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ABSTRACT 

Image segmentation is a common image processing step to many 
computer vision applications with the purpose to segment pixels 
into different classes. As improved variants of particle swarm 
optimization (PSO) algorithms, the fractional-order Darwinian 
particle swarm optimization (FODPSO) and Darwinian particle 
swarm optimization (DPSO) have been proposed for image 
segmentation. The purpose of this paper is to compare the 
segmentation performance of PSO, DPSO, and FODPSO as 
parametric approaches to existing methods; namely the parametric 
fuzzy c-means (FCM) algorithm, and the non-parametric Otsu 
segmentation technique with application to five biomedical 
images. All PSO-based experiments are conducted with twenty 
runs to assess the effectiveness of PSO models. The universal 
quality index is used to evaluate the segmentation results. The 
obtained experimental results showed that particle swarm based 
algorithms outperformed both FCM and Otsu segmentation 
technique.    

Categories and Subject Descriptors 

I.4.6 [Image processing and computer vision]: Segmentation.   

General Terms 

Algorithms;Experimentation.  

Keywords 

Particle swarm optimization; Fuzzy c-Means; Otsu technique; 
Segmentation; Biomedical images.  

1. INTRODUCTION 
In image processing and computer vision, image segmentation is a 
fundamental problem with the objective to partition an image into 
several subregions with homogeneous properties. The problem of 
image segmentation has received a large attention in biomedical 
applications [1]-[3]. Indeed, the automatic segmentation of 
biomedical images is a critical step for quantifying the changes of 
anatomical structures that are highly related to biological tissue 
diseases. For instance, global thresholding based on minimum 
cross entropy was adopted in [1] as a segmentation method for 
cuboidal cell nuclei in images of prostate tissue stained with 
hematoxylin and eosin, an atlas-aided fuzzy c-means (FCM-Atlas) 
was developed and validated in [2] to segment fibroglandular 
tissue and volumetric density estimation in breast MRI, and a 
sparse representation was adopted in [3] to fuse the multi-

modality image information and incorporate the anatomical 
constraints for brain tissue segmentation.  

Image thresholding approaches are widely used for image 
segmentation [4]. They can be classified into two types: optimal 
thresholding methods and property based thresholding methods. 

 Optimal thresholding methods search for the optimal thresholds 
by optimizing an objective function, whilst property-based 
thresholding methods detect the thresholds by measuring some 
property of the histogram [4]. Optimal thresholding methods find 
the thresholds that separate the gray-level regions of an image 
based on some discriminating criteria such as the between-class 
variance, entropy and cross entropy [5]. For instance, the popular 
Otsu’s unsupervised method [6] selects optimal thresholds by 
maximizing the between class variance.  

In general, optimal thresholding methods are simple and 
effective in bi-level thresholding [7]. However, they are; including 
Otsu’s unsupervised method; inefficient in determining the 
optimal thresholds due to the exponential growth in computation 
time in when dealing with multilevel thresholding problems [7]. 
As an alternative, some evolutionary techniques have been 
adopted to solve multilevel thresholding problems; including 
bacterial foraging algorithm [7], particle swarm optimization 
[4][8], ant colony optimization [9], and more recently the 
fractional-order Darwinian particle swarm optimization 
(FODPSO) and Darwinian particle swarm optimization (DPSO) 
[10].  

Because of its effectiveness, PSO based algorithms have 
received increasing interests in image segmentation [4][8][10] 
including its extensions; namely  FODPSO and Darwinian particle 
swarm optimization DPSO. In [10], the DPSO and FODPSO were 
proposed for solving the Otsu problem for delineating multilevel 
threshold values. In particular, the problem of n-level thresholding 
is reduced to an optimization problem to search for the thresholds 
that maximizes a set of three objective (fitness) functions of each 
RGB (red-green-blue) component of the image [10]. The obtained 
results indicated that FODPSO is more efficient than PSO, DPSO, 
bacteria foraging algorithm, and genetic algorithms in the problem 
of segmentation of five images: airplane, hunter, butterfly, road, 
and a map.  

The purpose of this study is to examine the effectiveness of 
PSO, DPSO, and FODPSO in the problem of biomedical image 
segmentation. Indeed, the task of determining optimal thresholds 
for n-level image thresholding could be formulated as a 
multidimensional optimization problem by using PSO-based 
models [10]. As a result, optimal thresholds are automatically 
determined by using PSO-based algorithms. For comparison 
purpose, the popular Otsu’s unsupervised method [6] and fuzzy c-
means (FCM) algorithm [11] are also used for segmentation of 
biomedical images used in our study. The FCM is chosen because 
it is more appropriate for data clustering when the boundaries 
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between data clusters are ill defined [12]. We notice that Otsu’s 
approach is nonparametric since it requires no predetermined 
parameters, whilst FCM is parametric because the number of 
clusters should be set a priori. Finally, the performance of each 
algorithm is evaluated based on the well known universal quality 
index [13]. It is independent of the images being tested, the 
viewing conditions or the individual observers [13]. In addition, it 
provides a meaningful comparison across different types of image 
distortions [13]. Jaccard index and Dice similarity index are not 
considered in this study since the former is more suitable for 
binary images, and the latter is sensitive to homogenous data.   

The rest of this paper is organized as follows. In Section 2, PSO, 
DPSO, FCM, Otsu technique, and the universal quality index are 
described. In Sections 3, results of biomedical images are 
presented. Finally, we conclude in Section 4.  

2. METHODS 
 

2.1 Particle Swarm Optimization 
In basic PSO, a swarm of individuals, called particles, collectively 
moves in the search space, with each particle position representing 
a candidate solution to the optimization problem at hand. During 
the search, each particle adjusts its motion according to the best 
position it achieved as well as to the best ones achieved by the 
swarm. A fitness function is used to evaluate particle performance 
at each step.  

In the context of image segmentation, the pixel set 
corresponds to the search space, and the optimal solution 
corresponds to maximizing the between-class (between objects in 
the image) variance of the distribution of intensity levels in the 
image. Following the notation in [10] notation, at time t each 

particle n moves in a search space with position 
n

tx and velocity 

n

tv which are dependent on local best position 
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where the parameters w, ρ1, ρ2, and ρ3 are respectively the 
weights of the inertial influence, global best, local best, and 
neighborhood best when determining the new velocity [10]. The 
parameters r1, r2, and r3 are vectors with uniform random numbers 
between 0 and 1 associated to each component of Equation 2. The 

fitness function ϕ used to evaluate the performance of the 
particles is given by [10]: 
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where, σ is the between-class variance of  the image intensity 
distributions, t is a given threshold, L is the intensity level, and n 
is the number of classes into which the pixels of the image are 
divided (by grouping pixels in terms of their gray levels been 
within a specified range). More details about the fitness function 
are found in [10].  

The PSO algorithm is summarized in Table 1 [10]. A certain 
number of parameters must be initialized before running it. 
Typically, the particle velocities are set to zero and their positions 
are randomly set within the boundaries of the image number of 
intensity levels L. For instance, the positions can be initialized as 

η(L-Xmin)+Xmin, where η is a random variable in [0,1] and Xmin is a 
predetermined parameter. In addition, the local best, 
neighborhood best and global best positions are initialized with 
the worst possible values [10], e.g., large negative numbers.  As 
for the particle population size and iteration stopping criterion, 
they can be arbitrarily set or chosen depending on the nature of 
the problem and/or data. 

 
Table 1. Algorithm of the PSO as in [10] 

Initialize swarm: 
n

tx , 
n

tv , 
n

tx
(

, 
n

tn
(

, 
n

tg
(

  

Loop:  
 For all particles  

  Evaluate the fitness ϕ of each 
particle 

  Update : 
n

tx , 
n

tn
(

, 
n

tg
(

 

  Update : 
n

tv , 
n

tx
(

 

 End 
Until stopping criteria (convergence) reached 

 

2.2 Darwinian Particle Swarm Optimization 
One drawback of the PSO algorithm described in Table 1 is that it 
may get stuck in a sub-optimal solution region [10][14]. To avoid 
this situation, Tillett et al, [14] introduced the Darwinian particle 
swarm optimization (DPSO), an extension of the algorithm that 
uses natural selection to escape from local optima. In particular, 
the classic PSO is extended to multiple swarms where each one 
performs a PSO search. Thus, many swarms of test solutions 
coexist. At each step, a swarm that gets better results is allowed to 
spawn a new descendent or a particle life is extended. On the 
contrary, a swarm life is reduced or its particles are reduced in 
number if it stagnates. The state of each swarm is evaluated based 
on the fitness of all its particles, and the neighborhood and 
individual best positions of each of the particles are updated. 
Then, a new particle is spawned if a new global solution is found. 
In particular, if the swarm population falls below a minimum 
bound, the swarm is deleted; and the worst performing particle in 
the swarm is deleted if a maximum threshold number of steps 

(
max

CSC ) is reached without improving the fitness function. The 

previous steps counter is reset to a value approaching the 
threshold number if the particle is deleted, as follows [14]: 
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where Nkill is the number of particles deleted from the swarm 
when there is no improvement in fitness during an iteration. A 
new swarm is created with a probability of p=f/S, with f is a 
random number in [0,1] and S is the number of swarms [10]. 
Finally, a set of initial parameters is determined to run the DPSO 
algorithm; including the initial swarm population, minimum and 
maximum swarm population, initial number of swarms, minimum 
and maximum number of swarms, and the image number of 
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threshold.  The algorithm of the DPSO is presented in Table 2 as 
in [10]. 

Table 2. Algorithm of the DPSO as in [10] 

Main program loop Evolve swarm algorithm 

For each swarm in the 
collection 
     Evolve the swarm (see right 
column) 
Allow the swarm to spawn  
Delete failed swarms 

For each particle in the swarm 
        Update particle Fitness 
        Update particles Best 
        Move particle 
If swarm gets better 
           Reward swarm: spawn 
particle: 
 extend swarm life 
else 
           Punish swarm: possibly 
delete 
 particle: reduce 
swarm life 

 

2.3 Fractional-order Darwinian Particle 

Swarm Optimization 
Recently, the authors in [15] presented fractional-order (FO) 
DPSO or FODPSO. The idea was to use fractional calculus based 
on the Grünwald-Letnikov concept of fractional differential [16] 
to control the convergence rate of the DPSO. The fractional 

differential α of a given signal x(t) is given by: 
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where Γ, T, and r are respectively the gamma function, the 
sampling period, and the truncation order. Then, considering w 
=1, T =1, and r =4, the differential derivative of Equation 1 is 
written as [15][17]: 
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Thus, setting α =1 yields the standard DPSO. The parameter is 

closely related to the memory of the particles. If α < 1, the 
particles will ignore their previous search and will probably be 

trapped in local solutions, whilst if α > 1, the particles will 
explore more new solutions and performance will be improved 
[10]. The FODPSO was found to be more efficient than PSO and 
DPSO when the level of segmentation increases [10].   

Table 3 provides the parameter values used to perform PSO, 
DPSO, and FODPSO searches in our study. These are the same as 
in [10], since they provided good results with fast processing time.  

 

 

   

Table 3. Initial parameters as in [10] 

Parameter PSO DPSO FODPSO 

Number of iterations 150 150 150 

Population 150 30 30 

ρ1 0.8 0.8 0.8 

ρ2 0.8 0.8 0.8 

w 1.2 1.2 1 

Vmin -5 -1.5 -1.5 

Vmax 5 1.5 1.5 

Xmin 0 0 0 

Xmax 255 255 255 

Min population  10 10 

Max population  50 50 

Number of swarms  4 4 

Min swarms  2 2 

Max swarms  6 6 

Number of threshold  10 10 

Fractal coefficient α   0.6 

 

2.4 Fuzzy c-Means Clustering 

The fuzzy c-means clustering (FCM) algorithm [11] also classifies 
a given data set into k clusters, but it realizes a fuzzy partition. It 
does so by minimizing the following objective function: 

∑ ∑= =
−=

K

j

N

i j

j

i

m

ijFCM cxuJ
1 1

2

                                     (7) 

where x and c stand respectively for the position of pixel i and the 
centroid of cluster j, N is the number of pixels, and K is the 
number of cluster, uij is a membership function, j=1,…N, and 

m∈[1, ∞) identifies a fuzzifier [11]. Thus, the data points are 
partitioned into fuzzy regions using fuzzy membership grades 
[12]. The FCM must satisfy the constraint: 

∑ =
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and the centroid of cluster j is calculated as follows: 
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Finally, the membership uij is updated as follows: 
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The role of the membership functions is to introduce fuzziness to 
the belongingness of each image pixel. As a result, each pixel 
belongs to all clusters, but with different degrees of membership. 
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2.5 Otsu Segmentation Approach 
The Otsu segmentation method [6] is a threshold selection 
technique used to segment gray-level images by maximizing the 
following measure of class separability [18]: 
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where, z∈[0, L-1]  is the grey-level of a pixel in the image,  h(z) is 
the normalized grey-level histogram of the image. The means of 
the light and dark image regions can be separated, and the 
variances of the two image regions can be minimized when D(T) 
is maximized.   

2.6 Evaluation Metric 
For two signals x=1,…,N and y=1,…,N which are respectively the 
original and the test signal, the universal quality index Q [13] is 
given by:  
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Where x , y , σx, σy, and σxy are respectively the mean of x, 

mean of y, standard deviation of x, standard deviation of y, and the 
correlation coefficient between x and y. Alternatively, the quality 
index Q  can be rewritten as a product of three components as 
follows:  
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where the first component is the correlation coefficient used to 
measure the degree of linear correlation between the two signals, 
the second component measures how close the mean luminance is 
between the two signals, and the third component measures how 

similar the contrasts of the images are [13]. For images, the 
quality index Q is computed as follows:  
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where M is the number of steps used to slide a window of size 

B×B which in turns moves pixel by pixel horizontally and 
vertically through all the rows and columns from the top-left to 
the bottom-right corner.  

3. DATA AND RESULTS 
In the present study we have used the five biomedical images: T1-
weighted whole view of brain magnetic resonance image (MRI) 
(176×208 pixels), T1-weighted coronal view of brain MRI 
(176×176 pixels), T1-weighted sagittal view of brain MRI 
(208×176 pixels), prostate biological tissue (275×183 pixels), and 
breast biological tissue (631×471 pixels). They are respectively 
shown in Figures 1, 2, 3, 4, and 5. Since PSO and its variants are 
stochastic models, we performed twenty runs on each image and 
average and standard deviation of the universal quality index are 
computed. Table 4 shows the obtained results. The segmentation 
results are illustrated in Figures 6 to 20. Those of brain whole and 
coronal view are not shown because of limited space.  

As indicated in Table 4, all PSO based algorithms outperformed 
FCM and Otsu technique in segmentation of all five images. In 
addition, the results indicated that PSO outperforms both DPSO 
and FODPSO in segmentation of prostate and breast tissue. They 
all obtained similar universal quality index value when used to 
segment brain sagittal view. Finally, both DPSO and FODPSO 
achieved the same performance and outperformed basic PSO 
when applied to the whole view of brain MRI.    

In general, the obtained results are not consistent with [10] since 
we find that PSO outperforms both DPSO and FODPSO in 
segmentation of prostate and breast tissue.  

 

Figure 1. Whole brain MRI. 
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Figure 2. Coronal view of brain MRI. 

 

Figure 3. Sagittal view of brain MRI. 

 

Figure 4. Prostate biological tissue. 

 

Figure 5. Breast biological tissue. 

 

 

Table 4. Obtained universal quality index 

 PSO DPSO FODPSO FCM OTSU 

Brain 
Whole 
view  

0.47±0.002 0.5±0.002 0.5±0.002 0.24 0.24 

Brain 
Coronal 
view  

0.53±0.002 0.53±0.002 0.53±0.002 0.24 0.05 

Brain 
Sagittal 
view 

0.53±0.002 0.53±0.002 0.53±0.002 0.04 0.04 

Prostate 0.74±0.001 0.74±0.001 0.74±0.001 0.36 0.20 

Breast 0.74±0.001 0.74±0.001 0.74±0.001 0.45 0.23 

 

Figure 6. Sagittal view: PSO result. 

 

Figure 7. Sagittal view: DPSO result. 

 

Figure 8. Sagittal view: FODPSO result. 
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Figure 9. Sagittal view: FCM result. 

 

 

 

Figure 10. Sagittal view: Otsu result. 

 

 

Figure 11. Prostate tissue: PSO result. 

 

Figure 12. Prostate tissue: DPSO result. 

 

 

Figure 13. Prostate tissue: FODPSO result. 

 

 

Figure 14. Prostate tissue: FCM result. 
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Figure 15. Prostate tissue: Otsu result. 

 

 

Figure 16. Breast tissue: PSO result. 

 

 

Figure 17. Breast tissue: DPSO result. 

 

 

Figure 18. Breast tissue: FODPSO result. 

 

Figure 19. Breast tissue: FCM result. 

 

 

Figure 20. Breast tissue: Otsu result. 
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4. CONCLUSION 
 

This study compared the performance of PSO, DPSO, FODPSO, 
FCM, and Otsu technique when they are used to segment different 
types of biological images. The main advantage of PSO, DPSO, 
and FODPSO is their ability to automatically determine the 
optimal thresholds for n-level image thresholding by formulating 
a multidimensional optimization problem. Based on the universal 
quality index used as performance measure, the obtained results 
indicated that all PSO based algorithms outperformed FCM and 
Otsu technique. In addition, the results indicated that in general 
PSO, DPSO, and FODPSO achieved similar performance. 
Therefore, this result suggests that the complexity of DPSO and 
FODPSO does not necessarily yield to large improvement in 
segmentation results of biomedical images.  

Our future work will consider a comparison of PSO based 
algorithms with other evolutionary techniques. As our initial 
database was limited to five biomedical images, we will consider 
a larger database in future work for better generalization of the 
results.  
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