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ABSTRACT
Diabetes mellitus is a disease that affects to hundreds of millions

of people worldwide. Maintaining a good control of the disease is
critical to avoid severe long-term complications. In recent years, a
lot of research has been made to improve the quality of life of the
diabetic patient, especially in the automation of glucose level con-
trol. One of the main problems that arises in the (semi) automatic
control of diabetes, is to obtain a model that explains the behavior
of blood glucose levels with insulin, food intakes and other exter-
nal factors, fitting the characteristics of each individual or patient.
Recently, Grammatical Evolution (GE), has been proposed to sol-
ve this lack of models. A proposal based on GE was able to obtain
customized models of five in-silico patient data with a mean per-
centage average error of 13.69 %, modeling well also both hyper
and hypoglycemic situations. In this paper we have extended the
study of Error Grid Analysis (EGA) to prediction models in up to
8 in-silico patients. EGA is commonly used in Endocrinology to
test the clinical significance of differences between measurements
and real value of blood glucose, but has not been used before as a
metric in obtention of glycemia models.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Met-

hods, and Search—Heuristic methods; G.1.6 [Numerical Analy-
sis]: Optimization—Global optimization
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Grammatical Evolution, Modeling, Diabetes
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1. INTRODUCTION AND MOTIVATION
Diabetes mellitus is a disease affecting more than 366 million

people worldwide. According to the World Health Organization
(WHO, http://www.who.int) those figures are expected to double
by 2030, so in some forums, diabetes is considered the epidemic
of the XXI Century. Many factors influence the appearance of the
disease, but all diabetics suffer a defect in either the secretion or in
the action of insulin, which is essential for the control of blood
glucose levels. The result is that cells does not assimilate sugar
and, as a consequence, there is a rise in blood glucose levels, or
hyperglycemia. According to the American Diabetes Association
(ADA, http://www.diabetes.org/) we can distinguish four types of
diabetes:

Type 1 Diabetes (T1DM): cells do not produce insulin be-
cause of an autoimmune process. T1 diabetics needs to inject
insulin or wear an insulin pump to control glucose levels.

Type 2 Diabetes (T2DM): results from insulin resistance,
where cells fail to use insulin properly, sometimes combined
with an absolute insulin deficiency.

Gestational Diabetes: appears in the gestation period in one
out of ten pregnant women. Pregnancy is a change in the
body’s metabolism, since the fetus uses the mother’s energy
for food, oxygen and others. This causes a decrease in the
secretion of insulin from the mother. Some T2 diabetics can
control the illness only with exercise, pills or a combination
of them.

Other Types: such as problems on β -cells, genetic defects af-
fecting insulin action, induced by drugs, genetic syndromes,
etc.

It is important to maintain a good glycemic control to prevent
the acute complications specific to diabetes (diabetic ketoacido-
sis and hypoglycemia, defined as blood glucose value lower than
70mg/dl). Multiple studies have also demonstrated that good gly-
cemic control prevents chronic complications (mainly nephropathy,
retinopathy and microangiopathy).
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Diabetic retinopathy, for instance is a leading cause of blind-
ness in the world and visual disturbances in patients between 25
and 74 years old. regarding diabetic nephropathy, the percentage
of patients who develop kidney failure has decreased significantly
in recent years due to improved metabolic control, more aggressi-
ve treatment of hypertension and the use of drugs that inhibit the
renin-angiotensin system: This means a reduction in the number of
patients who have to be subjected to dialysis and / or kidney trans-
plantation. In T1DM cohort of DCCT1 / EDIC2, less than 2 % (10
of 711) of patients treated with intensive therapy developed renal
failure.

Regarding neuropathy, approximately 50 % of diabetic patients
develop neuropathy. This leads to increased morbidity, including
infections, ulcers and amputations. Diabetic patients are also at in-
creased risk for cardiovascular disease (myocardial infarction, an-
gina, silent ischemia). The coronary risk of a diabetic patient is
similar to that of a person who has previously had a heart attack.
The EDIC study showed that intensive therapy was able to reduce
cardiovascular morbidity and mortality.

Summing up, in recent years, it has been shown that a strict gly-
cemic control in critically ill patients improves performance and
reduces medical costs [1] [14]. Unfortunately glucose levels con-
trol is a demanding and difficult task for both patients and their fa-
milies. To keep good levels of blood glucose, the patient must per-
form regular measurements (which involves at least one puncture in
each measure), insulin dose estimation, carbohydrates estimation,
analyze all this information somehow and to have some capacity of
prediction to know what level of glucose would have if ingested a
certain amount of food or injected with a quantity of an insulin of a
certain kind. In fact, the objective is to avoid not only long periods
of hyperglycemia (glucose levels ≥ 120mg/dl) but also episodes
of severe hypoglycemia (glucose levels ≤ 40mg/dl) that can lead
to patient death.

One of the higher barriers for fully automatic insulin administra-
tion is the lack of individualized models of glucose levels. Recently,
the application of evolutionary computation for obtaining customi-
zed models of patients, has been proposed [10]. Unlike previous
approaches, that obtain averaged models, the proposal of Hidalgo
et al. uses Grammatical Evolution (GE) to obtain individualized
models. [10] and [11] outlined preliminary and promising results
with 5 in-silico patients.

The aim of this paper is twofold. First, we would like to share the
explained proposal with the audience of the MedGec Workshop, in
order to receive the feedback of an expert community. Second, we
have extended the work in [10] in several ways:

We have obtained validated models for three new in-silico
patients. The objective is to test the robustness of the evolu-
tionary approach, using more variety of patients and inclu-
ding at least one with hypoglycemia.

We have analyzed experimental results in terms of Error Grid
Analysis (EGA) for the eight in-silico patients. EGA is com-
monly used in Endocrinology to test the clinical significance
of differences between measurements and real value of blood
glucose. We present here EGAs performed with two approa-
ches: Clarke [3] and Parkes [17] error grids.

We propose to apply EGA analysis in the generation and op-
timization of prediction models.

1Diabetes Control and Complications Trial
2Epidemiology of Diabetes Interventions and Complications

The rest of the paper is organized as follows. Section 2 gives a brief
description of the related work in glycaemia models. Section 3 ex-
plains how to obtain individualized models by means of Gramma-
tical Evolution. Section 4 presents the experimental setup, giving
detailed information of the data. Section 4 also remembers the ba-
sis of EGA under both approaches, Clarke and Parkes. In Section 5
we present the experimental analysis and discussion. We conclude
the paper and propose future work on Section 6.

2. RELATED WORK
Our ultimate goal is to provide a tool that allows patients to im-

prove glucose control. As we have mentioned, glucose level control
is a hard task, because patients need to perform blood glucose regu-
lar measurements, develop some ability to estimate carbohydrates
units or rations, incorporate some knowledge about their personal
bodies or feelings, and eventually make an insulin dose estimation.
Thus, a diabetic patient needs to mentally construct the abstract mo-
del of his glucose levels and apply a kind-of algorithm to decide the
insulin to be injected with each meal or at some times between two
meals. One of the main problems in the automation of blood gluco-
se levels control is the lack of reliable models in response to both
insulin and the other various factors involved. We can find in the li-
terature some approaches that provide models for the average case
[21][2]. However, it is well known that each patient has a different
metabolism, insulin resistance, and other features. Unfortunately,
there are hardly few approaches adapted to the particularities of
each patient. Other important aspect that we should have in mind
is the delay between insulin administration and the appearance of
insulin in the blood stream with the use of subcutaneous (SC) in-
sulin. This delay time limits the achievable control performance on
subcutaneous administration of insulin.

Most of the models in the literature apply classical modeling
techniques, resulting in linear equations defined profiles, or models
with a limited set of inputs [4]. There are other interesting appro-
ximations, for instance, Heusden et al. [21] proposed to use perso-
nalized information of the patient, easily accesible by the specia-
list or the automatic system. They construct robust models looking
for improving the behavior on mismatches between estimated and
real data. However, this approach is only useful with linear models
and can not incorporate other important factors such as exercise or
stress that clearly affect glycemias.

Apart from the mentioned works, we can find in the literature
other proposals that use control models. Next, we classify them in
three categories:

Solutions by commercial companies: Glucofacts Deluxe by
Bayern, CoPilot Health Management System by Abbot, and
MenaDiab by Menarini are only some of them. Those ap-
proaches were designed to facilitate the control of diabetes.
The main problem is that they work only for specific gluco-
meters. Some of them provide also insulin recommendations,
although the way the model is obtained is not available.

Models used in artificial pancreas systems or closed loop
control models: artificial pancreas systems are closed loop
control systems trying to emulate the action of a pancreas [5]
[20] . They are based on the assumption that it is possible to
reach a good control with approximate models, provided that
the model is related to the control objective [9][18]. The main
risk is hypoglycemia as a result of excessive insulin adminis-
tration and due to the lack of accurate individualized models.
We can find also Autoregressive models (AR) [8][19] and
protocols to improve the reliability of the models [7][5] [15].
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Other personalized control approaches: [12][6][13] are pro-
posals following the clinical practice. Treatment for subjects
with T1DM uses rates of basal insulin delivery, insulin to
carbohydrate ratios (CHO) and individual correction factors,
typically from observations of the specialist. Those models
are often inaccurate, since clinical data in T1DM are not ex-
tensive enough to identify the exact models [7].

Evolutionary computation has a high potential to incorporate to
the model factors that are difficult to quantify, in other words to co-
llect system dynamics, allowing us to obtain individualized models
since they are able to provide a solution for each set of data on a
single patient.

3. METHODOLOGY
Figure 1 shows the proposed scheme for model induction and

optimization. The scheme is based on a data set of patients with
T1DM and, the result of the process are validated models of gluco-
se. In this process, we use Grammatical Evolution (GE) to obtain
a mathematical expression, which describes how glycemia varies
as a function of a set of parameters. Input data set should include
several observable factors that can be collected by the patient or
recorded by monitoring systems. The actual level of glycaemia de-
pends on several factors with different degrees of importance. Here,
it is well known that the most important are glucose level, carbohy-
drate intakes and insulin injections. These are the parameters that
our models do take into account to predict the future glucose level.

GE Engine

Glucose
History

Patient
Params.

Tentative
Model

Validation 
Data

Insulin
History

Others
History

Final
Model

Figure 1: Model generation and optimization.

3.1 Problem description
Le us suppose that the patient is using two types of insulin, IS

(Short term insulin) and IL (Long term insulin). We have registered
the set of measures explained below. Given a set of measures

GL = {gl0, gl1, · · ·, gln}

of the glucose level of a patient, and knowing that gli was measured
at time ti. Given a set of intakes

CH = {ch0, ch1, · · ·, chn}

of carbohydrates units of a patient, and knowing that chi was eaten
at time ti. Given a set of injections of insulin of type S

IS = {is0, is1, · · ·, isn}

and knowing that isi was injected at time ti. Given a set of injec-
tions of insulin of type L

IL = {il0, il1, · · ·, iln}

and knowing that ili was injected at time ti. The problem of mode-
ling the glucose blood level of a patient, in its simplified form, can

k GL CH IS IL
· · · · · · · · · · · · · · ·
30 170.88974 0 0 0
31 171.55425 0 0 0
32 172.27976 0 3 12
33 173.05923 30 0 0
34 174.09018 0 0 0
· · · · · · · · · · · · · · ·
40 237.54628 0 0 0
41 247.25104 20 0 0
42 250.72465 0 0 0
43 251.90543 0 0 0
· · · · · · · · · · · · · · ·

Table 1: Portion of a 24-hours dataset for a in-silico patien (Joy
Wilson ).

be formulated as follows: Find an expression of estimated glucose
values, denoted as ĜL

ĜL(k + 1) = f(ĜL,CH, IS, IL), 0 ≤ k ≤ N (1)

which minimizes the fitness function F , which tries to close the gap
between real and estimated glucose values:

F =

n∑
i=0

√
(GL(i)− ĜL(i))2

Where ĜL corresponds to previous estimated glucose values,
CH corresponds to previously ingested carbohydrates and IS and
IL correspond to previously injected insulin for both types, short
and long effect. It should be noted that the model will provide es-
timated glucose values, denoted as ĜL. Hence, for each time step,
estimated glucose is obtained by using previous estimated glucose
values and actual carbohydrates and insulin units. Therefore, the
dataset should provide input values for the variables in our glucose
model proposal. Table 1 shows a reduced version of a data set for
one of the in-silico patients under study.

In this way, the GE engine should be able to decide how F looks
like. However, in order to guide the search of the evolutionary pro-
cess, we do need a grammar that will both limit the search space
and represent the behavior of the blood glucose level. Next, we de-
tail the grammars that we studied in this work.

3.2 BNF Grammars for Modeling Glucose
Unlike traditional GAs, GE evolves a genetic code that determi-

nes the production process of this solution. The code translation
process is determined by grammars represented as Backus Naur
Forms (BNF) which is a notation for expressing context-free gram-
mars. In brief, a BNF specification is a set of derivation rules, ex-
pressed in the form:

<symbol> ::= <expression>

The rules are composed of sequences of terminals and non ter-
minals. Symbols that appear at the left are non-terminals while ter-
minals never appear on a left side. In this case we can affirm that
<symbol> is a non terminal and, although this is not a complete
BNF specification, we can affirm also that <expression> will
be also a non-terminal since those are always enclosed between the
pair <>. So, in this case the non-terminal <symbol> will be repla-
ced (indicated by ::=) by an expression. The rest of the grammar
must indicate the different possibilities.
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A grammar is represented by the 4-Tuple {N, T, P, S}, being N
the non-terminal set, T is the terminal set, P the production rules
for the assignment of elements on N and T, and S is a start symbol
which should appear in N. The options within a production rule
are separated by a "|" symbol. For more details on the mapping
process we refer the reader to [10] from where this last paragraph
was borrowed.

The concrete form of fGL, fCH , fIS and fIL will be determined
by GE engine with the help of a grammar. Figure 2 shows our first
and most generic tested grammar. The three terms <exprgluc>,
<exprch> and <exprins> correspond to fGL, fCH and fIN ,
respectively, being fIN a function of fIS and fIL. All of them
are expressions that could use prefix operands like those in rule
V, variables for each of one the terms, or combinations of them
through operators in rule VII.

N = {func, expr, op, pre-op, dig, num, var}
T = { +,-,*,/, sin, cos, abs, exp, 0, 1, 2, 3, 4, 5, 6,

7, 8, 9, 0, glucprev, chprev, insprev}
S = {func}
P={I, II ,III ,IV ,V ,VI ,VII}

I <func> ::= glucprev <op> <expr>

II <var> ::= glucprev
|chprev
|insprev

III <expr> ::= <expr> <op> <expr>
|<pre-op> (<expr>)
|<var>

IV <op> ::= + | -| / | *

V <pre-op>::=sin|cos|abs|exp

VI <dig>::=0|1|2|3|4|5|6|7|8|9

VII <num>::=<dig>.<dig>|<dig>

Figure 2: First grammar (generic attempt).

The grammar in Figure 3 incorporates some knowledge of the
problem, since we know that glucose levels rise when the patient
eats and decrease when some insulin is injected into the blood flow.
The general model will be approximated with expressions similar
to (2), where any previous values of glucose, carbohydrates and
insulin may be used. Hence, in this grammar carbohydrates are al-
ways added, while insulin values are always subtracted, as shown
in rule I.

ĜL(k + 1) = fgl(ĜL(k −m)) + fch(CH(k −m))−
−fin(IS(k −m), IL(k −m)), 0 ≤ m ≤ k (2)

3.3 Genetic Parameters
As with genetic programming, GE can use any search algorithm

able to operate on integer or binary strings. We have selected a sim-
ple GA with single-point crossover and point mutation. Population
initialization is made by randomly generating fixed integer strings.
Table 2 shows the rest of the genetic and GE parameters (see [16]
for more information on GE)

4. EXPERIMENTAL SETUP
In this section we describe the characteristics of the eight in-

silico patients we deal with, as well as the configuration of each set
of experiments. As we have explained, we predict a future value of

N = {func, exprgluc, gluc, exprch, varch, exprins, varins
, op, preop, idx, cte, dgt}

T = { +,-,*,/, sin, cos, tan, exp, 0, 1, 2, 3, 4, 5, 6,
7, 8, 9, 0, GL, CH, IS, IL, K}

S = {func}
P = {I, II ,III ,IV ,V ,VI ,VII, VIII, IX, X, XI, XII}

I <func> ::= <exprgluc> + <exprch> - <exprins>

II <exprgluc> ::= <preop> (<gluc>)
|(<cte> <op> <gluc>)
|<gluc>

III <gluc> ::= #{GL[k_<idx>]}|#{K}

IV <exprch> ::= <exprch> <op> <exprch>
|<preop> (<exprch>)
|<varch>

V <varch> ::= #{CH[k_<idx>]}|#{K}|<cte>

VI <exprins> ::= <exprins> <op> <exprins>
|<preop> (<exprins>)
|<varins>

VII <varins> ::= #{IS[k_<idx>]}|#{IL[k_<idx>]}|#{K}
|<cte>

VIII <op> ::=+|-|/|*
IX <preop>::=sin|cos|tan|exp
X <idx> ::= <dgt><dgt>
XI <cte> ::= <dgt><dgt>.<dgt><dgt>
XII <dgt>::=0|1|2|3|4|5|6|7|8|9

Figure 3: Grammar including knowledge of the problem: carbohy-
drates are added and insulin units are subtracted from glucose va-
lues.

Parameter Value
Population size 100
Generations 2500
Crossover probability 0.6
Mutation probability 0.2
Tournament size 2
Max. wraps 3
Codon size 256
Chromosome length 100

Table 2: Parameters for GE experiments.

the level of glucose in the patient’s blood depending on, at least, the
glucose level, the carbohydrates ingested and the insulin injected.
Hence we need to consider those values in our datasets.

In the target in-silico patients, data were obtained with the AIDA
simulator (www2aida.org). More precisely, our data series repre-
sent measures taken each 15 minutes along the day. Table 1 shows
an example of the dataset of one of the in-silico patients, named Joy
Wilson . For each time step, represented in one line of the table, k is
the actual time, GL is the actual glucose level, CH is the carbohy-
drates units ingested, IS is the short effect insulin injected and IL
is the long effect insulin injected. We work with a set of in-silico
patients obtained with AIDA simulator. The website of the simu-
lator offers several characterized patients from which we selected
eight of them. We have included here a more varied selection in
order to better analyze the quality of the GE solutions. The glucose
values for each patient were obtained by introducing different car-
bohydrates and insulin values and then running the simulator. The
description of each one of the patients can be found on the website,
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but we replicate them here for the sake of clarity. The patients are
the following:

Joy Wilson . This woman is on three injections of short and/or
intermediate acting insulin each day, with a split-evening dose. She
wants to start a family, but consistently has had quite high blood
glucose levels in the early afternoon.

Howard Kistler . This 45 year old man was diagnosed as having
diabetes at the age of 14. He is currently on a regimen of combined
short and/or intermediate acting insulin preparations four times per
day. As you can see from his home monitoring blood glucose mea-
surements, he tends to higher blood glucose values overnight but
has a low blood glucose in the mid-morning.

Steven Jones . This man is a relatively newly diagnosed insulin-
dependent (type 1) diabetic patient. He has had problems main-
taining his blood glucose profile on two and more recently three
injections per day; so currently he is controlled on four injections
per day. He tends to quite high blood glucose levels in the middle
of the day, despite not eating excessively.

Elizabeth Whittaker . It has taken a lot of effort to stabilize this
girl’s blood glucose profile. However, she still often goes hypogly-
cemic in the middle of the day, especially between breakfast and
lunch. She is on a slightly unusual regimen taking a short acting
insulin preparation three times per day, with an intermediate acting
preparation twice a day – at lunchtime and before bed.

Lizzy Laurence . This overweight 58 year old insulin-dependent
(type 1) diabetic patient has had major problems losing weight. She
is quite sensitive to insulin. In addition, she smokes and is at great
risk of suffering a heart attack or stroke.

Mohammed Abdullah . This man often wakes with ’sweats’ and
feeling profoundly unwell in the middle of the night. However, his
blood sugars are quite respectable when he gets up at 7:30 AM. In
such a situation he needs to measure his blood glucose when he wa-
kes in the middle of the night, feeling unwell. Clearly injecting so
much insulin before he goes to bed isn’t a good idea. Try adjusting
his bedtime insulin and see if you can stop him going ’hypo’.

David Robins . This 18 year old insulin-dependent patient has
just left home for the first time to go to the University. He isn’t
a very good cook and hasn’t been taking good care of himself. He
feels pretty awful most mornings and even going to bed early hasn’t
helped. He tends to quite low blood sugars in the morning, at times
being at risk of going ’hypo’. See if you can adjust his insulin regi-
men so that his blood sugars don’t run quite so low in the morning.

Hugh Allibaster . This 35 year old insulin-dependent diabe-
tic man recently switched to using an insulin pen, injecting three
’shots’ of short-acting insulin before breakfast, lunch, and dinner,
while taking a single dose of long-acting insulin before going to
bed. However, he hasn’t quite gotten full control of his blood su-
gars, still tending towards high blood glucose levels overnight. How
might you improve his control, through adjusting his existing insu-
lin doses?

4.1 Error Grid Analysis
The Clarke error grid approach is used to assess the clinical sig-

nificance of differences between the glucose measurement techni-
que under test and the venous blood glucose reference measure-
ments. The method was presented in 1986 by Clarke et al. [3] and
uses a cartesian diagram to represent the values of the prediction
versus the reference (actual) values. For example, if a value of 118
is predicted for a point where the real value is 90, this will be re-
presented by the point (90, 118) in the XY cartesian graphic. In this
way the diagonal, i.e. Y = X , represents the perfect measure, the
points below and above the line indicate, respectively, overestima-
tion and underestimation of the actual values. What is interesting in

this graphic is that the XY graph is divided into a grid of zones de-
pending on the severity of the misprediction, which is the reason of
the Error Grid name. Clarke differentiated five zones in the graph
(A to E), with the following meanings:

Zone A: represents the glucose values that deviate from the
reference values by 20 % or less and those that are in the hy-
poglycemic range (<70 mg/dl), not only the predicted value
but also the reference value. Those values are clinically exact
and acceptable and thus the clinical treatment will be correct.

Zone B: represents the glucose values that deviate from the
reference values by more than 20 %. In this zone we are close
to unacceptable errors but the clinical treatment has a high
probability of being correct. The values that fall within zone
B are also clinically acceptable.

Zones C-E: The values included in those areas are potentially
dangerous, since the measure or prediction is far from being
acceptable and the indicated treatment will be different from
the correct. There is a high possibility of making clinically
significant mistakes for values within this zones.

In 2000 Parkes et al. [17] revisited the definition of the zone and
constructed a set of new error grids by using the expertise of a large
panel of clinicians. They constructed new grids, differentiating for
T1DM and T2DM patients. The followed method was to ask a total
of 100 experts of diabetes to assign any error a category form A to
E as in the Clarke error grid.

Currently, in the field of endocrinology there is not a general
consensus for evaluating errors in the measurement of blood gluco-
se for diabetics, so we use here both EGs to analyze the results.

5. EXPERIMENTAL RESULTS
Starting with the models of the eight in-silico patients, we have

taken their validation data and we have obtained the Clarke and
Parkes Error Grids.

Figures 4 to 11 show the experimental results on validation data
and the corresponding Error Grid Analysis. Each figure is compo-
sed by four graphics. Starting from the left Figures (a) show the
glucose values obtained with the best grammar-objective combina-
tion of the training phase for each patient. The actual glucose curve
of the patient (in blue), the glucose value generated with the best
solution of this combination (in red) and the glucose value genera-
ted with the average of the 30 solutions (in yellow) are displayed
in the figure. The next two figures (b) and (c) represent the Clarke
EGA for the best solution and for the average of the 30 solutions.
Finally subfigures (d) show the Parkes EGA of each Patient on the
validation phase.

For each patient, we have calculated the percentage that the ave-
rage error of each simulation run represents in the range of the pa-
tient glucose values. The experimental results shows the quality of
the models. In terms of the accuracy of the model, predicted values
has an average error of 12.83 %. This results are in consonance with
those presented in [10]. Once again, minimizing the average error
objective does not obtain the best average results, for some of the
patients.

Regarding the Error Grid Analysis, as seen in the figures, the
EGA is quite good for all the in-silico patients. In the case of Clar-
ke EG, more than 95 % of the data were found into Zone A. For
Parkes EG the results are even a little bit higher. Results for patient
David Robins and patient Hugh Allibaster are especially important
since predict hypoglycemic values. For the first, the prediction in
terms of Clarke EGA are bad. Although very close to A zone, we
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found several values on dangerous zones. On the other hand, results
on Hugh Allibaster shows a very good prediction on low glucose
values. This clearly confirms the necessity to adapt the grammars
to specific cases, including other factors or allowing a small biasing
in the search. This will be one of the focus of the future work.

In general, we have found that data near hypoglycemic zones
are more likely to be mispredicted by our models. Hence, we will
study two approaches: on the one hand, we will incorporate the EG
in the object function of the optimization; on the other hand, we
will study a multi-objective approach where one objective will be
to fit all the data values into the A zone in both EGs.

6. CONCLUSIONS
In this paper we extend previous works were Gramatical Evolu-

tion is applied to obtain individual models of blood glucose levels
in humans. Here, we present validation data for three new in-silico
patients, tackling a total number of eight in-silico patients, which
were taken from the AIDA simulator. Experimental results confirm
that Evolutionary Computation can solve problems for a higher va-
riety of in-silico patients and also for patients with dangerous va-
lues of glucose, i.e. hypoglycemic values.

There is still a lot of work to do, the main focus of our research
is to apply the method explained in this paper to real patients. This
step necessarily implies the adaptation and customization of gram-
mars, a higher study of the fitness function and landscapes. In ad-
dition, we will consider the multiobjective optimization with both
average and maximum error objective and EGAs. We will also con-
sider to integrate fuzzy regression into the GP process.
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