
A Step Size Based Self-Adaptive Mutation Operator for
Evolutionary Programming

Libin Hong
School of Computer Science,

University of Nottingham P.R.C
Libin.hong@nottingham.edu.cn

John H. Drake
School of Computer Science,

University of Nottingham P.R.C
John.drake@nottingham.edu.cn

Ender Özcan
School of Computer Science,
University of Nottingham U.K
Ender.ozcan@nottingham.ac.uk

ABSTRACT
The mutation operator is the only genetic operator in Evo-
lutionary Programming (EP). In the past researchers have
nominated Gaussian, Cauchy, and Lévy distributions as mu-
tation operators. According to the No Free Lunch theorem
[9], no single mutation operator is able to outperform al-
l others over the set of all possible functions. Potentially
there is a lot of useful information generated when EP is
ongoing. In this paper, we collect such information and pro-
pose a step size based self-adaptive mutation operator for
Evolutionary Programming (SSEP). In SSEP, the mutation
operator might be changed during the evolutionary process,
based on the step size, from generation to generation. Prin-
ciples for selecting an appropriate mutation operator for EP
is proposed, with SSEP grounded on the principles. SSEP
is shown to outperform static mutation operators in Evolu-
tionary Programming on most of the functions tested. We
also compare the experimental results of SSEP with oth-
er recent Evolutionary Programming methods, which uses
multiple mutation operators.

Keywords
Evolutionary Programming; Step Size; Mutation Operator;
Self-Adaptive; Function Optimization; Convergence.

1. INTRODUCTION
Evolutionary Programming (EP) is a branch of Evolu-

tionary Computation used to evolve numerical values, in an
attempt to find a global optimum of a function. The on-
ly genetic operator available in an EP system is mutation.
Probability distributions used as mutation operators in EP
include Gaussian, Cauchy and Lévy, among others. Classical
Evolutionary Programming (CEP) [10] uses Gaussian muta-
tion, while Fast Evolutionary Programming (FEP) [10] uses
Cauchy mutation. For Evolutionary Programming meth-
ods using Lévy distribution as a mutation operator (LEP)
[4], it is also possible perform Gaussian or Cauchy mutation
through the settings of the α parameter.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
Copyright 2014 ACM 978-1-4503-2881-4/14/07 ...$15.00.
http://dx.doi.org/10.1145/2598394.2609873.

In recent years, many improvements to EP have been pro-
posed. Improved FEP (IFEP) [11], mixes mutation opera-
tors, and uses both Gaussian and Cauchy mutations. Later
a mixed mutation strategy (MSEP) [2] was proposed: four
mutation operators are used and the mutation operator is
selected according to their probabilities during the evolu-
tion. In 2010 MSEP with local fitness landscape (LMSEP)
[8] was proposed: based on MSEP, local fitness landscape
is considered. Ensemble Strategies with Adaptive Evolu-
tionary Programming [7] was also proposed in 2010: each
mutation operator has an associated population, with ev-
ery population benefiting from every function call. In 2013,
researchers proposed to automatically design the mutation
operator for EP using Genetic Programming [3].

This paper proposes a novel method, using a self-adaptive
mutation operator to keep the convergence rate stable for
EP throughout the evolutionary process. From previous re-
search and our observations, useful information is collected
to help EP make a decision which mutation operator to use
at each generation. We propose principles to design an al-
gorithm which utilises this information. According to the
principles, a step size based self-adaptive mutation operator
for Evolutionary Programming (SSEP) is presented.

Section 2 introduces function optimization and the EP
algorithm. In Section 3 we describe the principles used to
design the SSEP mutation operator. Section 4 provide the
details of the EP designed by the principles. In Section 5 we
present and compare the experimental results of Gaussian,
Cauchy, and Lévy mutation with the SSEP. We also compare
SSEP to the MSEP and LMSEP methods take from the
literature. In Section 6 we discuss and explain future work.
Section 7 summarizes and concludes the article.

2. FUNCTION OPTIMIZATION BY EVOLU-
TIONARY PROGRAMMING

Global minimization in Rn can be formalized as a pair
(S, f), where S ∈ Rn is a bounded set on Rn and f : S → R
is an n-dimensional real-valued function. The aim is to find
a point xmin∈ S such that f(xmin) is a global minimum on
S. More specifically, it is required to find an xmin∈ S such
that

∀x ∈ S : f(xmin) ≤ f(x)

Here f does not need to be continuous or differentiable but
it must be bounded. The algorithm of EP is implemented
as follows [1, 10]:

1. Generate the initial population of p individuals, and set
k = 1. Each individual is taken as a pair of real-valued

1381

vectors, (xi, ηi), ∀i ∈ {1, ···, µ}.The initialization value
of the strategy parameter η is set to 3.0.

2. Evaluate the fitness value for each (xi, ηi), ∀i ∈ {1, · ·
·, µ}.

3. Each parent (xi, ηi), ∀i ∈ {1, · · ·, µ}, creates λ/µ off-
spring on average, so that a total of λ offspring are
generated: for i=1, · · ·, µ, j=1, · · ·, n.

xi
′(j) = xi(j) + ηi(j)Dj (1)

η′(j) = ηi(j)exp(γ
′N(0,1) + γNj(0,1)) (2)

The above two equations are used to generate new off-
spring. Objective function is used to calculate the fit-
ness value, the survival offspring is picked up according
to the fitness value. The factors γ and γ′ have set to

(
√

2
√
n)−1 and (

√
2n)−1.

4. Evaluate the fitness of each offspring (x′
i, η

′
i), ∀i ∈ {1, ··

·, µ}, according to f(x′).

5. Conduct pairwise comparison over the union of par-
ents (xi, ηi) and offspring (x′

i, η
′
i), ∀i ∈ {1, · · ·, µ}. Q

opponents are selected randomly from the parents and
offspring for each individual. During the comparison,
the individual receives a “win” if its fitness is no greater
than those of opponents.

6. Pick the µ individuals out of parents and offspring,
i ∈ {1, · · ·, µ}, that have the most wins to be parents,
to form the next generation.

7. Stop if the stopping criterion is satisfied; otherwise,
k++ and goto Step3.

If Dj in Eq.(1) is the Gaussian distribution, then the al-
gorithm is CEP [10]. If Dj is the Cauchy distribution, it is
FEP [11]. If Dj is the Lévy distribution, it is LEP [4]. The
above algorithm acts as a template for SSEP, which is the
contribution of this paper.

3. PRINCIPLES OF A STEP SIZE BASED
SELF-ADAPTIVE MUTATION OPERATOR

In this section we introduce the principles used to design
SSEP and explain how it works. The idea of SSEP is inspired
by a driver tuning an analogue car radio. A driver will
usually tune the radio in a wide range to search channels,
and several channels may be discovered. Once the driver
decides which channel to listen to, he will adjust the radio
slightly to make the signal more clear. We try to design
an EP system that moves in the search space with a long
step size at the beginning, and uses a short step size later
on in the search, where step size is the distance between a
‘survived’ offspring and its parent.
Liang et al. [5, 6] proposed to control the lower bound of

offspring in order to improve the performance in EP, and
noted that self-adaptation may rapidly lead to a search step
size that is far too small to explore the search space any
further. This is known as loss of step size control. Liang et
al. [5, 6] also analyse how the step size control was lost. In
this paper we propose to change the mutation operator in
EP based on the step size that the parent jumped, rather
than control the lower bound.

Yao et al. [11] point out that Cauchy mutation is more
likely to generate an offspring further away from its parent
than Gaussian mutation. In other words, Gaussian offers
better performance if the parent is close to the global opti-
mum, otherwise Cauchy mutation is a better choice for EP.

From a large number of EP experiments we observed an
interesting phenomena: when using a static mutation oper-
ator in EP, usually more offspring survive in early genera-
tions and less offspring survive in later generations of the
run. According to previous research conclusions and our
own observations, we believe that in early generations of
function optimization, a long step size mutation operator
is necessary, as it guarantees more of the search space can
be covered. However, once the individuals are close to the
global optimum, a long step size mutation operator should
be replaced by a short step size mutation operator in order
to keep the convergence rate of the run consistent in later
generations. But how ‘short’ is short enough? In previous
research, a standard normal distribution N(0, 1) represents
a short step size mutation operator. In our experiments we
use N(0, 0.1) or N(0, 0.01) as ‘short’ step size mutation op-
erators.

3.1 Symbols Used in Principles
Below are the symbols used in the principles:
1. Sk: a single value representing the single step size at

each generation k. In EP, after tournament selection at each
generation, the new population consists of both parents and
offspring. The offspring which appear in the new population
are known as “survived” offspring, Sk is calculated as the
mean value of the jumped step size of all“survived”offspring.
This value will be updated at each generation (in Algorithm
2 line 8), ∀k ∈ {1, ···, n} where n is the maximum generation
of EP.

2. S Hk: a single value representing the average step size
from generation 1 to the current generation k. This value
is calculated as mean(S1...Sk) where k is current generation
number. This value is also updated at each generation (in
Algorithm 2 line 10).

3. N(µ, σ2): Gaussian distribution, in SSEP (µ = 0, σ2 =
0.1) or (µ = 0, σ2 = 0.01) is used according to the principles.

4. C: represents the Cauchy distribution.
5. T : the distance coefficient. When Sk is very small, it

helps EP to have sufficient generations with a long step size
mutation operator to prevent it from falling into local opti-
mum. In our experiments, the value of T for each function
is given in Table 2. The values of T we set for SSEP are
empirically determined.

3.2 Principles for SSEP
The following are the principles for SSEP:
1. If Sk ∈ (1e − 4, 1e − 2] at the current generation and

S Hk ≥ Sk×T , set a σ2=0.1 for N(0, σ2), and use N(0, 0.1)
as the mutation operator for EP.

2. If Sk ∈ (0, 1e−4] at the current generation and S Hk ≥
Sk × T , set σ2=0.01 for N(0, σ2), and N(0, 0.01) is selected
as mutation operator for EP.

3. If S Hk ≥ 1 or S Hk ≤ Sk × T , C is selected as
mutation operator for EP.

4. For all other cases, σ2 is set as S Hk for N(0, σ2), and
N(0, S Hk) is selected as the mutation operator for EP.

Previous works in the literature often use standard normal
distribution N(0, 1) as a short step size mutation operator.

1382

However according to our observations, the random values
generated by N(0, 1) are not ‘short’ enough to keep conver-
gence rate stable in later stages of EP. This is a particular
problem when the population is ‘very close’ to the global
optimum. Hence we use principle 1 and 2 to keep the con-
vergence rate stable in later generations of EP. In SSEP,
S Hk = 1 is a watershed, S Hk ≥ 1 represents more off-
spring survived using long step size mutation operator. As
a result we will use a mutation operator that can generate
long step size values for the next generation, hence we pro-
pose principle 3.

Table 1 Parameter settings for EP.

Parameter Settings
DIM n in Table 3
POPNO 100

Algorithm 1 Algorithm to calculate step size for each
population

1: DIM /*Initial dimensional size*/
2: POPNO /*Initial population number*/
3: pop[POPNO × 2][DIM]
4: /*Parents and offsprings in current generation*/
5: for i : POPNO do
6: indStepSize = 0;
7: for j : DIM do
8: /*Calculate step size for each individual*/
9: temp(i, j) = pop[i][j] - pop[POPNO + i][j]
10: /*Calculate total step size for all individuals*/
11: indStepSize += abs(temp(i, j))
12: end for
13: /*Calculate average step size for pop[i]*/
14: popStepSize(POPNO + i) = indStepSize/DIM
15: end for

4. DETAILS OF SSEP IMPLEMENTATION
In this section we list the the pseudo-code of the SSEP

algorithm designed according to the principles in Section
3.2.
Algorithm 1 is used to calculate the step size of the pop-

ulation at each generation of EP. The updating of Sk and
S Hk in Algorithm 2 will use the data prepared in this al-
gorithm. Algorithm 1 is injected in between step 4 and step
5 of the EP algorithm introduced in Section 2.
Algorithm 2 implements the principles proposed in Section

3.2. Algorithm 2 is injected in between step 6 and step 7 of
the EP algorithm introduced in Section 2.

5. EXPERIMENTAL RESULTS AND DISCUS-
SION

In previous work, most researchers have tested their al-
gorithms on a benchmark suite of 23 functions [10]. In this
paper, we use the first 10 (see Table 3).
Table 3 lists the functions used in this paper. In the func-

tion suite, f1-f7 are unimodal functions and f8-f10 are mul-
timodal functions.

Algorithm 2 Algorithm to implement SSEP

1: for i : POPNO do
2: if pop[i] is offspring then
3: totalPopStepSize += popStepSize[i]
4: survivedOffspringNo ++
5: end if
6: end for
7: /*update Sk*/
8: Sk = totalPopStepSize/survivedOffspringNo
9: /*update S Hk*/
10: S Hk = mean(S1...Sk);
11: /*Initial T*/
12: if Sk < 1e− 2 and Sk > 1e− 4 and S Hk ≥ Sk × T

then
13: /*If mutation type is 2, use N(0, σ2) as mutation op-

erator*/
14: muttype← 2
15: σ2 ← 0.1
16: else if Sk ≤ 1e − 4 and Sk < 0 and S Hk ≥ Sk × T

then
17: muttype← 2
18: σ2 ← 0.01
19: else if S Hk ≥ 1 or S Hk ≤ Sk × T then
20: /*If mutation type is 1, use C as mutation operator*/
21: muttype← 1
22: else
23: muttype← 2
24: σ2 ← S Hk

25: end if

The results of SSEP are given for each function in Table
4, alone with the results of various previous methods taken
from the literature.

Table 5 shows the results of a Wilcoxon Signed-Rank Test
within a 95% confidence interval between SSEP and other
methods from literature. In this table, “≥” and “≤” indicate
that SSEP performs better or worse on average respectively,
compared to a particular existing method. In the case that
this difference is statistically significant, “>” and “<” are
used.

5.1 Analysis and Comparisons
The results in Table 4 show that SSEP gives the best

performance when compared with using a static mutation
operator on f1, f2, f4 and f7. The results of the 2-tailed
Wilcoxon Signed-Rank Tests given in Table 5, show a sta-
tistically significant difference between SSEP and CEP, FEP
and the LEP variations. SSEP also beats some of the static
mutation operators on f6, f8 and f10. We notice that SSEP
has good performance on f10, the original experimental data
shows that the mean fitness value in final generation reaches
a level of 10−5 more than 30 times over 50 runs.

The new methods proposed have successfully kept the con-
vergence rate stable for some of the functions, not only in
early generations, but also in later generations of EP. In gen-
eral, SSEP outperforms EP methods using static mutation
operators, such as FEP, CEP and LEP. The only function on
which SSEP has worst results is f5. This may be because the
principles used are either over-fitting or under-fitting and is
discussed in future work.

1383

Table 2 Settings of T for f1 − f10.

fn f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

T 1.5e+ 2 1.0e+ 2 1.5e+ 2 1.0e+ 2 1.5e+ 2 1.5e+ 2 1.5e+ 2 1.5e+ 2 1.5e+ 2 1.5e+ 2

Table 3 The 10 functions used in our experimental studies, where n is the dimensional size of the function, fmin is the
minimum value of the function, and S ⊆ Rn.

Function n S fmin

f1(x) =
∑n

i=1 x
2
i 30 [−100, 100]n 0

f2(x) =
∑n

i=1 | xi | +
∏n

i=1 | xi | 30 [−10, 10]n 0

f3(x) =
∑n

i=1(
∑i

j=1 xj)
2 30 [−100, 100]n 0

f4(x) = maxi{| xi |, 1 ≤ i ≤ n} 30 [−100, 100]n 0
f5(x) =

∑n
i=1[(xi+1 − x2

i)
2 + (xi − 1)2] 30 [−30, 30]n 0

f6(x) =
∑n

i=1(⌊xi + 0.5⌋)2 30 [−100, 100]n 0
f7(x) =

∑n
i=1 ix

4
i + random[0, 1) 30 [−1.28, 1.28]n 0

f8(x) =
∑n

i=1 −xi sin(
√

|xi|) 30 [−500, 500]n -12569.5
f9(x) =

∑n
i=1[x

2
i − 10cos(2πxi) + 10] 30 [−5.12, 5.12]n 0

f10(x) = −20 exp(−0.2
√

1
n

∑n
i=1 x

2
i)− exp(1

n

∑n
i=1 cos 2πxi) + 20 + e 30 [−32, 32]n 0

Table 4 The results of SSEP, FEP, CEP and LEP with α=(1.2,1.4,1.6,1.8) on f1-f10, “Mean” indicates the mean best fitness
values found in the last generation over 50 runs, “Best” indicates the best fitness value in last generation in 50 runs, “Std Dev”
stands for standard deviations.

fn SSEP FEP CEP α = 1.2 α = 1.4 α = 1.6 α = 1.8

f1

Mean 1.1679E-07 4.8402E-04 5.8365E-05 2.5452E-04 1.7666E-04 1.3584E-04 1.0588E-04
Best 6.9710E-09 3.0336E-04 2.7631E-05 1.4416E-04 8.5229E-05 8.1850E-05 7.6026E-05

Std Dev (2.15E-07) (7.27E-05) (2.36E-05) (4.49E-05) (3.66E-05) (2.83E-05) (1.70E-05)

f2

Mean 2.4397E-04 6.8787E-02 2.2292E-02 5.2286E-02 4.2083E-02 3.6502E-02 3.3497E-02
Best 2.0062E-04 5.5150E-02 1.9973E-02 4.5706E-02 3.4859E-02 3.1018E-02 2.8360E-02

Std Dev (1.67E-05) (5.61E-03) (1.28E-03) (3.15E-03) (2.84E-03) (2.50E-03) (2.03E-03)

f3

Mean 7.9868E-03 1.2047E-02 7.4353E-03 6.1633E-03 5.9409E-03 4.2044E-03 5.4785E-03
Best 2.4046E-03 2.9402E-03 1.3768E-04 1.1369E-03 6.3364E-04 4.1240E-04 4.0410E-04

Std Dev (6.50E-03) (1.10E-02) (1.14E-02) (5.06E-03) (1.44E-02) (5.42E-03) (1.00E-02)

f4

Mean 8.8458E-04 6.6422E-03 1.2984 5.9469E-03 2.97E-02 2.4820E-01 5.5215E-01
Best 2.0549E-05 5.0559E-03 1.8176E-01 4.4390E-03 3.7107E-03 3.4234E-03 3.6725E-03

Std Dev (1.99E-03) (6.73E-04) (9.67E-01) (1.34E-03) (1.06E-01) (5.29E-01) (6.86E-01)

f5

Mean 32.0200 25.8343 5.9900 15.2293 9.0767 5.5955 7.5573
Best 0.1599 0.0431 0.0787 0.0416 0.0578 0.0203 0.0305

Std Dev (34.10) (28.96) (11.90) (23.72) (11.82) (5.30) (11.66)

f6

Mean 0 0 119.72 0 0 0.08 26.28
Best 0 0 0 0 0 0 0

Std Dev (0) (0) (402.51) (0) (0) (0.27) (154.00)

f7

Mean 7.5877E-03 8.6825E-03 1.9285E-02 8.4072E-03 1.0126E-02 1.2125E-02 1.3827E-02
Best 0.0040 0.0039 0.0095 0.0029 0.0047 0.0052 0.0048

Std Dev (2.11E-03) (2.27E-03) (6.14E-03) (2.56E-03) (2.80E-03) (4.08E-03) (4.66E-03)

f8

Mean -11087.73 -11363.42 -7974.68 -10553.20 -10261.56 -9522.00 -8807.46
Best -12095.73 -12095.73 -9330.51 -11500.51 -11049.53 -10832.39 -10215.79

Std Dev (376.22) (344.28) (640.90) (367.01) (486.21) (579.09) (633.00)

f9

Mean 47.73 3.8752E-02 79.40 4.7913E-02 2.12 20.64 67.03
Best 0.0329 0.0413 60.6957 0.0297 2.0129 20.9487 66.6733

Std Dev (28.09) (5.34E-03) (22.79) (0.14) (1.35) (8.89) (20.21)

f10

Mean 0.1661 0.0160 8.1118 0.0118 0.0113 1.1340 5.0703
Best 5.4074E-05 1.2613E-02 9.3137E-01 8.4018E-03 8.0068E-03 7.7945E-03 5.7543E-03

Std Dev (5.80E-01) (1.45E-03) (3.29) (1.32E-03) (3.30E-03) (1.29) (3.65)

1384

Table 5 2-tailed Wilcoxon Signed-Rank Test comparing SSEP with FEP, CEP and LEP with α = (1.2, 1.4, 1.6, 1.8) on f1-f10.

fn Number of vs FEP vs CEP vs α = 1.2 vs α = 1.4 vs α = 1.6 vs α = 1.8
Generations

f1 1500 > > > > > >
f2 2000 > > > > > >
f3 5000 > ≤ ≤ < < <
f4 5000 > > > > > >
f5 20000 ≤ < < < < <
f6 1500 = > = = = >
f7 3000 > > ≥ > > >
f8 9000 < > > > > >
f9 5000 < > < < < >
f10 1500 < > < < > >

Table 6 Comparison of SSEP, MSEP and LMSEP, means and (standard deviations

fn Number of SSEP LMSEP [8] MSEP [8]
Generations

f1 1500
1.1679E-07 3.803E-05 6.209E-05
(2.15E-07) (7.97E-05) (1.61E-04)

f2 2000
2.4397E-04 1.556E-03 8.226E-02
(1.67E-05) (9.37E-04) (4.35E-01)

f4 5000
8.8458E-04 0.767 0.629
(1.99E-03) (1.09) (1)

f6 1500
0 0 43.8
(0) (0) (126)

f7 3000
7.5877E-03 3.514E-02 3.56E-02
(2.11E-03) (1.85E-02) (1.74E-02)

f9 5000
47.73 61.39 63.44
(28.09) (13.18) (13.8)

f10 1500
1.661E-01 1.956E-03 6.498
(5.80E-01) (1.76E-03) (2.49)

Figure 1 Evolutionary Process of f1, f2. Figure 2 Evolutionary Process of f3, f4.1385

Figure 3 Evolutionary Process of f6, f7, f8, f10.

In Figure 1, 2 and 3 , we plot the averaged fitness value
over 50 runs at each generation. SSEP shows its consistent
convergence rate throughout evolutionary process on f1, f2
and f4.

5.2 Comparison of EP Use None Static Muta-
tion Operator

We list the experimental data of SSEP, MSEP and LM-
SEP in Table 6. Both MSEP and LMSEP do not use a static
mutation operator strategy. SSEP offers better performance
on f1, f2, f4, f7 and f8.

Note: Shen et al. [8] does not provide results for f3, f5
and f8, so it is only possible to make comparisons on f1, f2,
f4, f6, f7, f9 and f10.

6. DISCUSSION AND FUTURE WORK
The main aim of this paper is to implement an algorithm

which is capable of selecting a mutation operator for EP at
each generation.

We have tested SSEP, using single step size Sk at each gen-
eration, history step size S Hk from generation 1 to current
generation k as a self-adaptive factor to pick an appropriate
mutation operator for the next generation of EP. The dis-
tance coefficient T is used to control SSEP, trying to avoid
falling into local optimum in early generations of EP.

So far we have compared it with the static mutation op-
erators used in CEP [10], FEP [10] and LEP [4]. We also
compared SSEP to MSEP [2] and LMSEP [8], which both
use multiple mutation operators. Several principles are pro-
posed to implement SSEP. Later work will focus on improv-
ing the principles in order to fit more functions, hopefully
improving the accuracy of the self-adaptive mutation oper-
ator.

Another extension in SSEP is to examine how the dis-
tance coefficient T affects the convergence speed on differ-
ent functions. Search space is not considered in the current
principles. We believe that the search space of functions is
another important factor of self-adaptive mutation opera-
tors worthy of future investigation. Currently SSEP works
on the same dimensional size for all functions, we are also
planning to investigate how SSEP works on functions with
different dimensional sizes.

SSEP does not show good performance on some functions,
especially f5, this suggests that the principles are not robust
enough. Regardless of this dilemma we have proposed prin-
ciples and designed an algorithm which outperforms exist-
ing EP systems with static mutation operators and dynamic
mutation operators on most of the functions tested.

One possible criticism of this method is that the principles
do not fit all of the functions tested so far. This is because
some important factors that affect the selection of mutation
operators is omitted. In future, we will collect as much useful
information as possible throughout the evolutionary process
to make SSEP more accurate and robust.

7. SUMMARY AND CONCLUSIONS
Evolutionary Programming is a robust method of solving

numerical optimization problems. In the past it has involved
using probability distributions (Gaussian, Cauchy and Lévy,
etc) as the unique mutation operator. Recently multiple mu-
tation operators have been adopted in EP methods, such as
IFEP [11], MSEP [2] and LMSEP [8]. EP with a static mu-

1386

tation operator usually keeps high convergence rate in early
generations, but less offspring survive in tournament selec-
tion in later generations. In this paper, we propose principles
to keep the high convergence rate not only in early genera-
tions of EP, but also in later generations. According to the
principles, an algorithm is presented and injected into EP,
to help EP adaptively select appropriate mutation operators
at each generation throughout the evolutionary process.
SSEP is inspired by the process of tuning an analogue car

radio, when a driver usually tunes the radio in a wide range
to search for a channel, before slightly adjusting the radio
to get a clear signal. SSEP moves in the search space with
a long step size mutation operator at beginning and uses
a short step size mutation operator towards the end of the
search.
From the experimental results, SSEP shows good perfor-

mance on a set of 10 benchmark functions. The initial results
are highly encouraging, we cannot claim that our principles
can fit over all functions from the literature, but our princi-
ples are successful on some functions, outperforming existing
EP methods.

8. REFERENCES
[1] T. Bäck and H.-P. Schwefel. An overview of

evolutionary algorithms for parameter optimization.
Evolutionary Computation, 1:1–23, 1993.

[2] H. Dong, J. He, H. Huang, and W. Hou. Evolutionary
programming using a mixed mutation strategy.
Information Science, 177:312–327, 2007.

[3] L. Hong, J. Woodward, J. Li, and E. Özcan.
Automated design of probability distributions as
mutation operators for evolutionary programming
using genetic programming. In Genetic Programming,
volume 7831 of Lecture Notes in Computer Science,
pages 85–96. Springer Berlin Heidelberg, 2013.

[4] C.-Y. Lee and X. Yao. Evolutionary programming
using mutations based on the lévy probability
distribution. IEEE Transactions on Evolutionary
Computation, 8:1–13, 2004.

[5] K.-H. Liang, X. Yao, Y. Liu, C. Newton, and
D. Hoffman. An experimental investigation of
self-adaptation in evolutionary programming. In
V. Porto, N. Saravanan, D. Waagen, and A. Eiben,
editors, Evolutionary Programming VII, volume 1447
of Lecture Notes in Computer Science, pages 291–300.
Springer Berlin Heidelberg, 1998.

[6] K.-H. Liang, X. Yao, and C. S. Newton. Adapting
self-adaptive parameters in evolutionary algorithms.
Applied Intelligence, 15(3):171–180, 2001.

[7] P. N. S. Rammohan Mallipeddi, S. Mallipeddi.
Ensemble strategies with adaptive evolutionary
programming. Information Science, 180:1571–1581,
2010.

[8] L. Shen and J. He. A mixed strategy for evolutionary
programming based on local fitness landscape. In
Evolutionary Computation (CEC), 2010 IEEE
Congress on, pages 1–8, July 2010.

[9] D. H. Wolpert and W. G. Macready. No free lunch
theorems for optimization. IEEE Transactions on
Evolutionary Computation, 1(1):67–82, 1997.

[10] X. Yao and Y. Liu. Fast evolutionary programming.
Proceedings of the Fifth Annual Conference on
Evolutionary Programming, MIT Press, pages
451–460, 1996.

[11] X. Yao, Y. Liu, and G. Lin. Evolutionary
programming made faster. IEEE Transactions on
Evolutionary Computation, 3:82–102, 1999.

1387

