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ABSTRACT
A framework is introduced for applying GP to streaming
data classification tasks under label budgets. This is a fun-
damental requirement if GP is going to adapt to the chal-
lenge of streaming data environments. The framework pro-
poses three elements: a sampling policy, a data subset and
a data archiving policy. The sampling policy establishes on
what basis data is sampled from the stream, and therefore
when label information is requested. The data subset is used
to define what GP individuals evolve against. The compo-
sition of such a subset is a mixture of data forwarded under
the sampling policy and historical data identified through
the data archiving policy. The combination of sampling
policy and the data subset achieve a decoupling between
the rate at which the stream passes and the rate at which
evolution commences. Benchmarking is performed on two
artificial data sets with specific forms of sudden shift and
gradual drift as well as a well known real-world data set.

Categories and Subject Descriptors
I.2.6 [Learning]: Concept Learning; Parameter Learning

Keywords
Streaming data, Big data, Pareto archiving, Classification,
Label budgets, Genetic programming

1. INTRODUCTION
Streaming data introduces additional challenges to the

classification task that change the nature of the task in fun-
damental ways. A short list of potential factors of interest
to this research includes, but is not limited to:
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Non-stationary process: The process generating the
data itself might well be subject to concept drift (gradual
change) or shift (sudden change). This is straightforward to
address if all the data is labeled. However, this would imply
that it is possible to provide such labels at the rate that the
data is received. In general this is not possible, indeed, there
might be a considerable cost associated with labeling.

Any time operation: Data is received on a continuous
basis; whereas a machine learning (ML) algorithm should
be capable of providing ‘predictions’ at any point in time.
Dividing the data into independent training and test parti-
tions implies knowledge about when the stream is sufficiently
stationary in order to identify consistent training and test
partitions, which is not possible in general. Instead, ML for
streaming needs to make decisions regarding what data to
use for training while always having a champion individual
available for classification.

Requesting labels: Typically, some form of a windowed
interface1 is assumed in order to provide bounds on what
new data can potentially be used for training purposes. Ad-
ditional decisions are necessary to decide how much of this
data to request labels for. Naturally, if the ML can establish
that no change has appeared between the content of consec-
utive windows, then there is no need to request labels. In
short, a balance needs achieving between too little training
(in which case the ML model goes stale) versus too much
(which implies that too many labels are requested).

Class imbalance: Given that only a small fraction of the
data stream is available at any point in time (cf., the win-
dowed interface to the data stream), then it is not possible
to a priori stratify content. Thus, it is quite likely that the
content of any data window will not be representative all
possible classes. Indeed, when classes are imbalanced, it is
likely that data window content will be degenerate (consist
of a single class alone). Current approaches to class imbal-
ance in GP assume an offline (batch) approach e.g., [5], thus
do not directly transfer to the streaming data scenario.

1One of two generic window interfaces are typically assumed:
1) a sliding window – data shuffled in and out under a
first-in, first-out data structure of finite length, or; 2) non-
overlapping windows of finite length.

1287



In this work we are interested in pursuing an evolutionary
approach capable of addressing all three of the above prop-
erties simultaneously. In particular, we focus on the issue
of change detection with label budgets in order to explicitly
make label requests.

Change detection represents a label free process by which
changes to the underlying process generating stream content
are detected. There are at least two general aspects to the
change detection question (detailed further in Section 2).
In the first case a statistical characterization might be as-
sumed relative to: 1) the input stream; 2) some property of
the classifier architecture; or 3) the decision boundary of the
classifier. All of these scenarios are potential solutions for
detecting a general drift or shift to prior classification bound-
aries after which label requests would be made. However,
when a previously learnt class is associated with an as yet
unseen class and / or previously learnt classes are switched
(as might happen when user preferences shift), there is no
reference for model based change detection. This means
that label requests should be driven through both knowl-
edge of appropriate statistical characterization(s) as well as
purely stochastically in order to capture switches to previ-
ously learnt classifier behaviour. Moreover, there is a limit
to the number of label requests, irrespective of the source of
the request i.e., a finite label budget.

In this work we establish a basic framework for address-
ing these questions under genetic programming (GP), Sec-
tion 3. Such a framework consists of: 1) the sliding win-
dow interface to the stream which defines the subset of data
‘available’ at any point in time; 2) a sampling policy for
determining which exemplars from the current sliding win-
dow are actually selected for training purposes; 3) a data
subset against which a generation of the evolutionary algo-
rithm is performed, and; 4) a data archiving policy for de-
termining how much (if any) of the data subset is retained
between generations. Naturally, it is the sampling policy
that defines when exemplars labels are requested, whereas
the role of the archiving policy is to retain exemplars that
support the identification of ‘good’ GP individuals i.e., a
Pareto archiving policy. A classifier is always available for
providing a class label, care of the data subset that provides
the basis for always being able to select a champion classifier
without reference to additional label information.

Section 5 performs a benchmarking study using two ar-
tificial data sets characterized by non-stationary (gradual)
drift and (sudden) shift. A third real-world data set known
to include concept drift is also included. The well known
Massive Online Analysis (MOA) toolbox provides a base-
line classifier with labelling budget. To our knowledge this
is the first time that GP has been benchmarked under the
conditions of streaming data with a labelling budget. A dis-
cussion of the studies findings and future work presented in
Section 6.

2. BACKGROUND AND RELATED WORK
There has been a significant body of work dedicated to

streaming data scenarios under non-evolutionary ML frame-
works e.g., [33, 19, 6, 20]. For brevity we will focus on the
classification task alone (as opposed to clustering, item set
mining or forecasting / prediction) and concentrate on the
issue of change detection which lies at the centre of building
ML frameworks capable of operating under label budgets.

As noted in the introduction, there are three broad cate-
gories of interest, outlined as follows.

Characterizing properties specific to the model of
classification: represents an approach in which properties
specific to a class of ML are measured and compared to a
prior reference characterization. This is particularly appro-
priate for decision tree architectures in which the frequency
of leaf node utilization is often the property characterized
[17, 24]. Naturally, the limitation in this method is that it
is specific to a particular ML architecture as opposed to any
ML representation.

Characterizing properties of the input data: implies
that the focus of change detection is now on characterizing
behaviour relative to sliding window content. Generally two
sliding windows are employed. The content of a reference
window is compared to that of the most recent sliding win-
dow. The principle design decision revolves around what
statistic to employ e.g., Chernoff bounds [26], entropy [11,
38], Kullback–Leibler divergence [35], Hoeffding bounds [7],
Fractal correlation dimension [18] or Hellinger divergence
metric [15]. One significant drawback of pursuing such an
approach is that it is often necessary to label the data (i.e.,
metrics are estimated class-wise). In addition, statistics es-
timated relative to the input stream are also subject to as
loss of effectiveness as the dimensionality increases [40].

Characterizing properties of the label space: im-
plies that the ‘behaviour’ of the classifier output is the focus
of measurements. Various authors have proposed statistical
characterizations of class boundary information cf., classifier
confidence [30, 36]. For example, changes to classifier cer-
tainly might be detected using thresholds [31], or changes
to the number of confident predictions detected [27]. Natu-
rally, such characterizations of classifier behaviour are inde-
pendent of the ML framework and potentially applicable to
GP as well [34].

A remaining drawback of any of the above approaches is
that they are unable to detect when a previously encoun-
tered input behaviour, P (x), is associated with a new or dif-
ferent class label. For example, under this scenario a label
space characterization would still associate P (x) with the
previous label, or P (y|x). Likewise an input data charac-
terization would not register any change either, as there has
been no change to P (x). Under these scenarios generating
label requests uniformly (i.e., independently of the measur-
able properties) has been shown to be surprisingly effective
[41]; as have hybrid approaches combining label space and
uniform sampling [37]. Section 3 will discuss how such find-
ings can be factored into an approach for applying GP to
streaming data under limited label budgets.

From the particular perspective of GP there has not been
a concerted effort to address streaming data requirements.
The largest body of EC research has been directed towards
EC in ‘dynamic environments’, and applications to finance
in particular [14]. Financial applications generally take the
form of evolving a trading agent to make buy, hold or sell
decisions given some summary of the current and historical
trading conditions. State-of-the-art in this case evolve both
the temporal features used to characterize local historical
information as well as some form of decision tree used to
determine what action to apply. Unlike the streaming task
of interest to this work there is no concept of a label budget.
Instead trading agents are either evolved on a continuous
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basis [14, 25], periodically retrained [39], or make use of loss
criteria to dynamically re-trigger training events [32].

Other developments from evolutionary computation (EC)
include the application of learning classifier systems (LCS)
to dynamic environments. Dam et al., discuss the adap-
tion of learning rates versus reinitializing the population for
noisy versus non-stationary environments under the assump-
tion that all the data is labelled [10]. Behdad and French
propose an online version of LCS in which the exploit and
explore cycles are reversed [4]. Moreover, various probabilis-
tic heuristics are proposed for filling in known ‘gaps’ in label
information. Finally, we note a recent work in which a k-
NN formulation was assumed such that PSO could be used
to adapt the direction in which k-NN prototype classifiers
migrated under streaming data classification [9]. Again, the
data must be completely labeled a priori.

3. GENERIC GP STREAMING DATA AR-
CHITECTURE

The general architecture proposed for applying GP to
streaming data under finite labelling budgets is summarized
by Figure 1. The initial sliding window (SW) represents
the set of exemplars that can be indexed (for training) at
time, t, or SW (t); whereas the sampling policy determines
which exemplars are actually utilized for training purposes,
or Gap(i) ∈ SW (t); where |Gap(i)| ≤ |SW (t)|. Only the
|Gap(i)| exemplars chosen are added to the Data Subset
(DS(i)) and have their corresponding labels requested. Note
also that the rate at which the sliding window updates, or
t, need not be the same as the rate at which samples are
taken, or i. Instead, the rate of sampling from the slid-
ing window, i, defines the rate at which the Data Subset
(DS(i)) and therefore the GP population is updated. With
each new generation i, |Gap(i)| exemplars are identified from
the current SW (t) position, and a corresponding number of
exemplars from DS(i) are replaced by the content of Gap(i).
Naturally, the degree of differentiation between stream and
DS updates sets the label budget ratio.

The scheme assumed for prioritizing DS content for re-
placement is defined by a Data Archiving Policy, in this
case Pareto archiving will be assumed e.g., [13]. Specifically,
Pareto archiving is used to identify exemplars that distin-
guish between the performance of GP classifiers. Such a set
of exemplars are said to be non-dominated [13]. One of the
drawbacks of assuming a Pareto archiving policy, however, is
that the archive of exemplars distinguishing between differ-
ent GP classifiers can potentially increase to P 2 −P ; where
P is the size of the GP population. This would have impli-
cations for the overall efficiency of the algorithm. Hence, we
limit the size of DS to a suitable finite value and employ a
DS exemplar diversity / aging heuristic [1, 2]. The process
for choosing exemplars from DS for replacement now takes
one of the following forms, depending on which condition is
satisfied:

• The number of exemplars forming distinctions is less
than or equal to |DS|− |Gap|. Let the exemplars from
DS that do not support distinctions be d̄. As |d̄| ≥
|Gap| then the DS exemplars replaced by Gap(i) are
selected from d̄ alone.

• The number of exemplars forming distinctions is more
than |DS|−|Gap|. Any exemplars not forming distinc-

Figure 1: Components of generic architecture for
applying GP to streaming data under a label budget

tions (d̄) will be replaced. In addition |Gap|−|d̄| exem-
plars forming distinctions will be replaced (potentially
resulting in the loss of GP classifiers i.e., no longer
identified as being non-dominated). The exemplars
forming distinctions are now ranked in accordance with
how many other points form the same distinction and
how long an exemplar has been in the archive [1, 2].
In effect exemplars supporting: 1) unique distinctions
see more priority than those forming more common
distinctions i.e., a form of fitness sharing or diversity
maintenance, and 2) older exemplars are more likely
to removed in favour of those forming more recent dis-
tinctions.

Such preference schemes were previously shown to be use-
ful under GP streaming classification, albeit without label
budgeting [3, 2, 1].

In the case of the Sampling Policy, Section 2 high-
lighted that two basic sources have been identified from the
wider literature: stochastic sampling versus using classifi-
cation confidence information. Classifier confidence infor-
mation implies that as the certainty of the class label sug-
gested by a classifier decreases (approaches ambiguity), then
request a label. In the case of the stochastic source of label
requests, this is performed uniformly relative to exemplars
that are classified with certainty. The objective being to con-
firm that cases which are classified with certainty have not
undergone some form of shift into a different class. More-
over, we also note that even requesting labels with a uniform
probability (under a label budget) is often better than more
sophisticated heuristics [41]. In this work we will assume the
uniform sampling heuristic under a label budget for the pur-
pose of establishing our baseline performance. Future work
will introduce mechanisms to include classifier confidence,
where given that multiple GP individuals are evolved, it re-
mains to be seen how much significance is given to a single
GP classifier confidence versus that of, say, the archive of
non-dominated classifiers.

Finally, in order to provide anytime classifier opera-
tion, it is necessary to have a champion individual respon-
sible for predicting labels for stream data at any point in
time. Thus, relative to the current content ofDS(i) the non-
dominated GP individual maximizing class-wise detection
rate (DR) is assumed to be representative of the wider pop-
ulation. DR is estimated as follows: 1

C

∑
j=[1,...,C] DR(j);

where C is the number of classes present in DS(i). DR(j) =
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tp/(tp+ fn); where tp and fn denote true positive and false
negative counts w.r.t. class j. Note that in limiting the
available candidate GP classifiers to the non-dominated set,
we reduce the likelihood of selecting degenerate classifiers.
This is particularly important because stream data is not
stratified, whereas it is highly likely that stream data is im-
balanced. Hence, it is generally not possible to make any
guarantees regarding the distribution of classes appearing
in any sliding window location.

The specific form of GP assumed takes the form of Sym-
biotic Bid-Based GP (SBB) and therefore benefits from the
ability to perform task decomposition (construct a classifier
as a team of programs). Studies have demonstrated that
SBB is more effective than monolithic GP under (station-
ary) classification tasks [29], as well as under data sets with
large attribute spaces [16] and data sets with high degrees of
class imbalance [28]. Aside from the additional transparency
of the resulting solutions, pursuing a GP teaming approach
also provides an elegant solution to multi-class classification.
Readers are referred to the earlier SBB papers for details of
selection / variation operators and instruction set [28, 16].

4. EXPERIMENTAL METHODOLOGY
This section begins by establishing the approach to bench-

mark dataset selection (Section 4.1). Section 4.2 discusses
parameterization issues for the GP approach. Section 4.3
outlines the approach adopted to performance evaluation.
Finally, the alternate streaming classifier (an adaptive form
of Naive Bayes with label budgeting) is summarized (Section
4.4).

4.1 Data sets
Three data sets will be employed for the purposes of bench-

marking: 1) two artificially created and therefore with known
degrees of non-stationary behaviour,2 and; 2) a well known
real world data set, Electricity [23], that has frequently been
employed for streaming data benchmarking tasks. The basic
properties of the data sets are summarized by Table 1.

Discrete concept shift dataset: adopts the approach
taken in [41]. The Dataset Generator tool3 is used to con-
struct decision trees that specify a partitioning of the at-
tribute space into a 5-class classification task based on ran-
domly generated thresholds. Data is generated with a uni-
form p.d.f. and then assigned a class using the decision tree.
A total of two concept generator decision trees (C1, C2) are
used to create two sources of data. A single stream of data is
then constructed block-wise with data integrated from each
of the two concept generator decision trees.

Let each block consist of 500,000 exemplars, as sampled
from the concept generator tuple of the form: 〈C1%, C2%〉.
A total of 13 blocks describe the transition from purely C1,
to purely C2 as follows: 〈100, 0〉, 〈100, 0〉, 〈100, 0〉, 〈90, 10〉,
〈80, 20〉, ... 〈0, 100〉. As the first 10% of the stream is made
available for initial model construction, generating the first
three blocks of data using concept C1 implies that the initial
models never see anything other than concept C1. Moreover,
blocks composed from a mixture of the two concepts assume
a uniform p.d.f.

2Publicly available at http://web.cs.dal.ca/~mheywood/
Code/SBB/Stream/StreamData.html
3Gabor Melli. The ‘datgen’ Dataset Generator. http://
www.datsetgenerator.com/

Table 1: Benchmarking dataset properties

Discrete non-stationary concept shift [41]

# of Classes per concept 5

# Attributes (# irrelevant attributes) 7 (1)

# Exemplars per ‘data block’ 500,000

# Exemplars over entire stream (Smax) 6,500,000

Continuous non-stationary concept drift [17]

# of Classes per concept 3

# Attributes (# irrelevant attributes) 11 (1)

# Exemplars per ‘data block’ 1,000

# Exemplars over entire stream (Smax) 150,000

Electricity data set [23]

# of Classes 2

# Attributes 8

# Exemplars over entire stream (Smax) 45,312

Continuous concept drift dataset: adopts the ap-
proach taken in [17]. Hyperplanes are defined in a d = 10
dimensional space. Initial values of the hyperplane parame-
ters are selected with uniform probability. Every 1, 000 ex-
emplars, half of the parameters are considered for modifica-
tion with a 20% chance of change. Class labels are allocated
as a function of hyperplanes exceeding a class threshold. See
[1] for a detailed description of the construction of this data
set.

Electricity: characterizes the rise and fall of electricity
demand in New South Wales (Australia) using consumption
and price information for the target and neighbouring re-
gions [23]. As such it is a two class data set (demand will
either increase or decrease relative to the previous period),
moreover, the distribution of classes is very imbalanced.

4.2 Parameterization of GP
The following approach will be adopted regarding the ex-

perimental methodology assumed for benchmarking GP al-
gorithms under streaming data:

Model initialization is performed using the first 10%
of the stream. This implies that relative to Figure 1, the
first 10% of the generations are performed with the slid-
ing window stationary over the initial 10% of the data set.
Thereafter, the sliding window interface assumes a first-in,
first-out data structure of fixed depth.

A sliding window of length Smax/imax exemplars is
assumed after model initialization. The remainder of the
stream passes through at a constant rate (Smax is the ulti-
mate length of the stream and imax is the total generation
count). The window is used to define the pool from which
the new |Gap(i)| training exemplars are sampled and their
label are requested. Note that in effect this parameteri-
zation results in a non-overlapping sliding window. How-
ever, GP is evaluated w.r.t. the content of the Data Subset
(Figure 1). Hence, there is still a ‘gentle’ turnover in new
to old exemplar content between consecutive generations,

or |Gap|
|DS| new exemplars are introduced at each generation,

where |Gap| = 20 and |DS| = 120.
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Label budget is the ratio of points whose labels are re-

quested over the stream length, or imax×|Gap|
Smax

. In other

words only imax × |Gap| exemplars are requested for their
label in a stream of length Smax. Thus, under the artificial
concept shift data set (Table 1) with Smax = 6, 500, 000 and
imax = 1, 000, then 6,500 exemplars pass between updates
of the GP population, all of which are retained in the slid-
ing window for potential sampling by the Sampling Policy.
In the parameterization assumed here only |Gap| = 20 ex-
emplars are sampled by the Sampling Policy to be used for
training at each generation Thus, the Label Budget in this
example would be 1,000×20

6,500,000
≈ 0.3%. Given the rather dif-

ferent stream lengths of the three benchmarking data sets
(Table 1), two different parameterizations for imax will be
assumed per data set as follows:

• Concept shift data set: imax ∈ {1, 000; 10, 000};
• Concept drift and Electricity data sets: imax ∈ {500; 1, 000}
Different tapped delay line depths will be investigated

in conjunction with GP. The number of taps will either be
1 (special case of no history) or always consist of 8 taps.
Separate experiments will be performed with skip periods of
1, 2, 4 or 8. For example, the skip period of 2 corresponds to
data instances of [t, t−2, t−4, ..., t−14] where t is the index
of the exemplar for which a class label is desired. Increasing
the skip period increases the depth of data indexed, but
reduces the resolution given a fixed number of taps. Support
for a tapped delay line implies that GP indexes a matrix of
#attributes × #taps and is therefore independent of the
streaming framework details (Section 3).

Any remaining parameters follow from earlier work with
SBB on streaming data [1, 2].

4.3 Evaluation
For comparison purposes we make use of two forms of com-

parator classifier: a “no change” classifier [8] and an Adap-
tive Naive Bayes model with label budgeting [37]; the latter
is described in Section 4.4. The no change classifier was
proposed as a naive ‘devils advocate’ approach to classifica-
tion in which access to perfect label information is assumed.
Specifically, it assumes that the label for exemplar t is the
same as that for exemplar t−1, and continues with this ‘pre-
diction’ until the label changes; after which the latest change
in label is assumed. In short, the no change classifier is a
one-bit state machine that makes no use of attribute infor-
mation at all. It is known to be particularly effective (given
complete access to label information) when the data stream
consists of bursts of exemplars carrying the same class label
[8]. However, as the number of classes and / or the degree
of interleaving of class information increases, performance
decreases. As such a no change classifier provides a ‘feel’ for
how much implicit class variation exists in a stream.

Performance evaluation takes the form of an accumulative
moving average metric, or prequential accuracy [12], where
this is the default metric assumed by the MOA toolbox as
well as being more generally used in the ML streaming lit-
erature [22]. Specifically, the prequential accuracy at exem-
plar t in the stream is estimated relative to all past t − 1
exemplars as well as exemplar t, or

preqt =
(t− 1) × preqt−1 +R(t)

t
(1)

where R(t) = 1 denotes a true classification of instance t,
and R(t) = 0 denotes otherwise. The ratio of time indexes
acts as a weighting factor, enforcing a decay for older up-
dates [22]. The resulting prequential accuracy takes the
form of a curve, although current benchmarking practice
also tends to compare against the final prequential accuracy
estimate for t = Smax.

4.4 Adaptive Naive Bayes model
The second comparator classifier is documented in a re-

cent study of streaming data classification under label bud-
gets and drift detection [37], and has been made available
in the Massive Online Analysis (MOA) toolbox.4 Specifi-
cally, the Naive Bayes classifier with budgeted active learn-
ing and drift detection under the prequential evaluation task
is employed. The drift detection mechanism selected was the
DDM (Drift Detection Method) algorithm given by Gama
et al., [21] with default values for threshold (1) and step
parameters (0.01). The ‘random’ active learning strategy
was selected as it provided the baseline in [37] and is closest
to the stochastic sampling policy adopted in this work. Fi-
nally the label budget parameter was varied over the range
[0.05, 0.5] in 0.05 level increments.

Under this configuration a new classifier is built when the
current classifier’s performance begins to degrade; the cur-
rent classifier is then replaced when drift is explicitly de-
tected by the DDM. The active learning with budgeting is
managed by the random selection policy where incoming
points are queried for labels with the same uniform random
probability as the budget parameter itself.

5. RESULTS
Figures 2, 3 and 4 provide a behavioural summary for how

prequential accuracy (eqn. (1)) develops under GP during
the stream w.r.t. different labelling budgets and support for
various tapped delay line configurations (Section 4.2) over
the three data sets (Section 4.1). In all cases each curve is
the result of averaging the performance of GP over 50 runs
for each configuration. Clearly a larger label budget always
improves prequential accuracy, however, under the concept
shift data set (Figure 2) more labels are necessary in order
to provide a benefit when using a tapped delay line. This is
natural as the changes are sudden, thus after the change, the
data is stationary until the next sudden change. Moreover,
there was a sensitivity to the taps used in the delay line un-
der the concept shift data set, with only tap skips (2 and
4) resulting in performance improvements. Conversely, in-
cluding taps was always beneficial to the concept drift and
electricity data sets, with a more prominent effect under
electricity (Figure 4). We also note that on the concept
shift data set some regression in prequential accuracy oc-
curs after the initial (10%) pre-training period (Figure 2).
Conversely, progress on the concept drift and electricity data
sets is generally monotonically increasing (Figures 3 and 4).

These figures also illustrate the performance of the “no
change” classifier (Section 4.3). Both the artificial data sets
illustrate the inherent weaknesses of such a classifier, with
somewhat less than one class correctly classified on the con-
cept shift data set (Figure 2), and a continuous decay experi-
enced under concept drift (Figure 3). In the latter case, the

4MOA prerelease 2014.03; http://moa.cms.waikato.ac.
nz/overview/
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Figure 2: GP Prequential accuracy during stream.
Artificial dataset with sudden concept shift. First
10% of stream (0.65×106 exemplars) are used to con-
struct the initial model. Top: Label budget of ≈ 0.3%
or imax = 1, 000; Bottom: Label budget of ≈ 3% or
imax = 10, 000

no change classifier experiences an initial labelling success,
but thereafter decays as no particular pattern of behaviour
is evident in the labels.

Table 2 summarizes the resulting prequential accuracy in
terms of mean and standard deviation for each tapped delay
line configuration, label budget and data set. Note that label
budgets are expressed in terms of the total stream length
(Section 4.2). At each generation no more than 20 exemplars
are sampled from the stream (Section 4.2). As noted above,
there is a general preference for including the tapped delay
line, with best cases most frequently occurring for a skip size
of 4 (and no preference for a skip size of 1).

Results for the second baseline classifier, the adaptive
Naive Bayesian (ANB) framework for streaming data clas-
sification under label budgets as implemented in the MOA
toolkit (Section 4.4) are summarized in Figure 5. In this
case label budgets are specified as a percentage of the entire
stream in increments of 5 between 5 and 50 percent. These
results should therefore be compared with the the GP re-
sults summarized in Table 2. Under the concept shift data
set, a 3% label budget is sufficient for GP to perform bet-
ter than any configuration of ANB, whereas ANB performs
better than GP under the concept drift data set (both out-
comes are significant at the 99% confidence interval). In the
case of the Electricity data set, ANB performs better at low
label budgets, but as the label budget increases there is no
statistically significant difference.
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Figure 3: GP Prequential accuracy during stream.
Artificial dataset with gradual concept drift. First
10% of stream (1.5× 104 exemplars) are used to con-
struct the initial model. Top: Label budget of ≈ 6.7%
or imax = 500; Bottom: Label budget of ≈ 13.3% or
imax = 1, 000

6. CONCLUSION
A framework is proposed and benchmarked for applying

GP to streaming data classification tasks under limited la-
bel budgets. This effectively makes GP an online algorithm
able to adapt on a continuous basis to data streams created
by a non-stationary source. From the perspective of scala-
bility we note that the cost of any single GP generation is
set by the cost of Pareto archiving i.e., set by the size of
the data subset. Future work will continue to develop the
framework to utilize additional information when deciding
which exemplars to request label information for i.e., classi-
fier confidence (see dashed line in Figure 1).
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