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ABSTRACT

Improvement of processes in metallurgical industry is a con-
stant of competitive enterprises, however, changes made in
a process are risky and involves high cost and time, consid-
ering this, a model can be made even using inputs usually
not presented in real process and its analysis could be useful
for the improvement of the process. In this work, a math-
ematical model is built using only experimental data of a
four high tandem cold rolling mill, a set of input variables
involving characteristics of the process. The performance
of the model is determined by residual analysis considering
new data. Results are a non black box model with a good
performance; by this way, the model is a good representa-
tion of the process under study.

Categories and Subject Descriptors

I.28 [Problem Solving, Control Methods, and Search]:

General Terms

Algorithms
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1. COLD ROLLING MILL
Cold rolling is one of the most important processes in

an integrated steelworks because it increases the strength
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of the material, improves accuracy in controlling sizes, and
produces thinner gauge products with a bright smooth sur-
face. On this basis, continuous improvement in quality is
one of the most important themes in cold rolling. Customer
expectations like product accuracy and tighter tolerances
have become extremely important control items. In a Cold
Rolling Process many parameter are involved to reduce the
thickness of the material and this parameters had a great in-
fluence in the quality features of the final product. The goal
of this paper is present a good model of this process using
symbolic regression α-β. Below in Figure 1 is the structure
of a Cold Rolling Model:

Figure 1: Block diagram of Cold Rolling Model.

In cold rolling mills to reduce the thickness the metal is
exposed to several forces of compress and tension. That
make the crystals of the grain structure of the metal be
strained. The applied forces in a cold rolling mill must be
equally distributed through the width of the sheet to have
a uniform deformation in the length. The applied forces
depend of several factors that have a non linear relationship.
But all are known and can be measurable.

1.1 Intelligent Systems in Cold Rolling Mill
Nowadays, Neural Networks (NN) was used to improve the

optimization of parameters in open loop controls in rolling
mills[2]. As well as prediction of features like Flow stress,
yield stress, the rolling force and rolling torque[4, 1, 11, 6,
12].
Evolutionary computing techniques show significant mod-
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Table 1: α operator parameters and its related

mathematical functions.
α operator mathematical operation

1 (k1x+ k2)
2 (k1x+ k2)

2

3 (k1x+ k2)
3

4 (k1x+ k2)
−1

5 (k1x+ k2)
−2

6 (k1x+ k2)
−3

7 (k1x+ k2)
1/2

8 (k1x+ k2)
1/3

9 exp(k1x+ k2)
10 log(k1x+ k2)
11 sin(k1x+ k2)
12 cos(k1x+ k2)
13 tan(k1x+ k2)

eling capabilities on handling complex non-linear systems
modeling. Symbolic regression modeling via genetic pro-
gramming is used to develop relatively simple mathemat-
ical models[5]. Otherwise, a genetic algorithm has been
used in order to design new hot rolling schedules with lower
energy consumption through a reduction in the total roll
power[7]. In cases of multi objective optimization genetic
algorithms are used to minimize the overall standard devi-
ations in terms of each of the properties during the entire
rolling campaign[3].

2. SYMBOLIC REGRESSION α-β
In this approach, a mathematical equation is represented

by the combination of α and β operators. An α operators is
defined as a function that requires only one argument and
applies only one mathematical operation. Considering a re-
view of several mathematical models of real processes, 13
operations are chosen as α operators (see Table 1). An α
operator uses two real number parameters called k1 and k2
and an integer that describes the mathematical operation.
The α operator is defined as follows:

Oprα(x, k1, k2) = α(k1 ∗ x+ k2) (1)

where x is an input variable and α is an operation. De-
pending of the α operator selected, a specific mathematical
operation that requires only one argument is executed; e.g.,
if α=1 then the operation made is (k1∗x+k2), if α= 13 then
the operation made is tan(k1 ∗ x + k2). α operator can be
represented as an integer number. A β operator is defined
as a function that require two arguments and makes the four
basic arithmetic operations β=c so a β operator equal to 1
imply the plus operator or β(a, b) = a+ b, and β(a, b) = a/b
if β=4.
A basic configuration can be defined when an α operator

is assigned per input variable then an β operator is used to
connect two α operators (2). Usually, a simple configuration
in majority of the cases is enough for the regression.

y = βn−1(...β2(β1(α1(x1), α2(x2)), )), ...αn(xn)) (2)

In this work, connectivity can be controlled by a binary
variable to select the number of α operators per input vari-
able that can be used, inclusive any variable could be not
required if this is the case. A maximum of three alpha oper-
ators per variable is determined, so if there are two variables,
a configuration with six alpha operators and five beta op-
erators are defined as a core configuration as is shown in
Equation 3. Depending de number of input variables a core
configuration is used.

y = β5(β4(β3(β2(β1(b1α1(x1k11 + k21), b2α2(x1k12 + k22)),
b3α3(x1k13 + k23)), b4α4(x2k14 + k24)),
b5α5(x2k15 + k25)), b6α6(x2k16 + k26))

(3)
The representation depends of the configuration used or

the number of variables required. The number of variables
determine the core configuration as was mention above. A
vector with normalised real numbers can be used to repre-
sents the connectivity or the number of alpha operators per
variable, the alpha and beta operators and the k parameters
of the alpha operators. As an example consider the core con-
figuration for two variables, the following parameters can be
extracted: Connectivity parameters are b1, b2, b3, b4, b5, b6
and belongs to a binary vector; operators parameters are α1,
α2, α3, α4, α5, α6, β1, β2, β3, β4, β5 and they are integers;
and real parameters are k11, k21k12, k22,k13, k23,k14, k24,k15,
k25,k16, k26. A single real number is used for connectivity
because this number is converted to an integer value, then
it is converted again in a binary vector and extract the b
values using their corresponding position of the elements of
the binary vector. k parameters is assigned directly the real
value of the representation vector. Every α and β operators
are integers, so is required the following formulation to get
its value from the representation V :

α = ⌈V (i) ∗ 13⌉ (4)

β = ⌈V (i) ∗ 4⌉ (5)

where ⌈.⌉ is the ceiling function. There are 13 α opera-
tors defined in table 1 and 4 β operators (basic algebraic
operations)
Consider the following example of decoding; the vector of

parameters is V=[0.432 0.963 0.529 0.043 0.294 0.284 0.786
0.569 0.156 0.561 0.315 0.722 0.518 0.201 0.715 0.017 0.911
0.306 0.275 0.797 0.562 0.898 0.021 0.793]
Connectivity is defined in V (1), we have ⌈(0.482∗22∗3−1)⌉ =

⌈15.424⌉ two variables and three alpha operators per vari-
able, zero is considered a non connection. Binary vector is [
0 0 1 0 1 1] where variable x1 is connected by one α operator
and variable x2 is connected by two α operators.
Every alpha and beta operator is extracted by decoding

every element of the vector V .

α1 = ⌈V (2) ∗ 13 + 0.5⌉ = ⌈(0.963 ∗ 13)⌉ = 13 this
represents a tan function.

α2 = ⌈V (3) ∗ 13 + 0.5⌉ = ⌈(0.529 ∗ 13)⌉ = 7 this repre-
sents an exponential to −2 function.

α3 = ⌈V (4) ∗ 13 + 0.5⌉ = ⌈(0.043 ∗ 13)⌉ = 1 this repre-
sents a linear function.
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α4 = ⌈V (5) ∗ 13 + 0.5⌉ = ⌈(0.294 ∗ 13)⌉ = 4 this repre-
sents an inverse function.

α5 = ⌈V (6) ∗ 13 + 0.5⌉ = ⌈(0.284 ∗ 13)⌉ = 4 this repre-
sents an inverse function.

α6 = ⌈V (7) ∗ 13 + 0.5⌉ = ⌈(0.786 ∗ 13)⌉ = 11 this
represents a sin function.

β1 = ⌊(V (8) ∗ 4 + 0.5)⌋ = ⌊(0.569 ∗ 4)⌋ = 3 this repre-
sents a multiplication.

β2 = ⌊(V (9) ∗ 4 + 0.5)⌋ = ⌊(0.156 ∗ 4)⌋ = 1 this repre-
sents an addition.

β3 = ⌊(V (10) ∗ 4 + 0.5)⌋ = ⌊(0.461 ∗ 4)⌋ = 2 this
represents a subtraction.

β4 = ⌊(V (11) ∗ 4 + 0.5)⌋ = ⌊(0.315 ∗ 4)⌋ = 2 this
represents a subtraction.

β5 = ⌊(V (12) ∗ 4 + 0.5)⌋ = ⌊(0.722 ∗ 4)⌋ = 3 this
represents a multiplication.

Finally, parameters k1i = V (i) k2i)V (i + 1) where i =
13, 15, 17, 19, 21, 23 by this way we have the following math-
ematical model based on core configuration:

y = x1 − (x−1
2 ∗ sin(x2)) (6)

In this work, Evonorm is used to solve the problem of
selection the suitable parameters (k’s), the connectivity and
integers to define α and β operations.

2.1 Evolutionary algorithm Evonorm
Evonorm is an easy way to implement an estimation of

distribution algorithm [9, 10]. As a evolutionary algorithm
selection of new individuals and the generation of a new pop-
ulation is used; however, the crossover and mutation mech-
anism is substituted by an estimation of parameters of a
normal distribution function. The following steps are used
in Evonorm:

1. Evaluation of a population P .

2. Deterministic selection of individuals from P to PS.

3. Generation of a new population using PS

A population P is a matrix of size Ip (total of individuals)
and Dr (total of decision variables). A solution is a set
of decision variables and this set is represented as a real
vector. Every row of the population P represents a set of
decision variables. The selection mechanism is deterministic
because the most fittest individuals are selected. Usually the
number of selected individuals are lower than the number
of the original population, usually a twenty or ten percent
of the total population. A random variable with normal
distribution is estimated per decision variable, so a marginal
distribution function is used. Two parameters are estimated,
the mean and the standard deviation, that is determined
using the values of the selected individuals. The population
of selected individuals is a matrix Ps of size Is (total of
individuals selected) and Dr. The equations (7, 8) are used
to calculate the mean and standard deviation considering
every vector of the population Ps.

µpr =

Is
∑

k=1

(Pspr,k)/Is (7)

σpr =
√

(

Is
∑

k=1

(Pspr,k − µpr)
2)/Is (8)

where pr = 1..Dr

A new population is generated using the estimated normal
random variables. This is a stochastic process;, however, an
heuristic is used to maintain an equilibrium between explo-
ration and exploitation, so new solutions can be found not
necessarily near of the mean calculated. The best solution
found Ix at the moment is involved in the generation so
in the 50% percent of the times the mean is used in the
calculations and in the other 50% percent of the time the
best solution found Ix is used as a mean as is shown in the
following equation:

Pi,pr =

{

N(µpr, σpr) U() > 0.5
N(Ixpr, σpr) otherwise

(9)

The random variable U() has a uniform distribution func-
tion, N() is a random variable with a normal distribution
function.

2.2 Residual analysis
One effective way to validate a regression model is to col-

lect new experimental data to determine how well the model
performs in practice [8]. The most simple measure is the
residual calculated as the difference (e(i)) between new ob-
servations made by the response of the process y(i) and pre-
dicted response generated by the regression model made ŷ(i)
(equation 10).

e(i) = y(i)− ŷ(i) (10)

The PRESS (prediction error sum of squares) is a measure
of how well a model works to predict new data. Usually a
small value of PRESS is desirable (11). In this case, the
PRESS is obtained using cross validation.

PRESS =

n
∑

i=1

(y(i)− ŷ(i))2 (11)

The percentage of variability R2
pred is a measurement for

indicating the efficiency of the model to predict new obser-
vations. A value near of one is desirable on this indicator
(12).

R2
prec = 1−

∑n
i=1(y(i)− ŷ(i))

y′y − (
∑n

i=1 y(i))
2

(12)

2.3 Model selection and optimization
Complexity is determinate adding all the α and β oper-

ators used in the chosen configuration. Cx =
∑n

i=n(α1 +
α2+ · · ·+αn+β1+β2+ · · ·+βn−1). Percentage of variabil-
ity R2

prec is calculating with 20% of non used data for model
building. A selection with lower complexity and with near to
one variability percentage is preferred. The objective func-
tion uses complexity, mean square error, and connectivity
and all of them are minimized.
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3. MODELING COLD ROLLING MILL
Cold rolling mill process has a total of 60 inputs, however,

many of them do not contribute in output response (Table
2). The variables can be grouped in two categories, inputs
related with products and inputs variables related with pro-
cess characteristics (Figure 2).

Figure 2: Inputs and output of the cold rolling model.

Type Number Name
1 SteelGrade
2 Hardness Class
3 WidthBand
4 Inner Width
5 Pressure 1
6 Pressure 2
7 Pressure 3
8 Pressure 4
9 Tension Payoff
10 Tension 1 2

Inputs 11 Tension 2 3
12 Tension 3 4
13 Tension reel
14 Speed 1
15 Speed 2
16 Speed 3
17 Speed 4
18 Reduction 1
19 Reduction 2
20 Reduction 3
21 Reduction 4

Output 1 Output Thickness

Table 2: Process Inputs and Output

A basic configuration is used considering one α operator
per input variable. Considering this, a total of 84 parame-
ters must be used to estimate 42 k parameters, 21 alpha, 20
beta operators and one integer used for connectivity. Con-
sidering 500 records, an 80 % percentage of them was chosen
for building and the rest for validations and calculation of
statistical indicators from residual analysis. Evonorm algo-
rithm was used considering a population of 100 individuals,
10 are chosen for selection and run for 100 generations. The

Table 3: Results of the residual analysis of solution

selected.
MSE R2

pred PRESS
0.0095267 0.9880336 0.7430802

algorithm was run five times. The best solution in terms of
statistical indicators was chosen.
Vector of connectivity is B = [ 1 0 0 1 0 0 1 1 1 0 0 1

1 1 1 0 0 0 1 0 1 ] where some input variables are not re-
quired or has a low influence in output response. Results of
α and β operations required are shown in Table 1 and Ta-
ble ?? respectively. Coding the solution, the mathematical
model generated is shown in equation 13. This model is use-
ful for simulations of operation conditions, inquiring specific
conditions to determine its effects on thickness, changes of
reductions, tension and pressure. The model can be used
to establish output thickness considering other products not
used in training because different products has different steel
grade or hardiness and some of them require a specific width
band.

y(x3, x7, x8, x9, x11, x14, x16, x18, x19, x21) =
(((((((((((((((((((+(0.5847666 ∗ x3 + 0.6593538)3))))+
(0.43712 ∗ x7 + 0.3346624)2) + (0.7857256 ∗ x8+
0.2255187)) ∗ (0.2336883 ∗ x9 + 0.9180191)))+
(0.9875162 ∗ x11 + 0.5309005)))) + (0.3485697 ∗ x14+
0.0419397))) + (0.0234704 ∗ x16 + 0.5189331)2))+

(0.6363647 ∗ x18 + 0.4944638)( − 1)) ∗ (0 ∗ x19+
0.8175074)2)) + cos(0.4328817 ∗ x21 + 0.3899872))

(13)

4. CONCLUSION AND FUTURE WORK
This work presents a practical application of a symbolic

regression to generate mathematical models from records of
data of a cold rolling mill. Symbolic regression α β elim-
inates some variables, reducing number of input variables
and making the mathematical model simpler. The genera-
tion of data about the process is intensive, above of 50,000
records by day. Analysis of the information to establish a
set of conditions is too complex and requires experience of
the user; however, the model generates gives clues about the
performance of the process and considering the high values
of statistical indicators, the model is accurate in the predic-
tion. As a future work is the use of flatness as quality in
place of thickness, and improve the process considering the
mathematical model by means of optimization.
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