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ABSTRACT

The quality of the evolved solutions of an evolutionary algo-
rithm (EA) varies across different runs and a significant per-
centage of runs can produce solutions of undesirable quality.
These runs are a waste of computational resources, partic-
ularly in difficult problems where practitioners have time
bound limitations in repeating runs.

This paper proposes a completely novel approach, that of
a Run Prediction Model (RPM) in which we identify and
terminate evolutionary runs that are likely to produce low-
quality solutions. This is justified with an Ant Colony Op-
timization (ACO) based classifier that learns from the early
generations of a run and decides whether to continue or not.

We apply RPM to Grammatical Evolution (GE) applied
to four benchmark symbolic regression problems and con-
sider several contemporary machine learning algorithms to
train the predictive models and find that ACO produces the
best results and acceptable predictive accuracy for this first
investigation. The ACO discovered prediction models are in
the form of a list of simple rules. We further analyse that
list manually to tune them in order to predict poor GE runs.

We then apply the analysed model to GE runs on the re-
gression problems and terminate the runs identified by the
model likely to be poor, thus increasing the rate of pro-
duction of successful runs while reducing the computational
effort required. We demonstrate that, although there is a
high bootstrapping cost for RPM, further investigation is
warranted as the mean success rate and the total execution
time enjoys a statistically significant boost on all the four
benchmark problems.
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1. INTRODUCTION

Experiments in evolutionary computation (EC) follow a
common practice of running the algorithm multiple times
in order to obtain statistically significant data, particularly
when the likelihood of achieving a solution of a certain qual-
ity is only estimated through a large number of runs. How-
ever, as problems get increasingly computationally expen-
sive, the computational resources are best utilised if the Evo-
lutionary Algorithm (EA) consistently generates solutions of
desirable quality and the runs producing poor solutions are
minimised. For example [21, 26, 33] are all more concerned
with producing a single useful result rather making statis-
tical affirmations about their ability to emulate the same
result.

This paper details a pilot study into a mechanism to bet-
ter utilise resources for EC by predicting which runs are
most likely to fail and discontinuing them early on. Our
technique will work with essentially all other techniques for
improving GE (or Genetic Programming (GP)), such as Lin-
ear Scaling [11] and No Same Mates (NSM) [9]. We apply
an ACO [6] induced prediction model to estimate the end of
run performance based on the information gathered in the
first few generations of GE. Then, we only allow the run
to continue if it is predicted to be successful and terminate
the remaining runs. This improves the rate of success while
reducing the total amount of time significantly.

In this paper we establish the use of cAnt— Minerpg [18],
an ACO based classifier that produces a model to predict
the performance of GE; the results indicate that the predic-
tive model effectively improves the proportion of successful
GE runs on a selection of symbolic regression problems. The
training data required for the classifier describes the changes
in different parameters (such as fitness, genome lengths) at
the early stages of an evolutionary cycle of GE, that is, how
fast does a particular measure change. The ants then de-
vise a rule based classification model that has been further
scrutinized to select the best combination of rules to predict
the performance. The predictive model thus produced is
then used during the prediction of the evolutionary cycle of
a given run. Finally, the runs that are predicted to be poor
are immediately halted, freeing more resources for higher
quality runs. Our approach in predicting the run time per-
formance is novel: to the best of our knowledge, this is the
first attempt to employ an ACO classifier to predict the per-



formance of an EA run along with a detailed understanding
of how we use an ACO based classifier for model discovery
in the current context.

The rest of the paper is laid out as follows: section 2
introduces GE, some previous approaches to improve the
quality of evolutionary search with GE, describes the ACO
and, presents the novel approach to predict the GE runs;
section 4 details the selection of problems for this study, the
experimental setups and the results achieved; section 5 anal-
yses the ACO based predictive models; and finally, section 6
concludes the paper and outlines our future aspirations.

2. BACKGROUND

GE [25] is an evolutionary algorithm that evolves com-
puter programs in an arbitrary language. Unlike standard
GP [14], GE endorses genotypes to phenotypes distinction
through grammars to generate the computer programs; a
genotype is a variable length binary string genome whereas
the phenotype is a computer program in a language defined
by a CFG of choice specified in Backus Naur Form (BNF).

GE uses a simple mapping process to convert the geno-
types to phenotypes. In GE, a genotype is a string of 8 bit
integers each integer termed a codon; each of these codons
helps mapping a derivation tree from the selection of produc-
tion rules in the CFG. To facilitate this, each codon selects
a production rule from the given grammar as follows:
Rule=(Codon Integer Value)%(# rules of this non-terminal)
where Rule is an index to a production rule that is applica-
ble in the present context of mapping a derivation. Natu-
rally, the codons that appear earlier in the genome shape the
derivation tree so that the codons appearing later only select
rules as required by the partially generated derivation tree.
Thus, there is a left to right dependency in how the codons
in a GE genome are interpreted by the GE mapping process;
therefore, if we change a codon at the start of the genome,
the interpretation of the codons appearing later changes.
Thus the effect of the change at the start of the genome
ripples through the rest of the genome; correspondingly, the
one point crossover in GE is called the ripple crossover [13].
If the mapping remains incomplete, then a special operator,
wrapping, can be used to reuse the genotype from the start.

It is possible that the mapping can finish before using
the entire genotype. Thus, in GE, the actual length of a
genotype may be different from the effective length which
is the number of codons mapped. The actual length of a
genome is usually longer than the effective length, on any
problem. A complete description of GE can be found in [20].

Note that the nature of GE mapping easily allows us to
use both the actual and effective lengths of the genomes as
inputs to our predictive model, while in GP, it is not trivial
to distinguish between functional and non-functional parts
of the genome!. This is why we currently use GE, and will
later extend the work to GP.

2.1 Run Improvement

The efforts to improve the performance of GP date back to
its inception; GE being a form of GP [14], can also benefit
from a number of such approaches. Typically, this work

!This is not to say that GE cannot produce useless parts of
the genome, e.g. (X*0). However, identifying this is beyond
the scope of this work.
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tries to improve the success rate of the results, which, in
turn, impacts the total execution time.

For example, Keijzer [10] improved GP based symbolic re-
gression results using interval arithmetic and linear scaling.
An improved GP search was presented in [9] for the sym-
bolic regression problems with an analysis on crossover and
diversity. [15, 23] proposed improvement techniques that
work by killing the bloating individuals which occur at the
later stages of the evolutionary cycle. Tsakonas et al. [31]
applied kill tournaments [28], replacing the worst (fitness)
individual with the best, in predicting the classification rules
with GP. Work shown in [1, 7] improved the quality of GP
on symbolic regression problems.

Although this is just a tiny subset of vast amount of re-
search, in general, they all have the same focus, that is to
make the best out of the available genetic material. This
paper attempts to ensure that the available genetic material
is as good as it can be, so that all these methods should be
able to benefit from it.

2.2 Predicting The Quality of Runs

There are many possible reasons for a run to fail to achieve
good quality solutions, but many manifest themselves in the
form of the premature convergence [14] of the population to
a sub-optimal solution leaving little diversity in the popu-
lation to explore new solutions. In the case of GE, Kei-
jzer et al. [13] showed that the ripple crossover (a variant of
one-point crossover specific to GE) delays premature conver-
gence. However, GE suffers from the problem of locality [24]
that worsens the search results.

Some studies suggested that multiple independent runs
could result in useful solutions. For example [27] argued that
multiple small runs can reach global solutions with fewer
function evaluations than a single run for a genetic algorithm
(GA).

The quality can be improved by proposing modifications
to the search process as explained in literature or by per-
forming multiple isolated runs [27], but, a different solution
is to some how catch the runs that fail to produce high-
quality solutions and kill them. We accomplish this goal
by predicting the success or otherwise of a GE run using an
ACO based machine learning algorithm. As a result, we find
that, along with an improvement in the final result of run,
our approach reduces the execution time using fitness pre-
diction that leverages the difference between the individuals
in the current and past generations.

A key difference with this work is that we are more con-
cerned with producing a small number of high quality runs
than producing a large number of statistically useful runs.
However, RPM can operate in tandem with virtually any
system from the literature.

2.3 Ant Miner Overview

ACO [6] is an optimization meta-heuristic inspired by the
foraging and pheromone strategies of real ants. In essence,
ants cooperate each other in the form of colonies in order to
find an optimal solution to a given problem. For example,
if we consider the travelling salesman problem (TSP): ants
start from a random city (vertex) and then select the routes
(edges) to add new cities that iterative process, in return,
produces a solution in the form of pheromones present on the
edges. Many researchers have applied ACO to a number of
optimization problems and classification is one such domain.



The first ACO based classification algorithm, Ant-Miner,
was introduced in [22] that dealt only with the nominal at-
tributes in a given data set. Ant-Miner produces a list of
IF-THEN classification rules of the form IF BFC <= 0.0268
THEN no. Following this, several variations were proposed,
some dealt with pheromone update strategies and heuristic
information [17], others with discovering fuzzy classification
rules [8]. One such extension is cAnt—Minerpp [18], showed
much better accuracy with a list quality function that can
deal with the numerical attributes also.
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Figure 1: The flowchart for the RPM applied GE
that predicts the performance of GE runs.

cAnt — Minerpp algorithm starts with an empty rule list
and the training set in each iteration and, repeated until
the maximum number of iterations reached or the algorithm
converges. The ant then creates a rule from the data points
in the training set. There after, the ant prunes the rule and
removes all the covered data points from the training set.
This process is repeated until the remaining data points in
the training set become less than the user specified number
of uncovered training points. This way a rule list is prepared
in each iteration. The quality of the current list of rules is

1355

compared with the previous list of rules, and replaces if the
current list is better than the best so far. This way, ants
construct a list of best rules. A data point is considered cor-
rectly classified if the predicted class value is same as the ac-
tual class value. cAnt — Minerpp has produced competitive
results when compared against the state-of-the-art machine
learning methods. With this motivation for the first time
we employ cAnt — Minerpp to improve the quality of GE
results as proposed in this paper.

3. THE RUN PREDICTION MODEL

This section describes an overview of the ACO learning
process in predicting the GE runs then, the implementation
details of the novel approach. The ACO based learning al-
gorithm uses the training data (shown in section 4.1), that
discovers a prediction model. The model takes GE evolu-
tionary cycle as an input then, tries to identify the quality
of the solution attainable at the end of a GE run. This way,
the model allows only the promising runs to continue and
terminates the remaining runs early.

Figure 1 presents the flowchart of run prediction model
(RPM) applied GE. Except for a small change to inter-
rupt the execution of GE, the proposed approach follows
the standard GE algorithm. The variable gen stands for
the current generation number. In summary, the proposed
approach starts with an initial random population of indi-
viduals. Then, the next generation of individuals are evolved
iteratively performing genetic operations, mapping the geno-
types to phenotypes, evaluating the fitness of the pheno-
types, incrementing the generation count. During this pro-
cess a new step, the algorithm records the change in the pa-
rameters: best fitness, average fitness, average actual length
and, average effective length; we note the change in these
parameters that records the difference (change) from gen-
eration 1 to 10. This change in the respective parameters
is used to identify the success or failure of a GE run. An
interesting question here is that what if we consider the dif-
ference between generation 1 and 5 or generation 1 and 20?7
The former, in fact achieves a better optimization in the ex-
ecution time while the calculated change resulted in an ap-
proximately zero difference in most of the runs, that in turn
resulted in omitting this choice. With the latter possibility,
we end up with less optimization in total execution time.
Considering these factors into count, we leaned towards ex-
perimenting with the difference between generations 1 and
10. If the change in any one or all of the recorded param-
eters satisfy the conditions in the ACO classifier discovered
model then, that run is terminated recording the best so far
fitness that helps for the comparison. Otherwise, the algo-
rithm continues to run reporting the best of run result. This
process is repeated until the maximum number of runs have
reached.

4. EXPERIMENTS

This section describes the regression problems and the
generated training data for the respective problem, the ex-
perimental approach and the results.

4.1 Problems and Training data

We followed the experimental procedure explained in [3]
in preparing the data sets for the four symbolic regression
problems.



Table 1: The problem set considered. The “yes”
column counts the number of runs producing re-
sults above the threshold; the “no” column counts
the runs that remained below the threshold.

#  Problem:Source no yes Success threshold
(Best Fitness <)

fi (1+x)%[5) 590 410 0.7

fo ot —a2® —y? —y:[30] 606 394 0.65

f3 ox® =y —y—x:[30] 848 152 0.7

fi x¥:[29) 518 482 1

Table 1 describes the experimental problems and the data
sets used in this paper. The first column in Table 1 gives an
index to the problem; henceforth, we use this index to refer
to the corresponding problem. The second column gives the
target function in each problem; we also cite the source of
the problem from the GP literature.

For each problem, a training set has been prepared to
train the ACO algorithm. Each data set contains 1000 data
points that are classified with two (yes, no) labels. The num-
ber of yes, no class labels are presented in third and fourth
columns for the respective problem. The classification of a
data point depends upon the user defined success thresh-
old, Best Fitness (BF). For problem fi, if BF > 0.7 then
those data points belong to yes class, no otherwise. Since,
the regression problems are hard to solve and the solution
evolved by an EA varies largely from a problem to problem,
we consider a different threshold value as a success measure
on each problem. All the attributes in the resulting data
sets are continuous with no duplicates.

Table 2: A brief description of the data sets used in
the experiments. BFC (Best Fitness Change), AFC
(Average Fitness Change), AALC (Average Actual
Length Change), AELC (Average Effective Length
Change), are the attributes of the data set with the
data points that represent the change from genera-
tion 1 to 10.

BFC AFC  AALC AELC Class
0.0220119 0.0481755  2.005 -18.095  no
0.0530694 0.0641799  6.105 -12.565  yes
0.0868888 0.0622562 10.945 -17.825  no

Table 2 presents an example description of f; training set.
The data set contains four attributes: BFC, AFC, AALC,
AELC that represent the change in the respective parame-
ters between generation 1 and generation 10. The two fitness
related attributes (BFC and AFC) are intuitive; however,
these are not the only possible attributes, and later work
will examine more. The data sets were prepared record-
ing the change in the respective attributes and classifying
them as per the threshold values defined in Table 1 for the
respective problem. Although the computational effort in
preparing the training sets is rather high for this prelimi-

nary investigation, it has resulted highly in improving the
success rate and optimizing the execution time with the help
of the proposed run prediction model.

4.2 Experimental Approach and Results

We have conducted two sets of experiments. In the first
set, we compare the predictive accuracy of the ACO based
classifier with those produced by a number of contempo-
rary machine learning algorithms. We find that the ACO
based classifier outperforms the benchmark machine learn-
ing methods. Next, we apply the ACO devised models to
actual GE runs after a manual inspection in order to detect
and terminate poor runs and present the results showing the
efficacy of the proposed approach.

Listing 1: Ant discovered model for problem f;

AALC <= —12.8875 THEN no;
BFC <= 0.0268 THEN no;

IF AELC <= —23.31 THEN yes;
IF AFC > 0.0731 THEN yes;
IF 0.0614 < AFC <= 0.0633 THEN no;
IF AELC <= —21.725 THEN yes;
IF AELC <= —20.99 THEN no;
IF AALC <= —6.035 THEN yes;
IF 7.2475 < AALC <= 8.3425 THEN no;
IF BFC <= 0.0268 THEN no;
IF AFC <= 0.0534 THEN no;
IF BFC > 0.0656 THEN yes;
IF AELC > —17.7924 AND
AALC > —1.5025 THEN yes;
IF BFC > 0.0558 THEN no;
IF BFC > 0.0496 AND
AFC <= 0.0613 THEN yes;
IF AFC > 0.0558 AND
AELC > —22.855 THEN no;
IF BFC > 0.0292 THEN yes;

IF <empty> THEN yes;
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4.2.1 Discovered Models

We ran cAnt — Minerpp mining algorithm on all the
four data sets to generate four different predictive mod-
els, one for each problem. The set parameters for the al-
gorithm were: ant_colony_size = 5, iterations = 500, min-
imum_cases_per_interval = 10, and, evaporation_probability
= 0.9. A complete description of these parameters can be
found in [22].

The ant learning algorithm discovered four prediction mod-
els, one for each problem. For example, Listing 1 presents
the ant discovered model for problem fi, the remaining mod-
els are concealed owing to the space restrictions. In the
model, each line that starts with an IF keyword and ends
with ; (semi-colon) represents a rule. All the models con-
sist of the best list of rules derived by ants. Note that the
rules in the models are simple enough for a manual inspec-
tion and analysis. As the focus of the paper is to predict
the poor runs that fail to produce high-quality solution, we
consider the rules that predict the class value no from the
discovered rule list.

Examining the classification model shown in Listing 1,
ants devised a manageable number of rules with a single
attribute alone or in combination of more than one attribute
and a class. While it is difficult to identify clearly which
rule of the model suits best in run prediction, we manually
explored different possibilities of these rules on the training
data set of the respective problem in order to identify the
best combination of rules.




Table 3: Comparison of accuracy measure (mean [standard deviation]) in %, among J48, ZeroR, cAnt—Minerpp,
PART and JRip measured by applying 10-fold cross-validation. The value of the most accurate algorithm is
shown in bold for a given data set with the Wilcoxon tests at o = 5%.

Problem J48 ZeroR cAnt — Minerpp PART JRip
fi 58.4 [0.49] 54.12 [0.95] 78.72 [0.84] 57.85 [0.63] 59.18 [0.81]
fo 60.61 [0.89] 60.25 [1.32] 69.32 [0.61] 61.19 [1.58] 62.60 [1.02]
f3 79.44 [0.35] 78.43 [0.26] 86.96 [0.45] 80.88 [1.01] 80.24 [0.56]
fa 54.21 [0.54] 51.82 [0.64] 68.12 [0.99] 56.10 [0.38] 58.50 [0.47]
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Figure 2: The best fitness measure of standard GE (shown in triangles) vs. RPM applied GE (shown in
squares and circles) on the four symbolic regression problems. The end of run results of all four problems
illustrate an improvement in the quality of runs after applying the prediction model.

Table 4: A comparison in the success rate of the standard GE vs. Run Prediction Model (RPM) applied GE
out of 30 evolutionary runs on each approach.

Problem GE GE+RPM
# of successful % of | # of successful % of | terminated
runs success runs success runs
f1 18 56.66 15 71.43 9
fa 7 23.33 3 65.15 23
fs 6 20.00 5 23.81 9
fa 17 56.66 12 70.59 13
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Table 5: Selected rules for run prediction.
Problem Selected Rule(s)
S if(bfc <= 0.027)
f2 if((bfc > 0.022) && (afc > 0.087))
f3 if(aalc > 5.97)
if((bfc <= 0.19) && (aelc > 3.84))
fa if(bfc > 0.035) and

if((aalc < -17.79) && (aelc > -22.85))

Table 5 presents the selected rules from the manual anal-
ysis on all the problems and shows the simplicity of the
selected rules. We focused on the rules that can identify
the low-quality run only. In fact the selected list of rules
may sometimes fail to exactly find the poor solution pro-
ducing runs as is the case that it might try to terminate a
few useful runs also. We treat this as the error exerted by
the prediction that we explain it in detail later in section 5.

Table 3 compares the predictive accuracy achieved by
cAnt — Minerpp with some state of the art classification
algorithms on the four data sets considered in this study.
Each entry in Table 3 shows the mean accuracy measure (in
%) followed by the standard deviation, calculated as a result
of 10-fold cross-validation. cAnt — Minerpp exhibited sig-
nificantly better predictive accuracy than its counter parts
when performed the Wilcoxon two-tailed significance tests
at a significance level of o = 5%. Overall, cAnt — Minerpp
models exhibit significantly better predictive accuracy out-
performing the remaining classifiers on all the four data sets.

4.2.2 Impact of Predictors

With the predictors generated, the next step was to es-
tablish how effective they were. We assess the effectiveness
of the predictors by conducting the next set of experiments
in two steps. We used libGE [19], an open source framework
for GE in C++. In the first step, all four problems were run
with standard GE system recording the best fitness at the
end of run. Similarly, in the second step, the same problems
were run with RPM applied GE system recording the best
fitness and, terminating the runs that satisfy the respective
model of the corresponding problem. Finally, a compara-
tive analysis has been presented with the results obtained in
both the steps.

The following parameters were kept consistent in both
the experimental setups. The parameters were: number of
runs = 30, population size = 200, number of generations =
120, crossover probability = 0.9, mutation probability = 0.01,
randomly initialized the initial population with a minimum
genotype length of 15, maximum length of 25, seed value was
incremented for each run, and a steady state replacement
strategy. We used an S-Lang evaluator for the fitness eval-
uation. A run in this experimental settings is considered as
long (with 120 generations) when compared to the standard
GE settings (50 generations). The main reason for this set-
ting is that [2] showed that a single large run reaches the
global solution faster than multiple small runs saving the
computational resources.

Figure 2 shows the best fitness measure for 30 runs that
summarizes the results comparing the standard GE system
with that of the run prediction model applied GE. Standard
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GE results are shown in triangles, whereas the model ap-
plied GE results are represented with squares and circles.
In that, the circles represent the terminated runs, whereas
the squares represent the model allowed runs that completed
their execution. At BestFitness = 0.70 there exists a black
straight line parallel to x-axis. This represents the success
measure (defined in section 4.1) on the respective problems,
if the end of run result is greater than that value then it is
a high-quality run, or else a low-quality run. Some of the
squares and the triangles in Figure 2 overlap each other.
This is due to the fact that the proposed approach tries to
predict the success or failure of a run without making any
modifications to the GE search process. This results in an
improvement in the success rate of the GE results.

The results shown in Table 4 summarizes the number of
successful (high-quality) runs and, the rate of success for 30
runs with standard GE and RPM applied GE approaches. In
addition to this the count of terminated runs resulted from
the run prediction model are reported. The RPM+GE ex-
hibits significant improvement in the % of successful results
over standard GE on all the four problems. While f3 enjoys
only a small (but still statistically significant) improvement
of 3.81%, the remaining three problems f1, fo and f4 exhibit
14.77%, 41.82%, and 13.93% respectively. Notice that fa ex-
hibits huge jump in the success rate; it is because, the model
has identified 23 runs as the poor runs and terminated. This
behaviour of the model requires us to consider how many
good runs are killed by the model? We explain the answer
later in section 5 with an analysis on the inherent error of
the new prediction approach.

Table 6: Statistical test results for the total execu-
tion time of standard GE (Tgg) vs. that of RPM
applied GE (Tge+rpm) over 30 runs. Note that the
“Yes” represents that the model applied GE per-
formed significantly better than standard GE with
Wilcoxon Signed rank test at @ = 5%. When there
is significant difference, A measure value is shown,
otherwise (-).

Problem Significant A .TGE TG.E'FRPM
measure (in sec) (in sec)
fi No - 91.83 66.78
fo Yes 0.831 88.24 25.43
fa Yes 0.661 87.65 61.93
fa Yes 0.692 87.73 52.31

Since the amount of processing time required to evolve the
solution is one of the major concerns in EA, we illustrate the
total execution time results as shown in Table 6, whereas
Tce stands for total execution time of standard GE and
Tee+rpym stands for the total execution time of the RPM
applied GE. We observe that the proposed approach reduces
the time on all the problems. Execution time reduction in
f1 is insignificant as a result of the Wilcoxon test, whereas
it is significant for the remaining three problems. The non-
parametric Wilcoxon Signed Rank test states whether the
model applied GE is significantly better or not, but it fails
to state how much better it is. We use Vargha-Delaney A [32]
measure that tells us the probability that the model applied
GE achieve better performance over the standard GE. When



the A measure is above 0.5, standard GE outperforms the
model applied GE. When it is 0.5, both are equal, otherwise,
the model applied GE outperforms the standard GE. The
A measure tells us that run prediction model applied GE
outperforms standard GE, 83.16%, 66.11% and, 69.17% of
times on fa2, f3 and fi respectively.

From the results shown in Table 4 and 6, we conclude that
the rate of success of GE has increased while reducing the
total execution time on the respective regression problems
with the introduction of the new run prediction approach.

5. DISCUSSION

Recall that the proposed RPM+GE inherently exerts er-
ror so that it misclassified a few GE runs as either low-
quality or high-quality runs and terminates or allows to con-
tinue the execution. We describe this issue of the model
incorrect predictions in this section.

Table 7: RPM applied GE predictions on the four
benchmark problems.

Problem TP FP FN TN
f1 15 6 3 6
f2 3 4 4 19
fs 5 16 1 8
fa 12 5 5 8

Table 7 shows the prediction results of the four RPM ap-
plied GE problems. The terms are defined as follows: TP is
the actual number of correctly identified high-quality runs,
FP is the number of runs that are actually low-quality but
identified as high-quality, F'N is the number of runs that are
actually high-quality but identified as low-quality, TN is the
number of runs that are actually low-quality and identified
as low-quality. The results shown in Table 7 describe that
there is a possibility that the model terminates a few number
of successful runs (FN), even though, the results in Table 4
confirm the improvement in the success rate. Considering
FP rate, problem f3 has high FP rate. If we refer back to
Figure 2, we note that most of these runs fall just short of
crossing the threshold. Therefore, we need a too sensitive
predictor to classify such points as negative examples. As it
is, this performance is not a disaster if we allow for a small
margin of error around the threshold.

In summary, the analysis clearly suggests that the ACO
discovered models are simple enough to analyse and easy to
use in an EA run prediction. Combined use of ACO with
EA produced a reasonably good prediction system. As a
result, a significant improvement has been observed in the
number of successful runs while significantly reducing the
total execution time.

6. CONCLUSIONS

We have successfully accomplished the set goals of improv-
ing the quality of the solution as well as optimizing the speed
of execution by employing an ACO based classification with
the introduction of the new run prediction approach. This
approach was more akin to reduce the total execution time
while improving the rate of success. This work can have
huge implications for scaling EC algorithms which, due to
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their stochastic nature, often confront prediction when it
comes to the length of the runs. One assumption that we
have made is the existence of good predictive data.

The next step will be concerned with bootstrapping the
system, and we are currently examining two approaches.
First, the use of data produced on smaller but related ver-
sions of the problem, similar to the technique used in [12]
will be examined. Although not perfect, this could get over
the initial bootstrapping phase, particularly if the problem
being tackled is a scaled up version of the one the data came
from.

Secondly, and probably in tandem with the first method,
we will investigate rapidly retraining the predictors during
the runs as increasingly more data becomes available, similar
to work by [4, 16, 26]. This would facilitate increasingly
accurate predictors as more data becomes available.
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