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ABSTRACT
A novel approach is proposed for generating equations from
measured data of dynamic processes. A composition of
unary (alpha) and binary (beta) functions is represented by
a real vector and adapted by an evolutionary algorithm to
build mathematical equations. The equations can be used
for identification and prediction considering a mathematical
model with specific number of inputs and outputs. Three
cases are used for illustration of the approach where mathe-
matical models and plots of theirs performance are presented
with promising results.

Categories and Subject Descriptors
I.28 [Problem Solving, Control Methods, and Search]:

General Terms
Algorithms
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1. INTRODUCTION
Several processes in industry are dynamic non linear sys-

tems and a modeling of such systems in most of the cases
it is required for identification and prediction. A model
can be useful for analysis, control, optimization, supervi-
sion and fault diagnosis. Symbolic regression has been used
for identification and prediction, per example, the work of
Ly and Lipson [1] propose a multimodal symbolic regression
to construct non-linear mathematical model for describing
hybrid dynamical systems using data collection. Sharifi and
Massoudieh propose an evolutionary data-driven model us-
ing a NSGA multiobjective genetic algorithm for discover-
ing models considering a wash-off and building of suspended
solids in highway run-off [2]. Chaotic system identification
is a complex task and symbolic regression has been used
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for model generation. An hybrid genetic programming al-
gorithm based on evolution strategies is used for generating
a model from Lorenz attractor data [3]. Patelli and Ferariu
propose the use of an elite based multiobjective Genetic Pro-
gramming (GP) for non-linear identification of an industrial
plant [5].

Traditionally, non linear autoregressive models and neural
networks has been used for non linear dynamic identifica-
tion; however, hybrids systems using genetic programming
variants has been proposed. In the work of Coelho and Pes-
soa use a GP for selecting the structure for system identifica-
tion and combines crossover and mutation with orthogonal
least squares algorithm to estimate the contribution of the
branches of the tree. This GP non linear autoregressive with
exogenous inputs modelling is used for identification of a ball
and tube system [6].

A similar work made by Xiao-Lei and Bay [7] where a
NARX and a non linear autoregressive moving average with
exogenous input (NARMAX) polynomial models with a multi-
population genetic programming are used for handling com-
plex stochastic nonlinear system identification.Time series
prediction using symbolic regression has been used success-
fully, inclusive with the presence of multiple-time scale dy-
namics as is shown in the work of Cornforth and Lipson [4].
A summary of non linear model identification can be found
in the work of Winkler et al. [8].

The principal problem with symbolic regression for iden-
tification and prediction problems is the use of genetic pro-
gramming that requires in most of the cases special program-
ming languages and procedures. Some authors have pro-
posed alternatives to reduce this problem. Luo and Zhang
[9] proposes the use of a Parse-matrix evolution to solve
some regression problems. Kotanchek et al. proposes bal-
ancing algorithms to sort the data records before the use of
a Pareto genetic programming and used for model building
and identification of a data set of economic, political, social,
geographic data collected [10].

The paper is organized as follows: In section 2, a descrip-
tion of symbolic regression alpha-beta is made including fit-
ness function. In section 3, an illustration of the proposal
approach is made considering three cases of identification
and prediction are made using experimental data. Results
and conclusions will be given in section 4 and 5 respectively.

2. SYMBOLIC REGRESSION α-β
In this work, a new form of symbolic regression is proposed

where a core configuration based on simple operations called
α β, the selection of operations and parameters is made by
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Table 1: α operator parameters and their related
mathematical functions.

α operator mathematical operation
1 (k1x+ k2)
2 (k1x+ k2)2

3 (k1x+ k2)1/2

4 (k1x+ k2)−1

5 exp(k1x+ k2)
6 log(k1x+ k2)
7 (k1x+ k2)−2

8 (k1x+ k2)3

9 (k1x+ k2)−3

10 (k1x+ k2)1/3

11 sin(k1x+ k2)
12 cos(k1x+ k2)
13 tan(k1x+ k2)

an evolutionary algorithms. Connectivity and complexity is
involved in the search so the use of this form of symbolic
regression is very simple [11, 12].

2.1 Operators and core configuration
An α operators is defined as a unary and simple mathe-

matical function that requires only one argument. Consid-
ering a review of several mathematical models of real pro-
cesses, 13 operations are chosen as α operators (see Table
1). An α operator uses two real number parameters called
k1 and k2 and an integer that describes the mathematical
operation.

A β operator is defined as a binary function that requires
two arguments and makes the four basic arithmetic oper-
ations. A maximum of three alpha operators per variable
is used, so if there are two variables, a configuration with
six alpha operators and five beta operators are defined as a
core configuration as is shown in equation (1). Depending
de number of input variables a core configuration is used.

y = β5(β4(β3(β2(β1(b1α1(x1k11 + k21), b2α1(x1k12 + k22)),
b3α1(x1k13 + k23)), b4α1(x2k14 + k24)),
b5α1(x2k15 + k25)), b6α6(x2k16 + k26))

(1)
The representation depends of the core configuration used

or the number of variables required. The number of variables
determine the core configuration as was mention above. A
vector with normalized real numbers can be used to repre-
sents the connectivity or the number of alpha operators per
variable, the α and β operators and the k parameters of the
alpha operators. A single real number is used for connec-
tivity because this number is converted to an integer value,
then it is converted again in a binary vector and extract the
b values using their corresponding position of the elements
of the binary vector.
k parameters is assigned directly the real value of the rep-

resentation vector.
Every α and β operators are integers, so is required the

following formulation to get its value from the representation
V :

α = dV (i) ∗ 13e (2)

β = dV (i) ∗ 4e (3)

where d.e is the ceiling function. There are 13 α opera-
tors defined in table 1 and four β operators (basic algebraic
operations)

In this work, Evonorm is used to solve the problem of
selection the suitable parameters (k’s), the connectivity and
integers to define α and β operations.

2.2 Evolutionary algorithm Evonorm
Evonorm is an easy way to implement an estimation of

distribution algorithm [13, 14]. As a evolutionary algorithm
selection of new individuals and the generation of a new pop-
ulation is used; however, the crossover and mutation mech-
anism is substituted by an estimation of parameters of a
normal distribution function. The following steps are used
in Evonorm:

1. Evaluation of a population P .

2. Deterministic selection of individuals from P to PS.

3. Generation of a new population using PS

A population P is a matrix of size Ip (total of individuals)
and Dr (total of decision variables). A solution is a set
of decision variables and this set is represented as a real
vector. Every row of the population P represents a set of
decision variables. The selection mechanism is deterministic
because the most fittest individuals are selected. Usually the
number of selected individuals are lower than the number
of the original population, usually a twenty or ten percent
of the total population. A random variable with normal
distribution is estimated per decision variable, so a marginal
distribution function is used. Two parameters are estimated,
the mean and the standard deviation, that is determined
using the values of the selected individuals. The population
of selected individuals is a matrix Ps of size Is (total of
individuals selected) and Dr. The equations (4, 5) are used
to calculate the mean and standard deviation considering
every vector of the population Ps.

µpr =

Is∑
k=1

(Pspr,k)/Is (4)

σpr =
√

(

Is∑
k=1

(Pspr,k − µpr)2)/Is (5)

where pr = 1..Dr

A new population is generated using the estimated normal
random variables. This is a stochastic process;, however, an
heuristic is used to maintain an equilibrium between explo-
ration and exploitation, so new solutions can be found not
necessarily near of the mean calculated. The best solution
found Ix at the moment is involved in the generation so
in the 50% percent of the times the mean is used in the
calculations and in the other 50% percent of the time the
best solution found Ix is used as a mean as is shown in the
following equation:

Pi,pr =

{
N(µpr, σpr) U() > 0.5
N(Ixpr, σpr) otherwise

(6)

The random variable U() has a uniform distribution func-
tion, N() is a random variable with a normal distribution
function.
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2.3 Fitness function
An evaluation value of every individuals depends on com-

plexity, and accuracy of the model. Complexity is determi-
nate adding all the α and β operators used in the chosen
configuration. Mean square error (Equation 7) is used as
second objective; however, both complexity and MSRES are
weighted to use only one objective function. The criteria is
both the minimization of complexity and mean square error.

MSRES =

n∑
i=1

(y(i)− ŷ(i))2 (7)

where y(i) is the response of the process and ŷ(i) is the
predicted response generated by the regression model pro-
posed and n is the total of testing data.

3. IDENTIFICATION AND PREDICTION OF
NONLINEAR DYNAMICAL PROCESSES

Identification and prediction of the non-linear dynamic
systems requires similar architectures. The number of inputs
depends on the number of delay used on input and output
signals treating the problem as a regression one. A typical
architecture is shown in Figure 1.

Figure 1: A common architecture used in symbolic
regression α β for identification and prediction.

3.1 Cases
Three case can be found in literature, first it is the iden-

tification of the systems modelled by (8) and (9) and third
it is the prediction on Box-Jenkins furnace.

Process 1

y(k + 1) =
y(k)y(k − 1)[y(k)− 0.5]

1 + y2(k) + y2(k − 1)
+ x(k) (8)

Process 2.

y(k + 1) = 0.3y(k) + 0.6y(k − 1) + f(x(k)) (9)

These two discrete processes have an specific input signal.
In (8), x(k) = sin(2πk/25). In (9), f(x(k)) = 0.6 sin(πx(k))+
0.3 sin(3πx(k))+0.1 sin(5πx(k)) with its input x(k) = sin(2πk/200).
The initial condition in all cases is y(0) = 0. For identifi-
cation of the first two cases a core configuration of three
variables is used (10). In third case, a core configuration of
four inputs is used (11).

y(k + 1) = SRAB(u(k), y(k), y(k − 1)) (10)

y(k + 1) = SRAB(u(k), y(k), y(k − 1), y(k − 2)) (11)

4. RESULTS
An Evonorm algorithm with 100 individuals where 10 of

them are selected during 50 generations. These setting are
used in all three cases. A set of building and testing data is
generated or recorded where a high percentage of data are
used for building the model and the rest are used for testing.
Ten runs are used and the solution with lower mean square
error was chosen.

4.1 First case
The performance of the model using testing data as is

shown in Figure (2). Mathematical model is shown in Equa-
tion 12. A total of 5000 data were used for building and 200
for testing. Mean square error on testing data is 0.0007307
considering testing data.

Figure 2: Performance of the best model found ver-
sus the real output response.

y = ((k11u(k) + k21)− (k13u(k) + k23))
(k14y(k) + k24)2 + (k15y(k) + k25)2−
(k18y(k − 1) + k28) + (k19y(k − 1) + k29)

(12)

where k11=0.9809215, k21 = 0.6328762, k13= 0.4296275,
k23 =0.0722073, k14 = 0.3753558, k24 = 0.0120735, k15 =
0.4772979, k25 = 0.5380167, k18 = 0.5925161, k28 = 0.4077315,
k19 =0.6232973, and k29 = 0.2440728.

4.2 Second case
The performance of the model using testing data as is

shown in Figure (3). A total of 3000 data were used for
building and 200 for testing. Mathematical model is shown
in Equation 13. Mean square error on testing data is 0.0018459
considering testing data.

y = ((k11u(k) + k21)1/2 − exp(k14y(k) + k24)
−(k15y(k) + k25)−1 + exp(k16u(k) + k26)

+(k17y(k − 1) + k27)1/2 − (k18y(k − 1) + k28)1/2

(13)
where k12 = 0.4232765, k22= 0.9903058, k14= 0.1049508,

k24= 0.6088263, k15= 0.3934277, k25= 0.7465172, k16 =
0.2367586, k26= 0.7177606, k17 = 0.3027999, k27= 0.5093251,
k19= 0.1463342, and k29 = 0.4300170.
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Figure 3: Performance of the best model found ver-
sus the real output response.

4.3 Third case
The performance of the model using testing data as is

shown in Figure (4). 200 data were used for building 98
for testing. Mathematical model is shown in Equation 14.
Mean square error on testing data is 0.0002214 considering
testing data.

Figure 4: Performance of the best model found ver-
sus the real output response.

y = −(k13u(k) + k23)2 + (k14y(k) + k24)
− log(k16y(k) + k26)2 + log(k18y(k − 1) + k28)
−(k110y(k − 2) + k210) + (k112y(k − 2) + k212)

(14)
where k13=0.1070782, k23 = 0.2730927, k14 = 0.9421514,

k24 = 0.5979528, k16=0.0842617, k26 = 0.0292099, k18=
0.0568625, k28 = 0.2968381, k110= 0.4361714, k210 = 0.7237257,
k112=0.7237689, k212 = 0.1376476.

5. CONCLUSION AND FUTURE WORK
These preliminary results illustrate the possibility to use

symbolic regression α β for identification and prediction
problems. The approach selects the parameters, complex-
ity and connectivity generating feasible mathematical mod-
els; however, the core configuration most be given depend-
ing of the number of input variables that must be initially
give. Improvement considering fitness and complexity re-
quires multi-objective optimization and a weighting mecha-
nism was used for simplicity and generate practical models;
however, it is possible to use related algorithms to generate
a Pareto front considering different alternatives of models
by complexity and connectivity and let the final selection to
the user. Finally, a comparison with other approaches will
open an opportunity to improve the proposal. All of these
stuff is considered as a future work.
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