
Genetic Programming with Data Migration
for Symbolic Regression

Michael Kommenda1,2, Michael Affenzeller1,2,
Bogdan Burlacu1, Gabriel Kronberger1, Stephan M. Winkler1

1University of Applied Sciences Upper Austria
Heuristic and Evolutionary Algorithms Laboratory

Softwarepark 11, 4232 Hagenberg, Austria

2Johannes Kepler University Linz
Institute for Formal Models and Verification

Altenbergerstr. 69, 4040 Linz, Austria

{michael.kommenda, michael.affenzeller, bogdan.burlacu,
gabriel.kronberger, stephan.winkler}@fh-hagenberg.at

ABSTRACT
In this publication genetic programming (GP) with data mi-
gration for symbolic regression is presented. The motiva-
tion for the development of the algorithm is to evolve mod-
els which generalize well on previously unseen data. GP
with data migration uses multiple subpopulations to main-
tain the genetic diversity during the algorithm run and a
sophisticated training subset selection strategy. Each sub-
population is evaluated on a different fixed training subset
(FTS) and additionally a variable training subset (VTS) is
exchanged between the subpopulations at specific data mi-
gration intervals. Thus, the individuals are evaluated on the
unification of FTS and VTS and should have better gener-
alization properties due to the regular changes of the VTS.

The implemented algorithm is compared to several GP
variants on a number of symbolic regression benchmark
problems to test the effectiveness of the multiple popula-
tions and data migration strategy. Additionally, different
algorithm configurations and migration strategies are eval-
uated to show their impact with respect to the achieved
quality.

Categories and Subject Descriptors
I.2.2 [Automatic Programming]: Program synthe-
sis; I.2.8 [Problem Solving, Control Methods, and
Search]: Heuristic Methods

General Terms
Algorithms, Experimentation

Keywords
Symbolic Regression, Multi-population Genetic Program-
ming, Generalization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2881-4/14/07 ...$15.00.
http://dx.doi.org/10.1145/2598394.2609857.

1. INTRODUCTION
Symbolic regression is the task of finding a model in the

form of a mathematical expression describing the relation
between a dependent variable and several independent ones
as accurately as possible. Symbolic regression problems are
commonly solved by genetic programming [8], a population-
based and meta-heuristic optimization method for evolving
a program that solves a given task. In the case of symbolic
regression the program is a mathematical expression and the
objective function is the correlation between the model’s es-
timates of the dependent variable and its true values. The
main advantages of symbolic regression by genetic program-
ming are that the structure of the model does not have to
be predefined, its implicit feature selection strategy [12], and
the interpretability of the evolved mathematical expressions
[1].

Symbolic regression is regarded as a supervised machine
learning task and could produce models with weak gener-
alization properties on unseen data. A common approach
to counteract this phenomenon is to restrict the complexity
of the produced models and to determine optimal algorithm
parameter settings by cross-validation. However, determin-
ing optimal parameter settings is quite hard for stochastic
algorithms such as symbolic regression by genetic program-
ming, due to the occuring variations in terms of result qual-
ity for repeated algorithm executions.

Another common approach to improve the generalization
properties of the produced models, which is especially suited
for GP, is changing the samples used for fitness calculation
regularly to avoid a too strong adaption of the models to
the presented training samples. This can be done either
by random subset selection [4, 5] or more specialized tech-
niques such as coevolution [11, 6]. An approach similar to
the random subset selection technique is presented in this
publication and combined with a multi-population genetic
programming algorithm.

Multi-population Evolutionary Algorithms
The first coarse-grained parallel and distributed evolution-
ary algorithms [13, 18] were developed to speed up the evo-
lutionary process by evolving multiple populations in paral-
lel on different machines. If no information exchange hap-
pens between the populations, the distributed algorithm is
equivalent to executing multiple repetitions of a single pop-
ulation algorithm sequentially and aggregating the results.

1361

One common approach to exchange information between the
subpopulations is to copy or move individuals among the
subpopulations according to a predefined topology at spe-
cific intervals.

The motivation behind the development of evolutionary
algorithms with multiple populations, in addition to reduc-
ing the execution time, is to explore different regions of the
search space simultaneously and thus, maintaining the over-
all genetic diversity during the algorithm execution. The ge-
netic information present in the subpopulation is exchanged
at specific intervals and this is referred to as migration. Dur-
ing migration a certain part of the population (e.g., the best,
worst, most diverse, or random individuals) is selected and
inserted in another subpopulation, where for example the
worst individuals are replaced. Migration is performed ac-
cording to a spatial topology of the subpopulations [2], which
stays constant during the algorithm execution. Popular ex-
amples of such a topology are unidirectional or bidirectional
ring topologies, but also others like grids or hyper cubes can
be used.

Another advantage of multi-population evolutionary
algorithms is that building blocks of the final solution can
be evolved in different subpopulations and assembled by
combining migrated individuals containing these building
block [17, 14]. Although the concept of multiple populations
for evolutionary algorithms has been originally developed
for genetic algorithms, it is easily adapted to genetic
programming.

The subsequent parts of the publication are organized as
follows: Section 2 introduces the algorithm modifications
and the resulting consequences. In Section 3 a detailed ex-
periment plan including a description of the used benchmark
problems and parameter settings is given and the obtained
results are presented and discussed in Section 4. Finally,
Section 5 concludes this publication and explains possible
shortcomings and necessary further test and developments
to improve the methodology.

2. METHODS
Multi-population evolutionary algorithms explore differ-

ent regions of the search space simultaneously and individ-
ual migration maintains the population diversity during the
algorithm execution [14]. Additionally, multiple populations
allow an easy integration of advanced sampling strategies for
training subset selection and should lead to increased gen-
eralization capabilities of the evolved models.

We have combined these ideas into a multi-population ge-
netic programming algorithm for symbolic regression, where
each subpopulation is evolved on different parts of the train-
ing data. The distribution of the training data is per-
formed during the initialization of the algorithm and the
selected training subset, denoted as FixedTrainingSubset
(FTS), stays constant during the algorithm execution. If
the reciprocal of the number of subpopulations is equal to
the relative amount of the FTS, the whole training data is
divided evenly (without any overlaps) across the subpopu-
lations. Alternatively, if the size of the FTS is smaller, not
every sample of the training data will be covered and if it
is larger, the individual subsets will overlap. If no individ-
ual migration is included, this algorithm performs exactly
the same as standard genetic programming, applied multi-

Figure 1: Multipopulation GP with data migration.

ple times on different parts of the training data, with an
aggregation of the obtained results.

An unidirectional ring structure is used as the migration
topology of the algorithm and the best individuals are moved
to the clockwise neighbor of the current subpopulation.The
number of immigrated and emigrated individuals are the
same for each subpopulation and therefore the size of each
subpopulation stays constant during the algorithm execu-
tion. The migrated individuals are evaluated on different
parts of the training data and are expected to have better
generalization capabilities compared to individuals evolved
on a constant subset of the training partition.

A drawback of using only a fixed training subset to eval-
uate the individuals is that only migrated individuals are
trained on different parts of the training data. Individuals
that are never migrated are always evaluated on the same
training subset and are more likely to generalize poorly. An-
other aspect is that migrated individuals have to be reevalu-
ated on the FTS of the new subpopulation, so that selection
is not mislead by outdated fitness information. The reevalu-
ation could lead to a drastic change in the fitness and to di-
minish this effect a data migration step (in addition to indi-
vidual migration) has been included in the multi-population
algorithm.

As a result, the fitness of an individual is calculated on
samples included in the FTS and an changing VariableTrain-
ingSubset (VTS). The VTS is initially chosen as a consec-
utive part of the training data adjoining the FTS. These
two subsets never overlap to avoid the repeated evaluation
of training samples. At a specific data migration interval,
which by default is equal to the individual migration inter-
val, the VTS is migrated to another subpopulation. By us-
ing a fixed and variable training subset for every subpopula-
tion the generalization properties of the evolved individuals
should be increased. At the same time the genetic diversity
is maintained by migrating the individuals and the algo-
rithm should be able to produce better solutions compared
to single population variants. Figure 1 depicts the algo-
rithm, where the training data is distributed evenly across
the subpopulations.

As a consequence of evaluating the fitness of an individual
only on parts of the training data, the individual with the

1362

highest fitness does not have to be the best individual on the
whole training data. This causes problems when the best
model has to be selected as the algorithm result. Therefore,
after the algorithm is finished, every individual in the final
population is reevaluated on the whole training data, so
that the fitness reflects the model’s fit on the training
partition. The algorithm steps of the multi-population
genetic programming algorithm with data migration for
symbolic regression are given as pseudo code in Algorithm 1.

Algorithm 1 Multi-population GP with data migration.

for each Subpopulation do
Assign fixed training subset FTS
Assign variable training subset V TS
Generate random individuals
Evaluate individuals on FTS ∪ V TS

end for

generations← 0
while generations <maxGenerations do

for each subpopulation do
Generate offspring from selected parents
Evaluate offspring on FTS ∪ V TS
Replace parents with newly generated offspring

end for
if Migrate individuals? then

Comment: Data changes for migrated individuals

Migrate best individuals to the next subpopulation
Reevaluate migrated individuals on new data

end if
if Migrate data? then

Comment: Data changes for all individuals

Migrate V TS to the next subpopulation
Reevaluate all individuals

end if
generations← generations+ 1

end while

Reevaluate all individuals on whole training data
return Best individual

3. EXPERIMENTS
We tested the multi-population GP algorithm with data

migration on several synthetic benchmark problems to ex-
amine the effects regarding the generalization properties of
the resulting models. The problems were taken from the
recommended GP benchmark problems1 [16] and addition-
ally the Poly-10 [10], the Friedman-1, and the Friedman-2 [3]
problems were included. A detailed description of the used
benchmark problems, including the data generating formula
and the number of training and test samples, is given in
Table 2.

Algorithm Configurations
For the first experiment four different algorithm configura-
tions were tested: single-population genetic programming
(GP), single-population genetic programming with data mi-
gration (GP+DM), multi-population genetic programming

1http://www.gpbenchmarks.org/wiki/index.php?
title=Problem_Classification

Table 1: Algorithmic settings common for all algo-
rithms.

Parameter Value

Tree initialization PTC2 [9]
Maximum tree length 200 Nodes
Population size 500 Individuals
Elites 1 Individual
Selection Tournament selection

Group size 4
Crossover probability 100%
Crossover operator Subtree crossover
Mutation probability 25%
Mutation operators Single point mutation

Remove branch
Replace branch

Fitness function Coefficient of determination R2

Termination criterion 100 Generations
Terminal symbols Constant, weight ∗ variable
Function symbols Binary functions(+,−,×, /)
Further specific algorithm settings are described textually.

(MultiPop GP), and multi-population genetic programming
with data migration (MultiPop GP+DM). In contrast to the
configurations without data migration, the ones with data
migration use only a certain part of the available training
data for fitness calculation.

The configurations with data migration use 20% of the
available training data as fixed training subset (FTS) and
20% as variable training subset (VTS) that is altered dur-
ing the algorithm execution with a data migration interval
of 5 generations. Both multi-population algorithms are con-
figured to include 5 subpopulations and an individual mi-
gration interval of 5 generations. Therefore, the MultiPop
GP + DM algorithm migrates individuals and data always
simultaneously.

Additionally, to the comparison of the achieved qualities
of the different algorithms, the influence of data migration
on the algorithm is investigated. Based on the MultiPop
GP+DM algorithm, we performed tests with both, individ-
ual and data migration, with only one of the migration types,
and with no migration at all between the different subpop-
ulations. For all configurations the fixed training subset
is used and contains 20% of the available training data as
stated above.

Parameter settings
The parameter settings that are common to all configura-
tions are listed in Table 1. For all configurations that use
multiple subpopulations, 5 subpopulations with a size of 100
were used, so that the total number of individuals stays con-
stant regardless of using a single or multiple populations.

The fitness function for all GP algorithms is the coefficient
of determination R2 (Equation 1), which is defined between
[0,1]. The R2 automatically takes linear transformations of
the models into account to achieve the best possible fit on
the data, but as a consequence the models have to be scaled
linearly before other quality values (e.g., mean square error,
average relative error, ...) can be calculated. The result of
a GP run is the best model in the last generation evaluated
on the whole training partition.

1363

Table 2: Definition of benchmark problems and training and test ranges.
Name Function Training Test

Nguyen-12 f(x, y) = x4 − x3 + 0.5y2 − y 200 samples 1000 samples

Keijzer-14 f(x, y) = 8
2+x2+y2 200 samples 798 samples

Vladislavleva-5 f(x1, ..., x3) = 30 (x1−1)(x3−1)

x2
2(x1−10)

300 samples 2700 samples

Poly-10 f(x1, ..., x10) = x1x2 + x3x4 + x5x6 + x1x7x9 + x3x6x10 250 samples 250 samples

Pagie-1 f(x, y) = 1
1+x−4 + 1

1+y−4 676 samples 1000 samples

Friedman-1 f(x1, ..., x10) = 0.1 exp(4x1) +
4

1+exp(−20(x2−0.5))
+ 3x3 + 2x4 + x5 +Noise 500 samples 5000 samples

Friedman-2 f(x1, ..., x10) = 10 sin(πx1x2) + 20(x3 − 1/2)2 + 10x4 + 5x5 +Noise 500 samples 5000 samples

R2(x, y) =
Cov(x, y)2

Var(x) ∗Var(y) (1)

All the benchmark problems, algorithms and extensions
in this publication are implemented in HeuristicLab [15], an
open source framework for heuristic optimization.

4. RESULTS
The results presented in this section were aggregated over

50 repetitions for every algorithm configuration to take the
stochasticity of the algorithms into account and report the
coefficient of determination R2 on the training and test data.

Table 3 reports the median, the average, and the stan-
dard deviation of the quality of the best models generated
by repeated algorithm executions on all benchmark prob-
lems. In the first two columns standard genetic program-
ming (GP) using the whole training data is compared to
single-population genetic programming with data migration
(GP+DM), where the first 20% of the training data are used
as fixed training subset (FTS) and another 20% are used
as variable training subset (VTS). The last two columns
show the achieved qualities of multi-population genetic pro-
gramming without (MultiPop GP) and with data migrations
(MultiPop GP+DM), where the same parameters for data
migration were applied as in the single-population case.

When comparing GP with GP+DM, the training results
produced by GP are slightly better, but in turn the better
test results are obtained by GP+DM. The largest differences
occur on the Poly-10 and Pagie-1 datasets, where neither of
the two algorithms was able to find any model describing
the data generating formula very well. The obtained re-
sults with multi-population algorithms are in general better
compared to the single-population ones (e.g., Nguyen-12,
Pagie-1, Friedman-1).

The picture for the influence of the data migration
on the multi-population algorithm variants is similar to
the single-population ones. Again, the training results
are better without data migration and the test results
are better with data migration, but these differences are
rather small. Although the improvements in terms of the
quality for the data migration algorithms are not very
high, it is interesting to observe that apparently it is not
necessary to use all available training samples for the fitness
of an individual during the algorithm execution and still
well-fitting models are created.

Migration strategies
After this first experiment we investigated the influence of
the different migration strategies incorporated in the algo-
rithm. Table 4 summarizes the obtained results (median,
average and standard deviation) for the multi-population al-
gorithm with four different configurations, where 20% of the
training samples were used as FTS. The first column shows
the results for the MultiPop GP+DM runs, in the second
column the algorithm was configured to use no data migra-
tion (VTS=0%), but individual migration and vice versa in
the third column (VTS=20%, no individual migration). In
the last column the results are stated with no migration at
all, which is equivalent to repeating a single-population algo-
rithm for every different FTS and reporting the best model
on the whole training of all repetitions.

The worst results when using only a subset of the avail-
able data for each subpopulation were obtained by using no
migration at all. The picture is not as clear when only data
or individual migration are used, but in general it is slightly
better to use data instead of individuals migration. How-
ever, the best performing strategy is the MultiPop GP+DM
with data and individual migration, especially on the harder
problems (Poly-10 - Frieman-2).

5. DISCUSSION & OUTLOOK
In this publication a new multi-population genetic pro-

gramming algorithm for symbolic regression is presented.
The main innovation is that every subpopulation is evolved
on a different, fixed training subset (FTS) and a changing
variable training subset (VTS). Additionally, the VTS is ex-
changed between the subpopulations by migration according
to an unidirectional ring topology. The intended benefits of
the developments were that multiple populations promote
the genetic diversity and hence, the algorithm learns better
on the presented data. At the same time data migration
should prevent the algorithm from producing overfit mod-
els by changing the data used for fitness calculations and
thus, models with better generalization properties should be
evolved. Another benefit of using only a subset of the train-
ing data for fitness evaluation is that the execution time of
the algorithm is reduced, which is important when dealing
with large datasets.

The shown results obtained by the new algorithm are en-
couraging in the sense that the results are as good or slightly
better as the results obtained by multi-population genetic
programming and for the Pagie-1 benchmark problem the

1364

multi-population GP with data migration clearly outper-
formed all other tested algorithm variants. However, the
presented algorithm should be tested on further problems
to highlight its advantages and drawbacks. Furthermore,
the influence of different parameter settings, especially re-
garding the impact of the sizes of the two training subsets,
whether individual and data migration should be performed
simultaneously or asynchronously, and other possible migra-
tion topologies is subject to further research.

Another interesting idea for further developments is to
combine data migration with offspring selection genetic
programming and constant optimization [7], because this
algorithm variant achieves better results on symbolic
regression problems compared to standard GP. A drawback
of the enhanced learning abilities is that the algorithm
tends to adapt on the presented data to well and thus, it is
more likely that overfit models are produced. Hence, data
migration could be an appropriate extension to diminish
these effects.

6. ACKNOWLEDGMENTS
The work described in this publication was partly done

within the Josef Ressel Centre for Heuristic Optimization
Heureka! sponsored by the Austrian Research Promotion
Agency (FFG).

7. REFERENCES
[1] M. Affenzeller, S. Winkler, G. Kronberger,

M. Kommenda, B. Burlacu, and S. Wagner. Gaining
deeper insights in symbolic regression. In R. Riolo,
J. H. Moore, and M. Kotanchek, editors, Genetic
Programming Theory and Practice XI, Genetic and
Evolutionary Computation. Springer, 2014.

[2] E. Cantú-Paz. A survey of parallel genetic algorithms.
Calculateurs paralleles, reseaux et systems repartis,
10(2):141–171, 1998.

[3] J. H. Friedman. Multivariate adaptive regression
splines. The annals of statistics, pages 1–67, 1991.

[4] C. Gathercole and P. Ross. Dynamic training subset
selection for supervised learning in genetic
programming. In Parallel Problem Solving from
Nature-PPSN III, pages 312–321. Springer, 1994.

[5] I. Goncalves, S. Silva, J. B. Melo, and J. M. B.
Carreiras. Random sampling technique for overfitting
control in genetic programming. In A. Moraglio,
S. Silva, K. Krawiec, P. Machado, and C. Cotta,
editors, Proceedings of the 15th European Conference
on Genetic Programming, EuroGP 2012, volume 7244
of LNCS, pages 218–229, Malaga, Spain, 11-13 Apr.
2012. Springer Verlag.

[6] R. Harper. Spatial co-evolution in age layered planes
(SCALP). In IEEE Congress on Evolutionary
Computation (CEC 2010), Barcelona, Spain, 18-23
July 2010. IEEE Press.

[7] M. Kommenda, G. Kronberger, S. Winkler,
M. Affenzeller, and S. Wagner. Effects of constant
optimization by nonlinear least squares minimization
in symbolic regression. In Proceeding of the fifteenth
annual conference companion on Genetic and
evolutionary computation conference companion
(GECCO2013), pages 1121–1128. ACM, 2013.

[8] J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, USA, 1992.

[9] S. Luke. Two fast tree-creation algorithms for genetic
programming. IEEE Transactions on Evolutionary
Computation, 4(3):274–283, Sept. 2000.

[10] R. Poli. A simple but theoretically-motivated method
to control bloat in genetic programming. In
Proceedings of the 6th European conference on Genetic
programming, EuroGP’03, pages 204–217, Berlin,
Heidelberg, 2003. Springer-Verlag.

[11] M. D. Schmidt and H. Lipson. Coevolution of fitness
predictors. Evolutionary Computation, IEEE
Transactions on, 12(6):736–749, 2008.

[12] S. Stijven, W. Minnebo, and K. Vladislavleva.
Separating the wheat from the chaff: on feature
selection and feature importance in regression random
forests and symbolic regression. In S. Gustafson and
E. Vladislavleva, editors, 3rd symbolic regression and
modeling workshop for GECCO 2011, pages 623–630,
Dublin, Ireland, 12-16 July 2011. ACM.

[13] R. Tanese. Distributed genetic algorithms. In
Proceedings of the third international conference on
Genetic algorithms, pages 434–439. Morgan Kaufmann
Publishers Inc., 1989.

[14] M. Tomassini, L. Vanneschi, F. Fernández, and
G. Galeano. A study of diversity in multipopulation
genetic programming. In Artificial Evolution, pages
243–255. Springer, 2004.

[15] S. Wagner, G. Kronberger, A. Beham, M. Kommenda,
A. Scheibenpflug, E. Pitzer, S. Vonolfen, M. Kofler,
S. Winkler, V. Dorfer, and M. Affenzeller. Advanced
Methods and Applications in Computational
Intelligence, volume 6 of Topics in Intelligent
Engineering and Informatics, chapter Architecture
and Design of the HeuristicLab Optimization
Environment, pages 197–261. Springer, 2014.

[16] D. R. White, J. McDermott, M. Castelli, L. Manzoni,
B. W. Goldman, G. Kronberger, W. Jaskowski, U.-M.
O’Reilly, and S. Luke. Better GP benchmarks:
community survey results and proposals. Genetic
Programming and Evolvable Machines, 14(1):3–29,
Mar. 2013.

[17] D. Whitley, S. Rana, and R. B. Heckendorn. The
island model genetic algorithm: On separability,
population size and convergence. Journal of
Computing and Information Technology, 7:33–48,
1999.

[18] D. Whitley and T. Starkweather. Genitor ii: A
distributed genetic algorithm. Journal of Experimental
& Theoretical Artificial Intelligence, 2(3):189–214,
1990.

1365

Table 3: Training and test qualities given as the coefficient of the determination R2 between the estimates of
the best training solution returned by the algorithm and the target values. The shown values are the median
(first row), average (second row), and standard deviation (third row) of 50 repetitions of every algorithm
variant.

GP GP + DM MultiPop GP MultiPop GP + DM
Training Test Training Test Training Test Training Test

Nguyen-12
0.993 0.991 0.990 0.987 0.992 0.989 0.994 0.993
0.993 0.902 0.990 0.939 0.992 0.922 0.993 0.958
0.004 0.200 0.005 0.129 0.004 0.175 0.004 0.146

Keijzer-14
0.993 0.987 0.992 0.987 0.996 0.992 0.995 0.989
0.991 0.890 0.989 0.920 0.993 0.931 0.992 0.965
0.008 0.218 0.009 0.185 0.007 0.189 0.007 0.092

Vladislavleva-5
0.982 0.946 0.995 0.989 0.994 0.989 0.997 0.994
0.966 0.808 0.962 0.878 0.978 0.904 0.982 0.897
0.042 0.291 0.058 0.216 0.031 0.209 0.036 0.233

Poly-10
0.503 0.247 0.403 0.230 0.521 0.284 0.517 0.475
0.537 0.311 0.500 0.320 0.559 0.347 0.531 0.416
0.123 0.207 0.165 0.241 0.149 0.255 0.167 0.251

Pagie-1
0.866 0.271 0.651 0.207 0.902 0.386 0.507 0.456
0.839 0.456 0.680 0.346 0.862 0.465 0.596 0.473
0.095 0.370 0.176 0.333 0.085 0.338 0.263 0.339

Friedman-1
0.754 0.760 0.735 0.739 0.768 0.780 0.754 0.776
0.755 0.685 0.730 0.666 0.761 0.734 0.751 0.759
0.016 0.141 0.034 0.158 0.768 0.105 0.018 0.060

Friedman-2
0.799 0.759 0.785 0.744 0.809 0.781 0.795 0.764
0.801 0.735 0.787 0.717 0.812 0.761 0.795 0.750
0.042 0.102 0.039 0.113 0.033 0.074 0.029 0.071

Table 4: Training and test qualities given as the coefficient of the determination R2 between the estimates of
the best training solution returned by the algorithm and the target values. The shown values are the median
(first row), average (second row), and standard deviation (third row) of 50 repetitions of the algorithm with
different migration strategies.

MultiPop GP + DM No data migration No individual migration No migration
Training Test Training Test Training Test Training Test

Nguyen-12
0.994 0.993 0.990 0.984 0.991 0.991 0.986 0.980
0.993 0.958 0.987 0.943 0.991 0.973 0.983 0.914
0.004 0.146 0.008 0.148 0.004 0.069 0.010 0.187

Keijzer-14
0.995 0.989 0.991 0.980 0.992 0.989 0.982 0.974
0.992 0.965 0.960 0.865 0.991 0.982 0.957 0.835
0.007 0.092 0.123 0.258 0.005 0.029 0.093 0.278

Vladislavleva-5
0.997 0.994 0.986 0.960 0.984 0.942 0.962 0.871
0.982 0.897 0.954 0.851 0.971 0.807 0.941 0.745
0.036 0.233 0.056 0.218 0.031 0.295 0.062 0.299

Poly-10
0.517 0.475 0.303 0.199 0.472 0.262 0.221 0.055
0.531 0.416 0.341 0.243 0.483 0.323 0.217 0.110
0.167 0.251 0.156 0.206 0.134 0.225 0.157 0.162

Pagie-1
0.507 0.456 0.496 0.429 0.849 0.607 0.454 0.165
0.596 0.473 0.474 0.338 0.739 0.562 0.323 0.221
0.263 0.339 0.125 0.192 0.184 0.333 0.201 0.206

Friedman-1
0.754 0.776 0.715 0.736 0.741 0.760 0.708 0.712
0.751 0.759 0.718 0.720 0.740 0.752 0.699 0.614
0.018 0.060 0.031 0.085 0.028 0.043 0.053 0.191

Friedman-2
0.795 0.764 0.753 0.733 0.775 0.742 0.737 0.707
0.795 0.750 0.761 0.723 0.780 0.721 0.736 0.616
0.029 0.071 0.040 0.089 0.031 0.093 0.051 0.179

1366

