical validation of the proposed 
pre- and post-optimization auctioning schemes. We simulate a 
CIP scenario in Microsoft Robotics Developer Studio 4 (MRDS)1. 
The setting is a military compound with two access points at 
paved roads. Two different RSN deployments are investigated: a 
sparse scenario of 36 nodes and a dense scenario of 57 nodes, 
each deployed along the perimeter of the compound, thus creating 
a virtual fence. 

The experiment simulates a single node being at risk caused by a 
nearly depleted battery. In the experiment, the pre- and post-
optimization auctioning schemes will be compared based on: 
coverage recovery, response cost, and response time. 

4.1 Sparse Scenario: Pre-Optimization Case 
A loss of functionality of an RSN node will most likely induce 
coverage gaps, thus reducing the chance of a detected intrusion. 
This case was explored by randomly initializing the battery levels 
of the robotic nodes using a uniform distribution between 20% 
and 100%. In the case of the sparse scenario, robot #23 became a 
NID with battery level 10% with distress risk 96.6%. A risk 
threshold of 90% was used, which triggered the risk event. Node 
#22 handles the response generation and will assume the role of 
auctioneer. Node #22 takes the role of auctioneer because of it 
was the closest to the NID.  

                                                                 
1 http://www.microsoft.com/robotics Accessed 2014-04-02. 

Due to the risky state of node #23, portions of the security 
perimeter under its jurisdiction are at stake, i.e. െ70.119 ൑ ݔ ൑
െ69.817 and  33.577 ൑ ݕ ൑ 48.019, as shown in Fig. 5. The 
risky region compromises the risk spatial information broadcast 
by robot #22 (auctioneer) to all other RSN nodes in a task 
announcement message.  

 

 
Figure 5. A two-dimensional representation of the RSN for the 
sparse scenario. Node locations are represented by small black 
circles. Each node’s field of view is visualized by the blue 
circular region. Risky perimeter points are circles in green at 
the top left of the figure. 

The RSN nodes receive the task announcement message and 
formulate their bids as described in Section 3.2.1. Table 2 lists the 
RSN nodes that did not reject the auction. 

Table 2. Available bidders for the scenario in section 4.1 

Node xbattery xcoverage  xdistance yavailability 

20 0.971 0.0 43.157 0.295 

21 0.997 0.0 39.191 0.458 

22 0.999 0.0 23.260 1.000 

24 0.989 0.0 22.961 1.000 

25 0.998 0.0 38.701 0.478 

 
The five bidders form a candidate response group, which will be 
optimized using NSGA-II. The crossover and mutation 
probabilities were set to 0.85 and 0.1, respectively. A maximum 
Pareto Archive Set (PAS) size of 10 is used and the initial 
population contains 50 individuals. The stop criterion for the 
optimization is reaching 100 generations. Table 3 reports the non-
dominated solutions found in the PAS once the optimization 
finished. 

 Table 3. Candidate response set for section 4.1 

Response Nr. Responders 
Coverage 

(%) 

Energy Cost 
(%) 

1 0 83.16 0.00 

2 1 84.21 7.90 

 

Response 2 is selected by the network manager as the topology of 
choice since it has the highest coverage of 84.21% (recovery of 
1.05%) at an energy cost of 0.07% (based on the battery usage 
model in the simulator). This solution is illustrated in Fig. 6. 
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Figure 6. The RSN after response 2 in Table 3 was enforced. 
Only the 5 bidding nodes are displayed. Red robots remain at 
their original position while green robots moved to the 
optimized position. 

The response took 50.76 seconds to generate, recovering 1.06% 
coverage initially lost by the NID. The responding robot executed 
the response with an energy cost of 7.90%.  

4.2 Sparse Scenario: Post-Optimization Case 
The post-optimization auctioning scheme was carried out on the 
exact same scenario. This time, the auctioneer optimizes the target 
locations of hypothetical responders first and then runs the 
auction. The PAS after 10 generation is shown in Table 4, which 
describes the optimal position, the coverage of the risk region and 
the number of redundant grid points surveyed by the responders. 

Table 4. Candidate response set for section 4.2 

Response Solution 
Coverage 

Risk Region 
(%) 

Redundant 
Sensor 

Coverage 
(%) 

1 (-70.011, 39.667) 100.0 0 

2 (-69.810, 39.945) 100.0 0 

3 (-70.090, 40.051) 100.0 0 

4 (-69.985, 39.838) 100.0 0 

5 (-69.919, 39.854) 100.0 0 

6 (-69.896, 39.563) 100.0 0 

All solutions provide the maximum coverage in the risky region 
with no overlap. Response 1 (in bold) is arbitrarily selected. The 
auction session revealed no bidders in the auctioned position, 
hence the nodes decided not to respond to this event, for otherwise 
a bigger coverage gap would have been created if they abandoned 
their original locations. The time taken to generate the response 
was 26.93 seconds.  

4.3 Dense Scenario: Pre-Optimization Case 
In the dense scenario, node #32 is flagged as a NID due to a low 
battery of 10% resulting in a distress risk of 96.6%. Node #33 
handles the response generation and assumes the role of auctioneer. 
Node #33 takes the role of auctioneer because it is the closest node 
to the NID. The grid points at risk are within െ33.107 ൑ ݔ ൑
െ19.626 and 73.576 ൑ ݕ ൑ 73.692 (shown in Fig. 7).  

 
Figure 7. A two-dimensional representation of the RSN for the 
dense scenario. Risky coverage perimeter points are circles in 
green at the top-left of the figure. 

The RSN nodes receive the task announcement message from the 
auctioneer and formulate their bids as portrayed in Table 5. 

Table 5. Available bidders for the scenario in section 4.3 

Node xbattery xcoverage  xdistance yavailability 

34 0.999 0.267 31.933 0.699 

33 0.999 0.313 18.818 1.000 

36 0.999 1.000 47.798 0.283 

35 0.999 0.900 44.823 0.395 

30 0.999 0.267 32.878 0.657 

31 0.999 0.200 21.181 1.000 

29 0.999 0.375 43.620 0.500 

37 0.999 0.533 53.376 0.067 

 

The eight bidders form a response group. Table 6 shows the PAS 
once the optimization has completed. 

Table 6. Candidate response set for section 4.3 

Response Nr. Responders 
Coverage 

(%) 

Energy Cost 
(%) 

1 0 89.38 0.00 

2 1 90.27 0.87 

3 1 92.04 2.43 

4 2 99.12 18.60 

5 2 92.92 2.88 

6 1 91.15 1.08 

 

Response 4 (in bold) offers the maximum coverage recovery and 
is selected as the desired response, depicted in Fig. 8.  
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Figure 8. The RSN after response 4 in Table 6 was enforced. 
Only the eight bidding nodes are displayed. Robots in red 
remain at their original positions. Those in green move to 
their optimized locations. 

This response took 60.50 seconds, recovered 9.74% coverage 
initially lost by the NID. The responding robots executed the 
response with an energy cost of 18.60%. 

4.4 Dense Scenario: Post-Optimization Case 
In this case, the response generation technique is the post-
optimization auctioning for the same NID as in Section 4.3. The 
NSGA-II is executed over the risky region defined in the previous 
section as depicted in Fig. 7. The optimal position is <-23.734, 
73.636>, which would recover the entire risky region with no 
overlap in sensor coverage. This position is auctioned by Node 
#33 to the entire RSN. The bids placed are tabulated in Table 7.  

Table 7. Available bidders for the scenario in section 4.4  

Node xbattery xcoverage  xdistance xdeltaCov yavailability 

47 0.998 0.812 115.931 0.376 0.148 

12 0.999 0.800 144.415 0.376 0.099 

27 0.998 0.866 57.178 0.418 0.147 

36 0.999 0.238 44.664 0.502 0.409 

15 0.998 0.812 129.489 0.376 0.121 

55 0.998 0.813 146.424 0.376 0.098 

57 0.998 0.867 149.300 0.418 0.056 

1 0.998 0.875 150.105 0.418 0.042 

 

The auction session revealed that node #36 would be the best 
responder for the optimized position (bold entry in Table 7). This 
response is schematically depicted in Fig. 9. 

The response achieved perimeter coverage of 100% (10.62%) or 
full recovery. This response was generated in 64.03 seconds with 
an energy cost of 22.33%. 

 

 
Figure 9. The RSN after node #36 responds by relocating to 
the target position. Robots in red remain at their original 
positions. The robot in blue is Node #36 at auctioned position. 

4.5 Discussion 
The two auctioning techniques approach the same problem from 
different standpoints, both using the NSGA-II evolutionary multi-
objective optimizer and a fuzzy-based auction technique. In the 
case of the pre-optimization auctioning, a subset of the RSN 
nodes is gathered prior to the optimization. This set of potential 
responders is then evolved to determine the actual number of 
nodes needed to provide adequate coverage as well as their 
perimeter positions. On the other hand, with the post-optimization 
auctioning, we allow the system to determine nearly-optimal 
perimeter positions for hypothetical responders and their number. 
This information elicited by the NSGA-II is then bid out to the 
RSN members. The advantage witnessed with the post-
optimization case is that a robot is able to use the new coverage 
gain versus coverage lost ratio to affect the bid process.  

The response generation time in the pre-optimization case is 
usually longer than in the post-optimization scheme given that the 
former must explore all possible locations within the spatial range 
of all selected responder robots whereas the latter is confined to 
exploring the spatial region around the high-risk perimeter 
segment. We can expect higher response costs in the post-
optimization case since the current geographical locations of the 
actual responders are not taken into consideration during the 
evolutionary process, as they are in the pre-optimization case.  

The post-optimization auctioning scheme can offer superior 
advantages to its pre-optimization counterpart, but this depends on 
the density of the deployed RSN (i.e., number of nodes) and the 
amount of perimeter coverage overlap among them. In an RSN 
with fewer nodes and scarce overlap, an RSN member under the 
pre-optimization auctioning scheme will gladly leave its position 
to relocate to the event area, likely causing a coverage gap at its 
current location. Nodes under the post-optimization auctioning 
scheme will be more thoughtful about this reality and may decide 
not to bid at all (or bid very poorly) hence preserving the quality 
of the surveillance operation in their area of responsibility.  

5. CONCLUSIONS 
This paper has elaborated on the role played by MOO in the 
elicitation of different risk mitigation responses from an RSN in a 
CIP scenario. Two schemes have been considered. The first one 
establishes that the RSN nodes bid on the basis of event-related 
information and then the number of responders and their final 
locations along the perimeter are optimized. In the second one, the 
final locations and number of hypothetical responders are 
optimized first and then the bidding process takes place.  
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The empirical evidence seems to indicate that the pre-optimization 
auctioning method is preferred when the robots have low sensing 
ranges or there is enough coverage redundancy in the perimeter, 
e.g., in the case of a dense RSN. The post-optimization auctioning 
technique is better at handling larger robot response ranges since 
it does not require exploring the response region of each 
individual robot. It also gives RSN bidders enough coverage 
grounds to decide whether it is worth relocating or not, which is 
very helpful in the case of a sparse RSN with low coverage 
redundancy in order to avoid gaps due to the relocation process. 

As a future research direction, we would like to measure how 
influential the underlying auction protocol is in the elicitation of 
risk mitigation strategies by an RSN. Thus far, only the first price 
sealed bid auction protocol has been studied. It would be 
interesting to shed light on what the RSN response landscape 
looks like when other well-known auction protocols like English, 
Dutch or Vickrey are enforced.  
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