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ABSTRACT
In this paper, we present a new method for classification
of electroencephalogram (EEG) signals using Genetic Pro-
gramming (GP). The Empirical Mode Decomposition (EMD)
is used to extract the features of EEG signals which served
as an input for the GP. In this paper, new constructive
crossover and mutation operations are also produced to im-
prove GP. In these constructive crossover and mutation op-
erators hill climbing search is integrated to remove the de-
structive nature of these operators. To improve GP, we ap-
ply constructive crossover on all the individuals which re-
main after reproduction. A new concept of selecting the
global prime off-springs of the generation is also proposed.
The constructive mutation approach is applied to poor indi-
viduals who are left after selecting globally prime off-springs.
Improvement of the method is measured against classifica-
tion accuracy, training time and the number of generations
for EEG signal classification. As we show in the results
section, the classification accuracy can be estimated to be
98.69% on the test cases, which is better than classification
accuracy of Liang and coworkers method which was pub-
lished in 2010.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Problem Solving, Search.

General Terms
Performance, Algorithms, Relaibility.

Keywords
Genetic Programming; Emperical Mode Decomposition; Glob-
ally Prime.
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1. INTRODUCTION
Electroencephalography (EEG) [1] is the recording of electri-
cal activity which contains information about human brain
functionality and the disorders of the nervous system. Al-
though not a brain scan as the term is usually used, the
EEG, or electroencephalograph, deserves mention as one of
the first ways of non-invasive observing human brain activ-
ity. An EEG is a recording of electrical signals from the brain
made by hooking up electrodes to the subject’s scalp. EEG
accurately measures the deviations of electric signals within
short period of time through multiple electrodes placed on
the human scalp, the changes in these electric signals are
measured in terms of voltage fluctuations of brain. The in-
formation about the human brain and neurological disorders
is found through the output of the electrodes. EEG allow
researchers to follow electrical impulses across the surface of
the brain. An EEG can show the state of a person such as
numb, awake, asleep because the characteristic patterns of
current vary for the aforementioned states. One important
use of EEGs has been to show how long it takes the brain
to process various stimuli.

Epilepsy [3] is a brain disorder in which clusters of nerve
cells, or neurons, in the brain sometimes signal abnormally.
In epilepsy, the normal pattern of neuronal activity becomes
disturbed, causing strange sensations, emotions, and behav-
ior, or sometimes convulsions, muscle spasms, and loss of
consciousness. The Epilepsy is characterized by sudden and
recurrent malfunction of the brain which is termed seizure.
Ictal and Interictal [2] are the medical conditions of seizure,
where the period of the seizure is represented by Ictal and
the intermediate period between two seizures is represented
by Intericatal. However we have to make a note that Inter-
ictal differs from that of a non-seizure signal. A prediction
of the Ictal from Interictal could make the patient to put
away from the next seizure. It is imprecise and erroneous
to detect epilepsy by visual scanning of EEG Signals. The
detection of epileptic seizures, which are convulsions accom-
panied by impaired consciousness, in the EEG signal is a
vital part in the diagnosis of epilepsy. Nonetheless, Classi-
fication between the ictal and interictal is essential for the
detection of Epileptic seizures.
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A wide range of methods [18] have been proposed to fore-
cast epileptic seizure by classifying seizure and non-seizure
EEG signal which employed univariate techniques, eigen
spectra of space delay correlation and covariance matrices
[20], Hilbert-Huang transform[8], and autoregressive model-
ing and least-squares parameter estimator [7]. The afore-
mentioned techniques [7],[18] though they exhibit good sen-
sitivity. Yet, their specificity and accuracy are not at ex-
pected level.

Genetic programming (GP) [12] is an evolutionary learning
methodology that offers a great potential for classification.
GP is a very flexible heuristic technique that makes it very
convenient to represent complex patterns in the form of trees
and graphs, therefore working with various operations and
functions becomes easier. Since GP is a search and opti-
mization algorithm, it can be easily employed as the search
algorithm for generating a classifier. Since the early 1990s,
there have been a number of reports [12, 19, 21] on apply-
ing GP techniques to a range of classification problems. In
previous research works, many authors came up with classi-
fication of EEG signals on basis of Least Squares - Support
Vector Machine (LS-SVM) [16],[1]. But the advantage of
using GP over LS-SVM is that the objective function can
be changed without changing the algorithm, that is instead
of the Mean Absolute Error (MAE), the sum of squared er-
rors could be used. For the SVM, such a change requires
reformulating the Quadratic Programming(QP) and the op-
timization algorithm. Similarly, the fitness function of the
GP could be defined so as to generate parsimonious [10] so-
lutions. Although parsimony can also be obtained with the
SVM [15], this again requires reformulating and re-solving
the optimization problem. In short, changing the objective
for a GP requires no change to the algorithm; whereas chang-
ing the objective for the SVM requires solving a new math-
ematical programming problem, which effectively defines a
new search operator. Though GP shows lots of advantages,
but still there is a need to improve the current GP life cycle,
because it does not give satisfactory results for classification
problems. In GP life cycle, crossover and mutation operators
are the most important operator for evolving solutions but
it is also considered the most devastating in nature[6]. Fur-
ther, we focused our work on improving the crossover and
mutation operations and demonstrating the improvements
in terms of classification accuracy, number of generations
and time in later sections.

In this paper, we propose the new Constructive Crossover
and Mutation operations (CCM) for Genetic Programming
approach and its use for the classification of the EEG Sig-
nals. To achieve this goal, we initially extract the intrin-
sic mode functions (IMF’s) from the each EEG Signal using
Empirical mode decomposition (EMD) and we use two band-
width parameters, namely Amplitude Parameter (BAM) and
Frequency Parameter (BFM) for the classification purpose.
The bandwidth parameters, calculated from the respective
IMF’s of each EEG Signal is used as the input feature set for
the Genetic Programming for the classification of the EEG
signals. Finally, we propose constructive crossover and mu-
tation operations to improve the overall GP life cycle.

The remainder of this paper is organized as follows: Section
2, describes the experimental data, and its preprocessing

steps Section 3, describes the preliminaries of GP life cy-
cle. Section 4, gives the detail description of the proposed
crossover and mutation (CCM) operators. Section 5, gives
the experimental results and discussion and finally Section
6 concludes the paper.

2. EXPERIMENTAL DATA
2.1 EEG signal Dataset
An EEG dataset, which is available on-line in [4] is used.
It contains three classes: 1) healthy, 2) epileptic subjects
during seizure-free interval (interictal), 3) epileptic subjects
during seizure interval (ictal). Each case has five datasets
named: O, Z, F, N, and S. Sets O and Z are obtained from
healthy subjects under condition of eyes open and closed; re-
spectively by external surface electrodes. Sets F and N are
attained from interictal subjects. Set F taken from epilepto-
genic zone of the brain shows focal interictal activity; set N
obtained from hippocampal formation of the opposite hemi-
sphere of the brain indicates non-focal interictal activity, and
set S is got from an ictal subject. Each set contains 100 sin-
gle channel EEG segments of 23.6 sec duration. Sampling
frequency is 173.61 Hz, so each segment contains N = 4096
samples . These EEG Signals (one from each subset) are
shown in Fig 1.

2.2 Data Preprocessing
This section shows how we extract features from EEG signals
to use as an input for GP. To extract the features from the
EEG signal we have to follow the following steps:

2.2.1 Empirical Mode Decomposition
The empirical mode decomposition (EMD) method was de-
veloped by Huang et al. [8] to decompose functions into a
superposition of natural modes, each of which could be eas-
ily analyzed for their instantaneous frequencies and band-
widths.

EMD is basically a method of breaking down a signal with-
out leaving the time domain introduced for analysis of non-
linear and non- stationary signals. It can be compared to
other analysis methods like Fourier Transforms and wavelet
decomposition. The algorithm includes the following steps:
1. Calculate the IMF for each iteration using EMD on EEG
signals. 2. Calculate two features namely Frequency pa-
rameter and Amplitude parameter using Hilbert transform
applied on IMF’s for each iteration. 3. Generate a Band-
width parameter by combining Frequency parameter and
Amplitude parameter.

2.2.2 Calculation of Intrinsic Mode functions (IMF)
Using the EMD algorithm, we obtain intrinsic mode func-
tions (IMF), which were generated at each scale, going from
fine to coarse, by an iterative procedure to locally isolate the
modal behavior.

In contrast to the aforementioned Fourier transform and
wavelet transform, the EMD decomposes any given data into
intrinsic mode functions (IMF) and a residual function that
are not set analytically and are instead determined by an
analyzed sequence alone. The basis functions are in this
case derived adaptively directly from input data. An IMF
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Figure 1: Example of EEG signals from each of the
five subsets (Z, O, N, F, and S).

resulting from the EMD shall satisfy only the following re-
quirements: 1. The number of IMF extrema (the sum of the
maxima and minima) and the number of zero-crossings must
either be equal or differ at most by one; 2. At any point of
an IMF the mean value of the envelope defined by the local
maxima and the envelope defined by the local minima shall
be zero. The algorithm as proposed by Huang requires the
identification of all local extrema that are further connected
by cubic spline lines to produce the upper and the lower
envelopes.

We use a process called sifting [13] to obtain the final IMF.
The sifting process is repeated until a certain given stoppage
criterion is met. This continues until all IMFs are extracted.
The sifting process usually stops when the residue, for exam-
ple, contains no more than two extrema. At the end of the
decomposition, the original EEG Signal is represented as as
the sum of IMF’s and the final residue. The IMFs generated
by EMD process on the 23.6 s EEG signal are shown in Fig
2. Empirical mode decomposition can successively separate
the intrinsic oscillatory modes of signals into a finite number
of IMFs. At the end of the decomposition, two bandwidth
parameters(Bam and Bfm) are generated for every IMF [5].

2.3 Analytical Representation of EEG signal
Empirical mode decomposition can successively separate the
intrinsic oscillatory modes of signals into a finite number of
IMFs. At the end of the decomposition, The original EEG
Signal is represented as

x (t) =

n∑
i=1

Ci (t) + R(t)

where n is the number of IMFs, Ci is the ith IMF and R(t)
is the final residue. The analytic signal of any real IMF A(t)
is represented as:

A (t) =
√

c2 (t) + c2H(t)

Figure 2: 8 IMF’s extracted from EMD of a EEG
Signal).

Where c(t) is the IMF and cH(t) refer to Hilbert transform
of IMF. The instantaneous frequency ω(t) is defined as:

ω (t) =
d∅(t)

dt

where ∅(t) is instantaneous phase. Then calculate the center
frequency which can be defined as:

< ω > =
1

E

∫
ω|Z (ω) |2 dω

where E is the energy of analytic signal and Z(ω) is the
Fourier transform of analytic signal. The amplitude param-
eter and the frequency parameter are defined respectively.

B2
am =

1

E

∫
(
dA(t)

dt
)
2

dt

B2
fm =

1

E

∫ (
d∅ (t)

dt
− < ω >

)2

A2(t) dt

The total bandwidth of analytic IMF x(t) is defined as:

B =
√

B2
am + B2

fm

These Bam and Bfm serve as the input features for our Ge-
netic Programming.

3. PRELIMINARIES OF GP
To build the GP based classifierfor EEG signals classification
we had to follow the following steps:

3.1 Multi tree Classifier
In GP every individual is represented in the form of trees.
So, for a two class problem a possible classifier or an indi-
vidual is generally represented by a singletree (T ). For a
pattern x, the single tree is constructed for two classes as
follows:

if T (x) ≥ 0, x ∈ class 1

else, x ∈ class 2
(1)
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The single tree representation of the classifier is sufficient
for a two-class problem. This scheme can be extended to
a multicategory classification problem. In our design, every
chromosome or individual will have a tree for every class. So,
a possible solution or an individual for the GP is represented
by c trees denoted by (T1, T2, ...Tc). For a pattern x, the
condition of belongingness corresponding to a class is given
as follows:

if Ti(x) ≥ 0 and Tj(x) < 0 ∀j 6= i, j ∈ {1, 2, ...c}
then x ∈ class i

3.2 Initialization
In GP, first we have to generate initial population for per-
forming operations on it. The terminal and function sets are
important components for generating the initial population.
The terminal set consists of the variables and constants of
the programs. The functions are several mathematical func-
tions, such as addition, subtraction, division, multiplication.
Trees for each of the individual are initialized randomly us-
ing the function set F and the terminal set T . The function
set F and terminal set T used here are as follows:

F = {+,−, ∗, /}
T = {feature variablesofEEGsignals,R}.

(2)

Where R contains randomly generated constants in [0.0 to
10.0]. We initialize trees using the ramped half-and-half
method [6]. The +, -, and * operators have their usual
meanings (addition, subtraction, and multiplication), while
/ represents protected division, which is the usual division
operator except that a divide by zero gives a result of zero.
Each of these functions takes two arguments.

3.3 Fitness Measure
The most difficult and most important concept of GP is the
fitness function. The fitness function determines how well a
program is able to solve the problem. The GP is guided by
the fitness function to search for the most efficient computer
program to solve a given problem. A simple measure of
fitness has been adopted for the classification problem and
given as follows:

Fitness =
n

N
(3)

where n= Number of Samples correctly classified and

N=Total number of training samples.

The GP is trained with the set of N number of training
samples, Xtr = {x1, x2, ...xN}. While training, the response
of a tree Ti for a pattern x is expected to be as follows:

Ti(x) ≥ 0 if x ∈ class i

Ti(x) < 0 if x 6= class i

In other words, a classifier with c trees is said to correctly
classify a sample x, if and only if all of its trees correctly
classify that sample. If we emphasize that a training sample
is from class k than we say that tree Tk correctly classifies
x, if Tk(x) > 0. On the other hand, the tree Tj ,j 6=k is
said to correctly classify x, if Tj(x) < 0. For each correct
classification of a training sample by a classifier, its fitness
is increased by 1.

Table 1: COMMON PARAMETERS FOR ALL
DATASETS

Parameters Values
Probability of Crossover

Operation (Pc) 50%

Number of individuals selected
for Crossover Operation (Nc)

Probability of Reproduction Operation (Pr) 20%

Number of individuals selected
for Reproduction Operation (Nr)

Probability of Mutation Operation (Pm) 30%

Number of individuals selected
for Mutation Operation (Nm)

Population Size (k) 300

Number of Generations 40

Initial Maximum Depth 6

Initial Minimum Depth 3

3.4 Methods and Parameters
In proposed approach, we used tree structure to represent
genetic programs [14]. The ramped half-and-half method
[6] is used in generating programs in the initial population.
The proposed crossover operator is described in the next
Section. The point mutation technique [17] is used. The re-
production operator simply copied the best individuals into
the population in the next generation to make sure the best
individual programs are not lost during evolution.

Table 1 describes the parameters for the GP process. These
parameters values are primarily chosen based on the heuris-
tic guidelines on the choice of parameters [6] and an em-
pirical search through initial experiments on GP with the
standard crossover operator. Then, we checked those pa-
rameter values on the new approach and found that they
also could do a reasonably good job.

3.5 Termination Criteria
In this approach, the learning/evolutionary process is ter-
minated when one of the following conditions is met:

1. The number of generations reaches the maximum gen-
erations.

2. The classification problem has been solved on the train-
ing set, that is, all objects of interest in the training
set have been correctly classified.

4. PROPOSED WORK
In this section, we proposed new constructive crossover and
mutation operations (CCM) to improve the overall GP life
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Figure 3: Constructive Crossover operation

cycle. The detailed description of both these operators are
described next:

4.1 Constructive Crossover
In our GP process we first transfers the best Nr individuals
from the current population to next generation by applying
the reproduction operation. Then on remaining individuals
we apply the crossover and mutation operation. For select-
ing the individuals for crossover operations, various authors
applied various types of tournament [9]. The idea behind
this, is to find the individual which are best for performing
the crossover operations. The overall logic of finding the
best parent for performing the crossover is little suspicious
because of following two reasons. First is that, by just see-
ing the parent, nobody can guarantee the better off-springs.
The second reason is that, even a individual with a lower
fitness can produce better off-springs. Therefore, we pro-
pose a constructive crossover in which we we select all the
individuals for crossover operation (Nc and Nm) which are
left after reproduction. We make the pairs of these individ-
uals and perform the crossover operation. We generate the
off-springs from selected couple and check whether the off-
springs are better than parents or not in terms of fitness. If
they are better in terms of fitness, we kept them otherwise
reject and repeat this process again till we get two individ-
uals better than parent. We repeat this process for all Nc

and Nm individuals. Thus, in this way we had integrated
the local hill climbing method in crossover operation. We
repeat this process for all the pairs.

Another concept of globally prime off-springs we had in-
troduced in this method. That is selecting the top Nc off-
springs on the basis of fitness from all the off-springs gen-
erated from crossover operation. The top Nc off-springs in
terms of fitness, are present on the top Nc position in the
max-heap all the remaining off-springs which are present at
lower position in max-heap are deleted. A max-heap is a
complete binary tree, in which the value in each internal

Figure 4: Selection of Global Prime Off-springs from
Max-Heap

node is greater than or equal to the values in the children of
that node.

To explain this approach we are presenting a small exam-
ple. In this we are taking population size as 10. We are
applying reproduction on 2 individuals, crossover on 6 indi-
viduals and mutation on 2 individuals. First we transfer the
2 individuals from the population by applying reproduction
operator. Than 8 individuals are left, out of which we have
to apply crossover on 6 individuals and mutation on 2 in-
dividuals. But, rather selecting 6 individuals for crossover
we select all the 8 individuals for it and apply constructive
crossover. That is, generate 16 individuals from these 8 in-
dividuals which are better than parent in terms of fitness
and kept in a max-heap. Than from these 16 individuals
we select the 12 globally prime off-springs of max-heap (the
top 12 off-springs of max-heap). That is, top 12 individuals
from these 16 individuals on the basis of fitness and delete
the remaining 4 individuals. We select only 12 because the
numbers of crossover individuals are 6 only. So, from them
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only 12 off-springs can be selected. The remaining two par-
ents whose off-springs are not transferred to next generation
are automatically selected for constructive mutation opera-
tion. The advantage of this method is that we transfer the
globally prime off-springs to next generation and the parents
which are not able to generate better off-springs are chosen
for mutation operation.

Algorithm 1 Algorithm for Constructive Crossover

1: Begin
2: Generate initial classifier population (k).
3: Randomly select fixed percentages of the initial popu-

lation for crossover crossover (Pc), mutation (Pm) and
reproduction (Pr).

4: Group the total population left after reproduction (Nc

and Nm) into pairs.
5: Apply Hill Climbing method that is take the parent pair

and genrate off-springs from them till we get the better
off-springs than parents.

6: Repeat this process for all the pairs and generate the
max-heap.

7: Select the top (Pc) globaly Prime offsprings from the
max-heap and delete the remaining individuals for the
next generation.

8: Repeat steps 2 to 7, until we reach required number of
generations or required fitness satisfaction percentage.

9: End

4.2 Constructive Mutation Operation
To further improve the GP life cycle, we propose a con-
structive mutation operation. In constructive mutation op-
eration, we chose those individuals which are left after repro-
duction and crossover operations. Then, we apply local hill
climbing search on them that is, generate the off-springs till
we get the better off-springs than parents. The advantage
of using constructive mutation is that we reduce the de-
structive nature of mutation operation by transferring only
the better individuals than parents to next generation. An-
other advantage is that we chose the mutation parents after
crossover and reproduction. So the individuals which are
not good for producing better off-springs than parents are
changed in our mutation.

Figure 5: Constructive Mutation Operation

5. EMPERICAL RESULTS AND DISCUSSION
We have used the data described in Section 2, for our ex-
periment. It contains three classes: 1) healthy, 2) epileptic

Algorithm 2 Algorithm for Constructive Mutation

1: Begin
2: Generate initial classifier population (k).
3: Take the individual (Nm) which are left after reproduc-

tion and crossover operations.
4: Apply Hill Climbing method that is take the parent pair

and generate off-springs from them till we get the better
off-springs than parents.

5: Repeat this process for all the pairs and generate the
max-heap.

6: Transfer the individual tot he next generation.
7: Repeat steps 2 to 6, until we reach required number of

generations or required fitness satisfaction percentage.
8: End

subjects during seizure-free interval (interictal), 3) epileptic
subjects during seizure interval (ictal).

5.1 Comparison with Other Approches
To evaluate the generalizability of our approach, we used 10
fold cross-validation [11] scheme (CV). Here, the data are
divided into 10 parts of equal size. We use 9/10 of the data
to train the GP model, and we use the remaining 1/10 of
data to test the model and estimate the classification accu-
racy, which is how well our approach is able to classify the
EEG signals. We performed 10 GP runs, each time leaving
out a different 1/10 of data for testing [11]. A classifica-
tion accuracy is estimated as an average across the 10 cross-
validations and standard+ mean deviation of the results are
calculated.

Figure 6: Comparison of Accuracies of all the classes
and overall accuracies with all the methods

To compare our work we use the work of Liang et al.[16],
Parvez et al.[1] and Zhang et al.[22] because Liang and
Parvez had use the same dataset for classification of EEG
signals and Zhang had shown the better classification ac-
curacy by improving the crossover operator for object clas-
sification problem. Therefore, we found these works more
appropriate to compare our work. Liang and Parvez, both
used LS-SVM technique for the classification of EEG sig-
nals and how ever their accuracies were 97% and 83.25% re-
spectively which is less than the accuracy achieved by CCM
which is shown in Table2. The main reason for the improved
accuracies is our both constructive crossover and mutation
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Table 2: CLASSIFICATION ACCURACY FOR THE TEST SET WITH LIANG; PARVEZ; LCC: LOOSE-
NESS CONTROLLED CROSSOVER; CONSTRUCTIVE CROSSOVER AND MUTATION OPERATION
METHODS

Methods Accuracy of Healthy Class Accuracy of Interictal Class Accuracy of Ictal Class Overall Accuracy
Liang et al. 98.58± 1.13 96.43± 1.53 96.08± 1.43 97.03± 1.36
Parvez et al. 84.89± 1.18 82.25± 1.74 82.61± 1.59 83.25± 1.51
LCC([22]) 94.47± 1.22 95.17± 1.52 89.87± 1.26 93.17± 1.33

CCM 99.19± 0.14 97.41± 1.47 99.47± 0.04 98.69± 0.55

operation. The Constructive crossover operation finds the
better off-springs which help to find the optimal solution
fast. The constructive mutation operation brings the di-
versity on those parents who have not been able to perform
well in constructive crossover operation. Therefore, our both
these operators work in tandem to bring the improved solu-
tion fast.

5.2 Advantage of Classifying the EEG Signals
As the EEG signals are divided into three classes. Each of
this class has their properties. If a person is suffering from
epilepsy then using our method its 97.41% accurate to say
that he/she belongs to the interictal class and suffering from
epilepsy of non-seizure and its 99.47% accurate to say that
he/she belongs to the ictal class and suffering from epilepsy
of seizure and these results shown tremendous improvements
as compared to the other methods of Liang et al.[16], Parvez
et al.[1] and Zhang et al.[22] as shown in Fig ??. In this pa-
per, we also improved the GP life cycle by improving the
crossover and mutation operations and gives the impressive
result for EEG signal classification which is shown in Ta-
ble 2 and 3. It improves the accuracy of the classifier with
a fair amount. We further compared our work with LCC
method in terms of number of generation and time required
to reach the accuracy because we also uses the hill climb-
ing method to improve the crossover operator as used in
LCC method but with further changes. It is found that
our method showed improvement in both the departments
than LCC method. Our method has removed the issue of
selecting the crossover parent by selecting all the parent for
crossover which are left after reproduction. This increases
the number of fitness evaluation for a single generation, but
eventually we got the desired fitness in lesser number of gen-
erations than LCC, so the number of fitness evaluation re-
quired in our method is almost same as that in LCC. We
reach to desired fitness in early generations than LCC be-
cause by performing the constructive crossover we transfer
the globally prime off-springs which showed tremendous im-
provement in fitness than parent. The individuals or we can
say poor parents poor parents which are not capable of gen-
erating good off-springs are used for mutation. This helps
in bringing the diversity in poor individuals very early due
to which the chances of getting the solution fast is improved
which are demonstrated in our result which is shown in Fig
7.

6. CONCLUSIONS
The goal of this paper is to improve the crossover and mu-
tation operations of GP for classification of EEG signals.
It is successfully achieved by developing a new constructive

Table 3: COMPARISON OF NUMBER OF
GENERATIONS AND TRAINING TIME FOR
THE TEST SET WITH LCC: LOOSENESS
CONTROLLED CROSSOVER; CONSTRUCTIVE
CROSSOVER AND MUTATION OPERATION

Methods LCC CCM
Number of generations 22.50± 0.76 18.25± 0.25

Time(in sec) 12.84± 2.39 11.98± 0.25

Figure 7: Comparision of Accuracies with Number
of generations in LCC and CCM
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crossover and mutation operators (CCM). Thus enhance the
performance of GP life cycle. In this approach, a local hill
climbing search method is used with crossover and muta-
tion operators to generate better off-springs than parent.
We choose all individuals which are left after reproduction
to perform the crossover operations. Then we generate 2
better off-springs than parent for all the individuals. Then,
we compare the off-springs of all the parent and put them
in a max-heap. After that we transfer the top off-springs of
max heap to next generation. In this way, we ensured that
the globally Prime off-springs are transferred to the next
generation. The advantage of constructive crossover is that,
the best individuals are chosen for crossover and the individ-
uals which does not perform well in crossover are chosen for
constructive mutation operation. Thus, we remove the over-
head of applying the tournament for selecting the crossover
individuals. The constructive mutation operation also ap-
ply local hill climbing which helps in bringing the off-springs
better than parents. The another advantage of constructive
mutation is the poor parents who doesn’t generate better off-
springs are further improved by providing diversity to them.
This approach is experimented and tested with EEG signal
dataset and compared with the Liang, Parvez and Zhang
methods. Improvements in terms of classification accuracy
in the proposed approach is observed when compared with
all the methods. The results suggest that this new approach
outperformed all the operators in terms of the classification
accuracy.
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