A Problem Configuration Study of the Robustness of a
Black-Box Search Algorithm Hyper-Heuristic

Matthew A. Martin
Natural Computation Laboratory
Department of Computer Science
Missouri University of Science and Technology
Rolla, Missouri, U.S.A.
mam446@mst.edu

ABSTRACT

Black-Box Search Algorithms (BBSAs) tailored to a spe-
cific problem class may be expected to significantly outper-
form more general purpose problem solvers, including canon-
ical evolutionary algorithms. Recent work has introduced a
novel approach to evolving tailored BBSAs through a ge-
netic programming hyper-heuristic. However, that first gen-
eration of hyper-heuristics suffered from over-specialization.
This paper presents a study on the second generation hyper-
heuristic which employs a multi-sample training approach to
alleviate the over-specialization problem. In particular, the
study is focused on the affect that the multi-sample approach
has on the problem configuration landscape. A variety of ex-
periments are reported on which demonstrate the significant
increase in the robustness of the generated algorithms to
changes in problem configuration due to the multi-sample
approach. The results clearly show the resulting BBSAs’
ability to outperform established BBSAs, including canoni-
cal evolutionary algorithms. The trade-off between a priori
computational time and the generated algorithm robustness
is investigated, demonstrating the performance gain possible
given additional run-time.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence]: Proglem Solving, Control
Methods, and Search; 1.2.2 [Artificial Intelligence]: Au-
tomatic Programming— program synthesis

General Terms
Algorithms, Design

Keywords

Black-Box Search Algorithms, Evolutionary Algorithms,
Genetic Programming, Hyper-Heuristics

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

GECCO’14, July 12-16, 2014, Vancouver, BC, Canada.

Copyright 2014 ACM 978-1-4503-2881-4/14/07 ...$15.00.
http://dx.doi.org/10.1145/2598394.2609872.

1389

Daniel R. Tauritz
Natural Computation Laboratory
Department of Computer Science
Missouri University of Science and Technology
Rolla, Missouri, U.S.A.
dtauritz@acm.org

1. INTRODUCTION

Practitioners tend to be interested in solving a particular
problem class which may fall anywhere on the continuum
from a single instance problem to an arbitrarily large prob-
lem class. However, progress in the field of meta-heuristics
has typically been aimed at solving increasingly varied prob-
lem classes. There is a clear need for meta-heuristics tunable
to the needs of practitioners in terms of the scope of the
problem classes of interest, whether that be solving solely
instances of MAXSAT with a fixed clause length and set
number of variables, or arbitrary MAXSAT instances.

A novel approach to creating BBSAs through a hyper-
heuristic using Genetic Programming (GP) demonstrated
that there are problem classes for which BBSAs can be
evolved which significantly outperform established BBSAs,
including canonical the Evolutionary Algorithm (EA) [12].
That approach, however, had the drawback of tending to
overspecialize the BBSAs to outperform established algo-
rithms only on the trained problem configurations.

This paper presents a study on the second generation
hyper-heuristics employing a multi-sample training approach
which drastically decreases the probability of evolving BB-
SAs that suffer from over-specialization [13]. It is focused
on the affect that the multi-sample approach has on the
problem configuration landscape. An investigation is pre-
sented on the trade-off between the extra a priori computa-
tional time due to increasing sampling size and the increased
robustness of the generated BBSAs in terms of lower varia-
tion in performance when varying the problem configuration.
This is of critical importance to practitioners who need to
be able to rely on the consistency of the generated BBSAs
on all instances of their problem class of interest.

The goal of the research reported in this paper is to show
that increasing the multi-sampling level increases the ro-
bustness of the generated BBSAs. Two primary measures of
robustness are employed [7], as seen in Figure 1. The first is
fallibility; if this value is large, it means that the BBSA can
have a large difference in performance depending on the lo-
cation on the problem configuration landscape. The second
measure is applicability; it indicates the size of the prob-
lem configuration space in which the BBSA performs better
than a threshold value. For a BBSA to be highly robust, it
should have a small fallibility and a large applicability.

2. RELATED WORK

Most previous work on employing evolutionary computing
to create improved BBSAs has focused on tuning parame-

@ Max| e
9
c
@
g T /\ .
t _/ Applicability 2
o [*™
<
(%]
]
D Min
Problem Configurations
Figure 1: This figure demonstrates the concepts

of Applicability and Fallibility. Applicability is the
proportion of the problem configuration space that
a BBSA can perform higher than a given threshold
value. Fallibility is the difference between the high-
est and lowest performing problem configurations.

ters [16] or adaptively selecting which of a pre-defined set
of operators to use and in which order [15]. The latter em-
ployed Multi Expression Programming to evolve how, and
in what order, the EA used selection, mutation, and recom-
bination. This approach used four high level operations:
Initialize, Select, Crossover, and Mutate. These operations
were combined in various ways to evolve a better perform-
ing EA. Later this approach was also attempted employing
Linear GP [4, 5, 14]. While this allowed the EA to identify
the best combination of available selection, recombination,
and mutation operators to use for a given problem, it was
limited to a predefined structure.

A more recent approach to evolving BBSAs employed
Grammatical Evolution (GE) [10] which uses a grammar to
describe structure, but is constrained to the canonical EA
model. In later work [11], due to the computational load
necessary for evaluating algorithms, a study was presented
on how restricting the computational time for evaluating the
evolved algorithms affects the structure.

First attempts at applying GP to the generation of BBSAs
was to evolve individual EA operators [1, 6]. The primary
effort has been to create improved EA variation operators [1,
6, 9, 19]. Some work has been done on evolving EA selection
operators [17, 18].

Burke et al. described a high-level approach to evolving
heuristics [2]. That approach was extended to evolve entire
BBSAs of indiscriminate type [12]. This paper describes
an improvement on that extension employing multi-sample
evaluation to increase the robustness of the produced BB-
SAs.

3. METHODOLOGY

The specific focus of the research reported in this paper
is to demonstrate the significant increase in the robustness
of the generated algorithms to changes in problem configu-
ration due to the multi-sample approach. GP was employed
to evolve the algorithms where fitness was based upon the
performance averaged over a set of training problem config-
urations.

1390

3.1 Parse Tree

In order to condense the quantity of code needed to be
evolved, the common iterative nature of BBSAs is exploited
by representing a single iteration of a BBSA rather than the
entirety of the algorithm. A parse tree is used to represent
the iteration for the evolutionary process such that standard
GP operators will work effectively.

Each non-terminal node will take one or more sets of so-
lutions (including the empty set or a singleton set) from
its child node(s), perform an operation on the sets(s) and
then return a single set of solutions. The nodes continue
operating in a post-order fashion and the set that the root
node returns will be stored as the ‘Last’ set which can be
accessed in future iterations to facilitate population-based
BBSAs. The terminal nodes can either be sets of previous
solutions or a set of randomly generated solutions. The sets
include the ‘Last’ set as well as auxiliary sets which will be
explained in Section 3.2.4. An example of a BBSA repre-
sented as a parse tree and related code representation are
shown in figures 2 and 3.

3.2 Nodes

The non-terminal nodes that compose these trees are op-
erations extracted from pre-existing algorithms. The nodes
are broken down into selection, variation, set-manipulation,
terminal, and utility nodes. The following subsections de-
scribe the operations employed of each type for the experi-
ments reported in this paper.

3.2.1 Selection Operation Nodes

Two principal selection operations were employed in the
experiments. The first of these is k-tournament selection
with replacement. This node has two parameters, namely
k and the number of solutions selected, the second is count
which designates the number of solutions passed to the next
node. The second selection operation employed is truncation
selection. This operator takes the n best solutions from the
set passed to it, n being one of its parameters.

3.2.2 Variation Operation Nodes

For the experiments, three primary variation operations
are used; the first one is standard bit-flip mutation. This
operation has a single argument, rate, which is the proba-
bility that a given bit is flipped. The second operation is the
standard uniform recombination with an arbitrary number
of parents. This operation has a single argument, count,
which designates the number of children generated. The
final primary variation operation is diagonal crossover [8]
which returns the same number of solutions as are passed
in. This variation node has one parameter, n, which deter-
mines the number of points used by the crossover operation.

3.2.3 Set Operation Nodes

The experiments reported in this paper employ two dis-
tinct set operations. The first is the union operation. This
node takes two sets of solutions and returns the union of
the sets passed into it. The other operation is the save op-
eration called “Make Set”. This operation saves a copy of
the set passed into it. This set can be used elsewhere in the
algorithm as explained in Section 3.2.4.

trunc
count: 24

l

evaluate

i

mutate
rate: 0.05

l

union

"

makeSet uniRecomb
name: A num: 15

l i

kTourn kTourn
count: 25 count: 15
k: 5 k: 10

i i

last union

\

randind
count: 5

Figure 2: Example Parse Tree

Last = [initialize population]
evaluate(Last)

A=]]

while termination condition not met do

X = kTournament(Last, k = 5,count =25)

A=X
Y = randInd(count = 5)
Y=A+Y

Y = kTournament(Y,k = 10, count = 15)

Y = uniformRecombination(Y, count = 15)

7Z =X+Y
Z = mutate(Z, rate = 5%)
evaluate(Z)
Last = truncate(Z, 24)
end while
evaluate(Last)

Figure 3: Example Parse Tree Generated Code

3.2.4 Terminal Nodes

The terminal nodes in this representation are sets of so-
lutions. They can either be the ‘Last’ set returned by the
previous iteration, a set that was created by the save op-
eration, or a set of randomly created solutions. The saved
sets persist from iteration to iteration such that if a set is
referenced before it has been saved in a given iteration, it
will use the save from the previous iteration. At the begin-
ning of each run, the saved sets are set to the empty set
and the ‘Last’ set is set to a randomly generated population
of solutions. The randomly generated set of solutions ter-
minal node creates a set of n solutions, n being one of its
parameters, and returns that to its parent node.

3.2.5 Utility Nodes

There is currently one utility operation employed for use
in the experiments. This node is the evaluation node which
evaluates all of the solutions that are passed into it. Op-
erations that can be added to this group in the future can
include looping nodes and conditional nodes.

3.3 Meta-Algorithm

GP is employed to meta-evolve the BBSAs. The two pri-
mary variation operators employed are the standard sub-
tree crossover and mutation altered to make the maximum
number of nodes being added a user defined value. Another
mutation operation was added to this algorithm that with
equal chance randomizes the size of the initial ‘Last’ set or
selects a random node from the parse-tree and randomizes
the parameters if it has any; if the node does not have any
parameters, the mutation is executed again. To ensure that
the genetic program produces good BBSAs, the ones which
do not evaluate any solutions are discarded upon generation.

3.3.1 Black-Box Search Algorithm

Each individual in the GP population encodes a BBSA. To
evaluate the fitness of an individual, its encoded BBSA is run
for a user-defined number of times. Each run of the BBSA
begins with population initialization, followed by the parse-
tree being repeatedly evaluated until one of the termination
criteria is met. Once a run of the BBSA is completed, the
‘Last’ set and all saved sets are evaluated to ensure that the
final fitness value is representative of the final population.
Logging is performed during these runs to track when the
BBSA converges and what the average solution quality and
best current solution is.

The fitness of a BBSA is estimated by computing the fit-
ness function that it employs on the solutions it evolves av-
eraged over multiple runs. Parsimony pressure is added to
temper the growth of the parse trees. The parsimony pres-
sure is calculated by multiplying the number of nodes in
a tree by a user defined value. The parsimony pressure is
subtracted from the best solution in the final population
averaged over all runs to get the fitness of the BBSA.

Learning conditions were added to terminate poor solu-
tions before they are fully evaluated in order to amelio-
rate the very computationally intensive nature of hyper-
heuristics analogously to [11]. This is accomplished by ap-
plying four limiting factors. First of all, if a BBSA exceeds
the maximum number of evaluations, then it will automati-
cally be terminated mid-run. Secondly, there is a maximum
number of iterations that the BBSA may perform before it
will halt. This addition of an iteration limit adds pressure

Number of Samples | Bit-Length | Trap Size
1 100 5
2 200 5
3 105 7
4 210 7
5 300 5

Table 1: Problem Configurations for Multi-
Sampling Test. Each test includes prior tests’ prob-
lem configurations; e.g., the run in which there are
two problem configurations uses the first two prob-
lem configurations shown.

to evolve algorithms with more evaluations per iteration.
Thirdly, the algorithm counts the relative number of oper-
ations performed. Each node represents an operation, and
these operations can take a significant amount of time to
perform. A weight is associated with each node that repre-
sents an estimation of how many operations that node takes
per input solution. Once a node is executed, that weight
is added to a running total of the operations for that run.
Once the limit is reached, the run will end. This is to prevent
inefficient algorithms which despite evaluating few solutions
incur a high computational cost. The fourth method termi-
nates algorithms which have converged based on not having
improved in ¢ iterations.

3.3.2 Multi-Sampling

A major issue identified in [12] is the problem of over-
specialization when training on a single problem configu-
ration of a given problem class. Following the approach
suggested in [12], the BBSAs are executed on multiple prob-
lem configurations of the problem class of interest. On each
problem configuration, the BBSAs run a user-specified num-
ber of times. This addition allows the user to control the ro-
bustness of the generated BBSA. If the user requires a BBSA
that performs very consistently, then running the algorithm
with more problem configurations is beneficial.

3.3.3 External Verification

To assure that the performance of the evolved BBSA is
consistent with its performance reported during evolution,
executable code is generated to represent the parse tree as a
full BBSA. This is done to externally verify that the perfor-
mance that the GP shows for a given BBSA is accurate when
actually implemented. The generated code is used in all of
the experiments to insure unbiased execution of the BBSAs.
An example of a parse tree and pseudo-code generated can
be found in Figure 2 and Figure 3. This verification was
employed for the testing of the BBSAs in all experiments.

4. EXPERIMENTS

To demonstrate that employing multi-sample evaluation
of the BBSA reduces the probability of over-specialization,
the algorithm was run on a series of multi-sampling levels,
where a level is defined by the number of training problem
configurations it samples. Once the BBSA has been evolved
with a given multi-sampling level, it is tested on a super-
set of problem configurations to determine the preliminary
robustness of the BBSA and to demonstrate that they can
out perform a standard EA.

1392

Bit-Length
100
200
105
210
300

99
198
150
250
147
252

Trap Size

| | Oy O ©| ©| U | 3| Uy Ot

Table 2: Problem Configurations that were used to
test the robustness of the BBSA.

Parameter Value
Population Size 50
Children per Generation 20
Parent Selection k 15
Recombination Uniform
Mutation Rate 5%
Survival Selection Truncation

Table 3: EA Configurations

The classic Deceptive Trap problem [3] is employed as
benchmark in this paper. It divides a bit-string into traps of
size j bits each which are scored using the following equation
where ¢ is equal to the sum of the bit values in the trap.

i1t (<))

J (t=14)

This problem was chosen to compare the results in this paper
with those in [12], where BBSAs were evolved and suffered
from over-specialization.

The BBSAs were evolved with a multi-sampling level from
one to five. The problem configurations are shown in Ta-
ble 1. Each run includes the problem configurations from
the runs before; e.g., the runs with two samples use the prob-
lem configurations from the first two rows. For each evolved
BBSA, code was generated to determine its robustness ex-
ternally from the evolution. To test the preliminary robust-
ness of the generated BBSAs, they were run on a super-set
of problem configurations as shown in Table 2. This set
includes the training set to validate that the fitness found
during evolution is accurate.

The EA has an initial population of 50 and generates 20
children each generation. It uses k-Tournament with re-
placement for parent selection with k& being 15, uniform re-
combination, bit-flip mutation with a 5% rate, and trun-
cation survivor selection. The EA parameter settings are
summarized in Table 3. These values were selected to be
similar to those in [12] with minor hand tuning to perform
well with the first problem configuration shown in Table 1.

For these experiments, four BBSAs were evolved at each
multi-sampling level. During the evolution each problem
configuration was run five times. Meaning that in the ex-
periment with multi-sampling level one, each BBSA evalu-
ation is five runs where with multi-sampling level five, each

trap(t) = {

Parameter Value
Evaluations 5000
Initial Population 100
Children per Generation 40

k-Tournament 8

Sub-Tree Crossover Probability 30%
Sub-Tree Mutation Probability 30%
Alternate Mutation Probability 40%

Alternate Mutation Depth 5

Parsimony Pressure 0.001
Maximum Operations 5,000,000

Maximum Iterations 10,000
Maximum Evaluations in BBSA | 100,000

Table 4: GP Configurations

BBSA evaluation is twenty-five runs. All of the testing data
was produced by executing the code generated by the meta-
algorithm. Each of the evolved BBSAs were executed 30
times for each of the problem configurations. Each algo-
rithm was run for 100,000 evaluations. These results were
compared to an EA executed 30 times for each of the prob-
lem configurations.

After collecting results from the first experiment which
was focused on determining the preliminary robustness in-
crease caused by multi-sampling, a secondary experiment
was run to study the effect of multi-sampling on the perfor-
mance landscape across a wide set of problem configurations.
The areas of interest in this experiment are the problem con-
figurations that were significantly different from the trained
problem configurations. The BBSA with the largest falli-
bility, where fallibility indicates the difference between best
and worst performance on the test problem configurations,
was selected from each multi-sampling level to demonstrate
a worst case scenario. These BBSAs, along with an EA, were
run on all problem configurations with k from 4 to 20 inclu-
sive and bit-lengths from roughly 70 to 500. The algorithms
were run five times on each problem configuration.

All of the experiments were conducted under the same
settings. The meta-algorithm was run for 5000 evaluations.
The initial population was 100 individuals and each gener-
ation 40 new individuals were created. k-tournament selec-
tion with replacement and k = 8 was employed for parent
selection. The sub-tree crossover and mutation operations
had 30% chance of being used while the alternate mutation
had a probability of 40%. The parsimony pressure for the
tree size was 0.001. The maximum number of operations
the BBSAs could use was 5,000,000, the maximum number
of iterations was 10,000, and the maximum number of evalu-
ations in the BBSA was 100,000. All the parameter settings
for the meta-algorithm are summarized in Table 4. Due
to the high computational cost of running hyper-heuristics,
only minimal tuning of the meta-algorithm is feasible.

For the generation of the BBSAs, heuristic constraints
were employed to limit various parameters to reasonable
values. The maximum number of individuals in the initial
population was set to 50. The range of individuals selected
by selection nodes was set to be from 1 to 25 inclusive. The
range of the k value used for the k-tournament is from 1 to
25 inclusive. The range of the number of points for diagonal
crossover is from 1 to 25 points inclusive. All the parameter
settings for the BBSA are summarized in Table 5.

1393

Parameter Value
Runs per Problem Configuration 5

Maximum Initial Population 50
k Value Range 1,25
Number of Selected Individuals Range 1,25
Crossover Points Range 1,25
Randomly Generated Set Size Range 1,25
Children for Uniform Recombination Range 1,25

Table 5: Black-Box Search Algorithm Settings

Level | Run | Train Fit. | Test Fit. | Fallibility
1 1 1.0 0.976 0.094
1 2 1.0 0.999 8.33 E-3
1 3 0.944 0.883 0.082
1 4 0.976 0.894 0.224
2 1 0.997 0.996 0.023
2 2 0.992 0.959 0.130
2 3 0.966 0.970 0.054
2 4 0.979 0.947 0.120
3 1 0.965 0.966 0.050
3 2 0.984 0.980 0.065
3 3 0.899 0.886 0.059
3 4 0.926 0.898 0.073
4 1 0.976 0.999 5.00 E-3
4 2 0.973 0.969 .0903
4 3 0.982 0.975 0.059
4 4 0.993 0.999 5.00 E-3
5 1 0.973 0.977 0.050
5 2 0.893 0.879 0.035
5 3 0.850 0.850 0.045
5 4 0.955 0.986 0.029

Table 6: BBSA Experimental Results

S. RESULTS

The first experiment’s results are summarized in Table 6.
This table shows the fitness of the BBSAs at the end of
evolution labelled as the ‘Training Fit.”. The ‘Test Fit.” is
the averaged fitness across the testing set of problem con-
figurations shown in Table 2. The ‘Fallibility’ field is the
difference between the best and worst performing problem
configuration for a given BBSA. As this number decreases,
the BBSA can be said to be a more robust algorithm.

The comparison between the EA and the evolved BBSAs
is shown in Table 7. The — column represents the number
of problem configurations that the EA performed better on
than the BBSA. The ~ column represents the number of
problem configurations that there was no statistical differ-
ence between the EA and the BBSA. The + column rep-
resents the number of problem configurations that the EA
performs worse on than the BBSA. The t-test with a = 0.05
was used to determine the statistically better algorithm.

To study the effect of multi-sampling on the performance
landscape across a wide set of problem configurations, 3-
dimensional plots were generated that represent the quality
of solutions that can be found using different problem con-
figurations. Figures 4-8 show the least robust BBSA evolved

Level 1

Fitness

Figure 4: The worst BBSA found for multi-
sampling level one, run on the problem config-

uration space.

Level 3

Fitness

Figure 6: The worst BBSA found for multi-
sampling level three, run on the problem con-
figuration space.

Level 5

Fitness

Figure 8: The worst BBSA found for multi-
sampling level five, run on the problem config-

uration space.

Level 2

Fitness

Figure 5: The worst BBSA found for multi-
sampling level two, run on the problem config-

uration space.

Levela

Fitness

Figure 7: The worst BBSA found for multi-
sampling level four, run on the problem config-

uration space.

Fitness

Figure 9: A standard EA run on the problem
configuration space.

1394

Level | Run | +
11
11
11
6
11
11
11
11
11
11
11
11
11
11
11
11
11
10
7
11

—

[=] N Fol fol Fol Fol ol Fo) Fol Fol Fol Rl Fol Rl Kol § V] Fol Fol Rl 4

o|lo|o|o|o|o|o|o|o|o|o|o|o|o|o|o|w|l oo |

Y U OY O | | | | QO Go| WO WO D] DO DO DNO| | =] =
| ol dof =] cof no| =] | cof po| = | ol bof =]] cof ho| =

Table 7: This table is a summary of the comparison
of the evolved BBSA and the standard EA.

at each multi sampling level. Figure 9 shows the baseline of
a standard EA. These plots were generated averaging over
five runs on each problem configuration.

6. DISCUSSION

The goal of the research reported in this paper is to show
that increasing the multi-sampling level increases the ro-
bustness of the generated BBSAs. The two measurements
of robustness that we chose to use were applicability and
fallibility. Applicability is the size of the problem configu-
ration space in which the BBSA performed higher than a
given threshold value. Fallibility is the difference between
the best and worst performing problem configuration. As
the applicability increases and the fallibility decreases, the
robustness of the BBSA increases. The results presented
show that both of these happen as the multi-sampling level
is increased.

T-tests were run on the selected testing problem config-
urations, the results of which are shown in Table 7. It can
be seen that one of the BBSAs that was evolved with multi-
sampling level one performed worse than the EA. From a
practitioner’s standpoint, this result would seem very sur-
prising compared to its trained fitness. The runs of multi-
sampling level five performed consistent with the trained
fitness when compared to the EA.

Figure 4 shows the performance of the least robust BBSA
found using multi-sampling level one when run on a wide va-
riety of problem configurations. As can be seen, the BBSA
performs well in the immediate area around the problem
configuration that it was trained on (k = 5, bit — length
= 100). Unsurprisingly, as the problem configuration gets
farther away from the trained problem configuration, the fit-
ness decreases. This algorithm performs similarly to other
algorithms that are tuned to specific problem configurations.
When compared to how the EA performs on the same prob-
lem configuration space in Figure 9, the BBSA outperforms

1395

the EA in problem configurations near the trained prob-
lem configuration, but performs at near the same level as
the distance increases. As can be seen in figures 4-8, the
variance in performance of the algorithm decreases as the
multi-sampling level increases.

Training a BBSA on a larger number of training prob-
lem configurations improves the performance of the BBSA.
However, in most cases, the improved performance is re-
stricted to problem configurations that are relatively close to
the trained problem configurations. These results look sim-
ilar to the results shown in Figure 4 where near the trained
problem configuration the BBSA performs well, but as the
problem configuration differs more from the trained problem
configuration, the BBSA performs poorly.

When multi-sampling is performed during the generation
of the algorithm rather than solely the parameter tuning, the
increased performance of the algorithm can be generalized
to larger portions of the problem configuration space. As
can can be seen in figures 4-8, the fallibility decreases as the
multi-sample level increases. Note that the training sets that
these algorithms were evolved on had problem configurations
with k ranging from 5 to 7 and a bit — length ranging from
100 to 300 and the problem configuration space shown in fig-
ures 4-8 includes a k from 4 to 20 and a bit —length from ap-
proximately 75 to 500. This demonstrates the enhanced ro-
bustness of the BBSAs evolved with a higher multi-sampling
level. This robustness is superior to that of strictly parame-
ter optimization of a BBSA due to its ability to generalize to
problem configurations much different to those trained on.

There was a case in which a BBSA evolved with a multi-
sampling level of one, when tested, was shown to be robust.
As in previous work [12], there is always the potential of pro-
ducing a robust algorithm trained on a single sample; how-
ever, this is highly unreliable and the method introduced in
this paper significantly increases the probability of evolving
a robust BBSA.

One drawback of this method is the increased computa-
tional time that it requires. One cause of this increase are
the additional runs that are necessary during the evaluation
of a given BBSA. This extra computational time increases
linearly with the multi-sampling level. It was noticed during
testing and in the final results, that the experiments run at
a higher multi-sampling level can have a lower average fit-
ness. Due to this result, a trend in the applicability is not
statistically discernible. As is shown in Table 6, the BBSAs
evolved at multi-sampling level five had the lowest trained
fitness. This is believed to be caused by the increased diffi-
culty of finding an algorithm that performs well on all of the
training problem configurations. These two aspects cause
the computational time increase of Q(L), with L being the
multi-sampling level.

7. CONCLUSIONS

The research reported in this paper demonstrates that
employing the proposed multi-sampling method tends to in-
crease the robustness of evolved BBSAs. This method is
shown to not only generate BBSAs that generalize to the
problem configuration space close to the trained problem
configurations, but to create BBSAs that have generalized
to a much wider area of the problem configuration land-
scape. Though it is possible to evolve robust algorithms
without using the multi-sampling method, it is shown that
with a higher multi-sampling level, the general robustness

of the evolved BBSA is increased along with the certainty
that the evolved BBSA will indeed be robust.

The predominant disadvantage to this method is the in-
creased computational time that is necessary to evolve high-
performance BBSAs when using high multi-sampling lev-
els. However, it is shown that it is possible to evolve high-
performance BBSAs when using high multi-sampling levels
that are also robust as shown in Table 6.

8. FUTURE WORK

The next step to improve upon the proposed approach
is to perform run-time analysis of the BBSAs. This will
help reveal what features cause the BBSAs to run slower
compared to others. This allows the computational time
necessary for running with a higher multi-sampling level to
decrease which will make this approach more feasible for
practitioners.

This multi-sampling approach also needs to be tested on
a larger variety of problem classes to better understand how
the multi-sampling level affects the robustness of evolved
BBSAs. A larger variety of node operations may have to
be added to allow this approach to create well-performing
BBSAs. As well as testing this approach on other problem
classes, an in depth study should be conducted to determine
the correlation between the proximity of the training classes
and the robustness of the resulting BBSAs.

Finally, multi-objective optimization should be introduced
into the meta-algorithm such that it is capable of creating
BBSAs that are not only robust, but quick to converge as
well. This is necessary to enable the proposed method to
evolve human-competitive BBSAs.

9. REFERENCES

[1] P. J. Angeline. Two Self-Adaptive Crossover
Operators for Genetic Programming. In P. J. Angeline
and K. E. Kinnear, Jr., editors, Advances in Genetic
Programming, pages 89-109. MIT Press, Cambridge,
MA, USA, 1996.

E. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan,
and J. Woodward. Exploring Hyper-heuristic
Methodologies with Genetic Programming. In

C. Mumford and L. Jain, editors, Computational
Intelligence, volume 1 of Intelligent Systems Reference
Library, pages 177-201. Springer, 2009.

K. Deb and D. Goldberg. Analyzing Deception in
Trap Functions. In Proceedings of FOGA II: the
Second Workshop on Foundations of Genetic
Algorithms, pages 93108, 1992.

L. Diogan and M. Oltean. Evolutionary Design of
Evolutionary Algorithms. Genetic Programming and
Evolvable Machines, 10(3):263-306, Sept. 2009.

L. S. Diosan and M. Oltean. Evolving Evolutionary
Algorithms Using Evolutionary Algorithms. In
Proceedings of GECCO 2007 - Genetic And
FEvolutionary Computation Conference, GECCO 07,
pages 2442-2449, New York, NY, USA, 2007. ACM.
B. Edmonds. Meta-Genetic Programming:
Co-evolving the Operators of Variation. CPM Report
98-32, Centre for Policy Modelling, Manchester
Metropolitan University, UK, Aytoun St., Manchester,
M1 3GH. UK, Jan. 1998.

1396

[7] A. Eiben and S. Smit. Parameter tuning for
configuring and analyzing evolutionary algorithms.
Swarm and Evolutionary Computation, 1(1):19 — 31,
2011.

A. E. Eiben and C. H. van Kemenade. Diagonal
Crossover in Genetic Algorithms for Numerical
Optimization. Journal of Control and Cybernetics,
26(3):447-465, 1997.

B. W. Goldman and D. R. Tauritz. Self-Configuring
Crossover. In Proceedings of GECCO 2011 - Genetic
And Evolutionary Computation Conference, GECCO
"11, pages 575-582, New York, NY, USA, 2011. ACM.
N. Lourenco, F. Pereira, and E. Costa. Evolving
Evolutionary Algorithms. In Proceedings of GECCO
2012 - Genetic And Evolutionary Computation
Conference, GECCO Companion ’12; pages 51-58,
New York, NY, USA, 2012. ACM.

N. Lourenco, F. B. Pereira, and E. Costa. The
Importance of the Learning Conditions in
Hyper-heuristics. In Proceeding of the Fifteenth
Annual Conference on Genetic and Evolutionary
Computation Conference, GECCO ’13, pages
1525-1532, New York, NY, USA, 2013. ACM.

M. A. Martin and D. R. Tauritz. Evolving Black-box
Search Algorithms Employing Genetic Programming.
In Proceeding of the Fifteenth Annual Conference
Companion on Genetic and FEvolutionary Computation
Conference Companion, GECCO 13 Companion,
pages 1497-1504, New York, NY, USA, 2013. ACM.
M. A. Martin and D. R. Tauritz. Multi-Sample
Evolution of Robust Black-Box Search Algorithms. In
Proceeding of the Sizteenth Annual Conference
Companion on Genetic and Evolutionary Computation
Conference Companion, GECCO 14 Companion, New
York, NY, USA, 2014. ACM.

M. Oltean. Evolving Evolutionary Algorithms Using
Linear Genetic Programming. Evolutionary
Computation, 13(3):387-410, Sept. 2005.

M. Oltean and C. Grosan. Evolving Evolutionary
Algorithms Using Multi Expression Programming. In
Proceedings of The 7th Furopean Conference on
Artificial Life, pages 651-658. Springer-Verlag, 2003.
S. Smit and A. Eiben. Comparing Parameter Tuning
Methods for Evolutionary Algorithms. In IEEE
Congress on Evolutionary Computation, 2009. CEC
’09, pages 399406, May 2009.

E. Smorodkina and D. Tauritz. Toward Automating
EA Configuration: the Parent Selection Stage. In
IEEE Congress on Evolutionary Computation, 2007.
CEC 07, pages 63-70, Sept. 2007.

J. R. Woodward and J. Swan. Automatically
Designing Selection Heuristics. In Proceedings of
GECCO 2011 - Genetic And Evolutionary
Computation Conference, GECCO ’11, pages 583590,
New York, NY, USA, 2011. ACM.

J. R. Woodward and J. Swan. The Automatic
Generation of Mutation Operators for Genetic
Algorithms. In Proceedings of GECCO 2012 - Genetic
And Evolutionary Computation Conference, GECCO
Companion ’12, pages 67-74, New York, NY, USA,
2012. ACM.

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

