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ABSTRACT
There have been several papers published relating to the
practice of benchmarking in machine learning and Genetic
Programming (GP) in particular. In addition, GP has been
accused of targeting over-simplified ‘toy’ problems that do
not reflect the complexity of real-world applications that GP
is ultimately intended. There are also theoretical results
that relate the performance of an algorithm with a proba-
bility distribution over problem instances, and so the current
debate concerning benchmarks spans from the theoretical to
the empirical.

The aim of this article is to consolidate an emerging theme
arising from these papers and suggest that benchmarks should
not be arbitrarily selected but should instead be drawn from
an underlying probability distribution that reflects the prob-
lem instances which the algorithm is likely to be applied to
in the real-world. These probability distributions are effec-
tively dictated by the application domains themselves (es-
sentially data-driven) and should thus re-engage the owners
of the originating data.

A consequence of properly-founded benchmarking leads
to the suggestion of meta-learning as a methodology for au-
tomatically designing algorithms rather than manually de-
signing algorithms. A secondary motive is to reduce the
number of research papers that propose new algorithms but
do not state in advance what their purpose is (i.e. in what
context should they be applied). To put the current practice
of GP benchmarking in a particular harsh light, one might
ask what the performance of an algorithm on Koza’s lawn-
mower problem (a favourite toy-problem of the GP commu-
nity) has to say about its performance on a very real-world
cancer data set: the two are completely unrelated.
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1. INTRODUCTION
The aim of this paper is to highlight an emerging crisis

in GP by connecting a number of recently published papers:
benchmarking is poorly practiced in the GP community. We
describes a methodology [4] that offers a natural solution to
this crisis (one to which GP itself is ideally suited). [11,
9, 20, 33]. We summarize each of these four papers in the
following points.

• Machine learning has become largely disconnected from
the communities of domain experts who provided the
data sets in the first place [33].

• GP lacks decent benchmark problems and has been
singled-out as having elevated the status of toy prob-
lems as an effective test bed, many papers being pub-
lished do not even tackle real-world problems [20, 34].

• Recent theoretical results link the performance of an
algorithm with the probability distribution from which
the problem instances are drawn [9, 26].

• Meta-learning [11, 23], and in particular the use of GP
as a hyper-heuristic to automatically design algorithms
[4], offers a natural vehicle to address the issue of how
to design an algorithm for a problem class (i.e. prob-
ability distribution over problem instances) at hand,
and therefore provide a new set of interesting bench-
marks.

The contribution of this paper is not a new algorithm, the-
orem or application, but to drive the current debate about
GP benchmarks, and emphasize the emerging trend in hyper-
heuristics for automated design as a way-forward. The sug-
gestion is, in view of recent theoretical results, is that GP can
be employed in a hyper-heuristics framework to automati-
cally design algorithms for problem instances drawn from a
probability distribution.

In the remainder of the introduction we consider the pur-
pose of metaheuristics and how that purpose is demonstrated
by the practice of benchmarking. We then consider a recent
NFL result relevant to benchmarking [9, 26], and a related
issue in GP, namely that GP cannot alter its own search
bias from one problem instance to the next and therefore
cannot tune itself to the benchmark problem class [36]. We
use the terms algorithm and metaheuristic interchangeably,
as we do with problem instance and (objective) function.
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1.1 Metaheuristics.
Metaheuristics [31, 19] sample intractably large search

spaces so there is a trade-off when deciding which meta-
heuristic to apply to given problem instances. It is intended
that a metaheuristic returns a “good enough, soon enough,
cheap enough” solution to the current problem instance [3].
However, metaheuristics offer little in the way of guarantees
about either the quality of the solution, or the quantity of
computational time required.

The metaheuristic research literature is peppered with
largely biologically inspired papers which begin “we propose
a novel algorithm . . . ” [29], but rarely is it said what pur-
pose the algorithm serves, that is, on what problem class
(probability distribution of problem instances) will the pro-
posed algorithm outperform other algorithms. While there
has been some theoretical progress in understanding the be-
haviour of metaheuristics and GP in particular [24], the field
is still largely empirical and the most common way to com-
pare metaheuristics is still benchmarking.

1.2 Benchmarking.
Benchmarking is the practice of taking a set of problem

instances, often from a diverse set of domains, and demon-
strating an algorithm’s performance on this set, comparing
it with the performance of other algorithms. The typical
approach by academic researchers is to propose a new al-
gorithm and then compare it to other state-of-the-art algo-
rithms in the research literature by comparing their perfor-
mance on benchmarks.

A central assumption of machine learning is the test data
is drawn from the same distribution as the training data
[10]. It will become apparent in this paper that benchmark
problem instances should be drawn from the same distribu-
tion as the real-world problem instances. In other words, if
we employ GP as a hyper-heuristic to automatically design
algorithms the test benchmark problem instances should be
drawn from the same distribution as the training instances.
It is stated that there is a hyper-focus on benchmark data
sets [33], and that GP has a “toy-problem problem”; often
benchmark problem instances are too simple [20]. In a sim-
ilar vein to [20], this paper is not a list of benchmark rec-
ommendations, but is instead aimed at contributing to the
debate.

1.3 No Free Lunch.
NFL results have been expressed informally as statements

such as “over all problems, no optimization algorithm out-
performs any other”, or“ no machine learning algorithm gen-
eralizes better than any other over the space of all problems”.
These results have been largely ignored by practitioners as
we are rarely interested in the set of all problems. However,
a new result [9, 26] (which we formally present in Section
3) states that for a given algorithm and any probability dis-
tribution over a set of functions, that there exists another
algorithm and probability distribution with identical per-
formance. Importantly, this result does not depend on a
uniform distribution, as many previous NFL interpretations
have done. We can ask ourselves what are the implications
of this result regarding benchmarking. One implication of
this result it that we should state (in some way) what prob-
ability distribution of problem instances the metaheuristic
is intended for. Or to phrase it another way, a metaheuris-
tic should not be proposed without being associated with

a problem class (probability distribution over problem in-
stances). A metaheuristic should be fit-for-purpose, that
purpose being defined by the problem class. Therefore a
metaheuristic should not be proposed in isolation but in the
context of a problem class.

1.4 Genetic Programming.
GP is a metaheuristic which operates on a space of pro-

grams. As GP offers a way to automatically generate pro-
grams (with loops and conditional statements), there are
many potential applications, perhaps more so than other
machine learning techniques because GP can evolve any-
thing representable on a computer (cf. decision trees which
are a limited representation).

GP borrows concepts from natural evolution: organisms
adapt to fit their environment. In the case of GP, this means
that programs evolve to fit the problem instance and the
fittest programs survive. It is true that the population of
programs adapts when GP is applied to a single problem in-
stance, but the way GP searches from one problem instance
to the next typically does not (cannot) alter [36]. Therefore,
if we select a GP algorithm, it may perform poorly on those
particular problem instances, and the GP algorithm has no
way to improve its performance on future problem instances
(except for intervention by a human programmer). In other
words, the behaviour of GP is completely determined by
the bias provided by its human designer. However, a meta-
learning system, such as GP as a hyper-heuristic [4] can do
this off-line. On a training set GP can alter bias, which is
then fixed in a testing phase [38, 37, 12].

The outline of the remainder of this article is as follows.
In Section 2 we connect together a number of recent papers
relating to metaheuristics, GP, meta-learning and NFL. Sec-
tion 3 presents a mathematical framework and theorems il-
lustrating the trade-off between metaheuristic performance
and problem classes. In Section 4 we give examples of prob-
lem classes pertaining to bin-packing and the traveling sales-
man problem. In Section 5 we summarize the argument that
benchmarks need to be relevant, not isolated, and that meta-
learning and hyper-heuristics to generate heuristics can ad-
dress this.

2. BACKGROUND WORK

2.1 Reconnecting Machine Learning To The
Real-world.

The academic practice of machine learning has become
disconnected from the communities which originally sup-
plied the data sets [33]. Thus, as these communities rarely
communicate, there is little long-term benefit to the application-
domain community (or in fact the machine learning commu-
nity itself). Wagstaff [33] concludes that progress in the field
of machine learning has little impact on the community that
initially supplied the actual data set. Data sets are simply
treated as rows and columns of numerical data to be freely
downloaded and the real-world context of the data has been
lost.

2.2 Realistic Benchmarks for Genetic
Programming

McDermott et al. [20] criticize the lack of rigor in the
choice of benchmark problem instances. The standard, often-
used problem instances (so-called toy problems, where the
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optimal solutions are often known in advance) do not reflect
the complexities which are experienced when tackling real-
world problems, where the optimal solutions are often not
known. This defeats the whole purpose of applying a meta-
heuristic to a problem as the solution (global optimum) is
already known.

The development of a machine learning algorithm is typi-
cally a three stage process; training, testing and application
[22]. In the training stage, the algorithm learns by adjusting
its bias (probability distributions). Its performance is con-
firmed on an independent test set to check that over-fitting
is not a problem (i.e. we have generalized beyond the train-
ing set). Once this stage has been passed to the satisfaction
of the GP researcher, then the algorithm can be applied
problem instances from the application domain. The set of
training and testing instances should represent the applica-
tion instances, and therefore we should make some attempt
to describe what characterizes these problem instances, for
example their source (see 4). Johnson [18] states; “use in-
stance test-beds that can support general conclusions”. So
if we demonstrate the utility of a metaheuristic on a set of
test problem instances, then it follows that this set should be
drawn from the same probability distribution as in the appli-
cation stage as is common practice in the machine learning
community, but no so much the optimization community. It
seems as if GP has become separated from the third, and
arguably the most important part of the developmental pro-
cess; the application.

2.3 No Free Lunch And Benchmarking With
Problem Classes.

NFL effectively states that given a uniform distribution
over the set of all problem instances, no single algorithm
outperforms any other [35]. This sounds like a negative and
defeatist result, as it comprehensively covers all functions.
NFL holds for cross-validation [39] and early-stopping [6],
two major sources of bias in machine learning. We are not
aware of a NFL result for feature selection [2], for exam-
ple, but nor would we be surprised if one existed. However
feature selection, which is based on information theory, re-
mains a useful bias in practice, as are cross-validation and
early-stopping.

NFL has become the holy grail in some research commu-
nities [14], and been called a “show-stopper” [11] (which was
firmly answered in the negative and on which this paper
builds its implications). NFL applies to a vanishingly small
number of the subsets of all functions and is unlikely to ap-
ply to real-world situations [15, 16, 17]. It has conclusively
been shown by theoretical analysis, that on restricted sets
of problems, one algorithm does outperform another [7, 8].
We advocate that these restrictions should be imposed by
the application domain itself. In this paper we interpret “re-
stricted sets of problems” as probability distributions over
problem instances (i.e. problem classes).

Links have been made between the performance of an al-
gorithm and the probability distribution over benchmark
problem instances [9, 26]. An earlier similar result con-
nects the performance of an algorithm on a single prob-
lem instance [28]. Essentially two search algorithms (which
are permutations of one another), and two functions (which
are the inverse permutations of one another), have identical
and therefore indistinguishable performance. Further results

have been obtained concerning the use of arbitrary bench-
marks to evaluate randomized algorithms [9, 26].

2.4 Bias In Algorithms And Problem Classes.
Mitchell [21] defines bias as any basis (probability) for

choosing one generalization over another, other than strict
consistency with the observed training problem instances.
Specifying a bias is equivalent to specifying an algorithm as
we are only interested in the output of the algorithm (i.e.
what it does, not how it does it). Bias determines which
items in the search space the algorithm will visit. Mitchell
[21] states that there needs to be a bias in order to learn.
Similarly, there must be bias over the problem class if there
is anything to be learnt about the problem instances on av-
erage.

A problem class F is a probability distribution over prob-
lem instances F = (pf (f1), . . . , pf (fi), . . . ). Each time an
algorithm is executed, it will return the best solution it has
found. If we consider an algorithm as a stochastic search
process then when the is algorithm executed again, it may
yield a different solution. The bias of an algorithm a on a
function f is the probability that a will return a given solu-
tion. This notion of problem classes and algorithms seen as
probability distributions corresponds to the geometric per-
spective in [35] and Lemma 1 in [11]. Essentially, to gain
good performance of an algorithm on a problem class, we
want the bias of the algorithm to align with the bias of the
problem class. We want the algorithm to sample the space
with high probability, were we expect solutions to be found.
If we increase the probability of an algorithm sampling some
region(s) of the search space, then it follows that the prob-
ability of sampling the remainder of the search space will
decrease (as probability is conserved). We want the algo-
rithms to visit part of the search space solutions are likely
to reside, given the problem class at hand.

2.5 From No Free Lunch To Meta-learning.
NFL is of little relevance to research in machine learning

(who is interested in learning or optimizing a white noise
effectively random function [13]). However, NFL does make
the contribution that whenever an algorithm performs well
on some problem instances, then it must perform poorly on
some other problem instances [11]. In the absence of bias,
enumerating a set of fixed-arity binary functions demon-
strates that, given a subset of input-output pairs (i.e. the
training set) then it is impossible to generalize over the re-
maining input-output pairs, (i.e. the testing set) [11]. This
result is referred to as Conservation of Generalization [27].
[11] further make the claim that this theorem supports the
argument for meta-learning.

Let us take the example of classification [10]. The task is
to design a classifier, which maps an example e to a class c
(i.e. f(e) = c). Domain experts may well be interested in
the problem of designing a classifier for a single problem (e.g.
automatic number plate recognition: mapping photographs
of vehicle licence plates to the plate number). However,
as machine learning researchers we are usually interested
in a method of producing classification algorithms [22, 25].
Given that we (metaheuristic researchers) are interested in,
not a single classification problem, but many, this gives us a
probability distribution of problem instances F (i.e. a prob-
lem class). In [11] the following Lemma is proved: knowing
F , the probability of encountering an arbitrary function f , is
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equivalent to knowing p(c|e), the probability of class mem-
bership for an arbitrary example e. The question then is
how to arrive at p(c|e), and one answer is meta-learning to
which we now turn our attention.

2.6 Meta-learning
Meta-learning (also called ‘learning to learn’ [32] and hyper-

heuristics [4]) is the idea that the base-level learns about
single problem instances, and the meta-level learns about
the problem class (i.e. a sample of problem instances drawn
from the probability distribution associated with the prob-
lem class ) [32]. In principle there is no difference between
learning at the base-level and meta-level. Therefore just as
a central assumption in machine learning is that the train-
ing and test data at the base-level are drawn from the same
probability distribution, so too should the training and test
instances be drawn from the same probability distribution
(i.e. problem class). In both cases the search process can be
thought of as being conducted over a set of items in a search
space. In the former, the set of items being solutions to a
problem instance, and the latter either being learning algo-
rithms or some component (e.g. parameters) of the learning
algorithm [1]. The meta-level learns invariants of the prob-
lem class. Consider the example of problem instances of
face recognition of individual people. An invariant common
across all face recognition tasks include translational and ro-
tational invariance (i.e. if any face, is rotated or translated, it
is still the same face) [32]. If an automated learning system
is to learn about a set of related problem instances, then we
should ask what we suspect these instances have in common.
Just as we would not expect a machine learning algorithm to
learn a source of random noise, nor should we expect algo-
rithms to perform well on unrelated (i.e. randomly selected)
problem instances. Meta-learning offers a way of automat-
ically building learning algorithms in response to a specific
problem class.

3. A MATHEMATICAL FRAMEWORK
We begin this section with a presentation of an established

framework for search operators [28, 30, 17]. The two theo-
rems below are taken from [26, 9]. Let X and Y be finite
sets and f : X → Y be an objective function (i.e. y = f(x)),
and F is the set of all such functions. The domain X and
co-domain Y are fixed but f may vary. Let σ be a permu-
tation. As |X| and |Y | are finite, so too is |F|. Define a
trace Tm (of size m (0 ≤ m ≤ |X|)) corresponding to f to
be a sequence of pairs (x, y) ∈ X × Y where x components
are unique. Note T|F| ≡ f : X → Y as T|F| contains all the
information about f i.e. T|F| is effectively a look-up-table
for f . Xm has corresponding projections T x

m : Tm → Xm

and T y
m : Tm → Y m.

Tm = [(x0, f(x0)), . . . , (xm, f(xm))]
T x
m = [(x0), . . . , (xm)]
T y
m = [(f(x0)), . . . , (f(xm))]

A trace is a list of the sampled items xi in the search space
X, together with their associated objective values f(xi). T

x
m

is a list of unique items visited (i.e. a permutation of X) and
T y
m is the list of the corresponding objective values.
We define a search operator as a function a : Tm → X

which takes a trace Tm and returns x with x /∈ T x
m. Thus,

application of the search operator a on the objective function
f builds a longer trace.

Tm+1 = Tm ⊕ (a(Tm), f(a(Tm)))

where ⊕ appends (a(Tm), f(a(Tm))) to the end of Tm We
define a performance vector vm(a, f) = T y

m (i.e. the perfor-
mance vector is a list of values in Y , corresponding to the
order in which the domain values are sampled in X). We
define a performance measure M : vm → R. We define a
problem class F to be a probability distribution over f ∈ F ,
i.e. the probability F (f) of encountering f as a function opti-
mization problem. The overall performance measure M0(a)
is given by:

M0(a) =
∑
f∈F

F (f)M(v(a, f))

[30] (i.e. the performance measure is now simply the weighted
sum of the performance on each individual function, weighted
by the probability of sampling that function). We define a
probabilistic performance vector Vm(A,F ) where the i com-
ponent of Vm(A,F ), is the average of the ith component of
T y
m, generated from the pair (a, f) with a and f drawn from
A and F We say an NFL result applies to F if and only if
M0(a) = M0(b) for any pair of search operators a and b.

Theorem 1. Given an objective function f , a search oper-
ator a, a permutation σ and m (0 ≤ m ≤ |X|)

vm(σ(a), f) = vm(a, σ(f))

This result is summed up as follows. a search operator σ(a)
applied to a function f and a search operator a applied to
a function σ(f) have the same performance as they produce
identical y-component traces T y

m.
Theorem 2. Given a probability distribution F over the set

of all functions F , and a probability distribution A over the
set of all search operators A, and m with (0 ≤ m ≤ |X|),
there exists a probability distribution G = F (σ) over all
functions, and a probability distribution B = A(σ) over the
set of all search operators such that

Vm(A,F ) = Vm(B,G)

In short, the implication of this theorem is the bias of
an algorithm needs to align with the bias of the probability
distribution over functions.

4. DISCUSSION
In this section we discuss two examples (traveling sales-

man problem (TSP) and bin packing) of application domains
that naturally give rise to problem classes. As it has been
established in the previous section, from a theoretical point
of view it only makes sense to compare algorithms on prob-
lem instances drawn from a given probability distribution.
As we do not have explicit access to these distributions, we
have to do with samples taken from them, as is done in
machine learning.

4.1 Bin Packing As An Example Of Problem
Classes.

Let us consider how problem classes arise naturally in the
real-world. Imagine two logistics companies, each with a
different customer base. These will each give rise to two
different sets of bin-packing problem instances (associated
with two different probability distributions of item sizes)
and therefore can be considered to be drawn from two bin-
packing problem classes. The two companies are therefore
the source of two different problem classes.
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To put benchmarking in the specific terms of the domain
of online bin-packing, there should not be a“standard”set of
benchmarks, as the problem instances we solve will belong
to specific probability distributions of item sizes. While we
can have a “general” (all round) bin-packing solver i.e. one
trained on a uniform distribution of item sizes in the range,
there is always room for specialization if we have informa-
tion about the problem class (i.e. given we have items in the
range [lower bound, upper bound]). It has been shown that
bin packing algorithms that were automatically designed for
a specific problem class outperform bin packing algorithms
that were designed for different problem classes [5]. Further-
more, we can train our algorithm on bin packing problem in-
stances of a known range of sizes, and test the algorithm on
problem instances with the same range of sizes but different
number of items while still achieving scalable performance.

4.2 Traveling Salesman Problem As An Ex-
ample Of Problem Classes.

The Traveling Salesman Problem (TSP) is the problem of
finding a tour that visits all cities in a set only once, while
minimizing the total distance travelled. TSP problem in-
stances could be generated by the following two different
methods. One TSP problem class corresponding to points
uniformly distributed in the unit square. It turns out, one
can obtain very good estimates of what the expected value
of that bound (i.e. tour length) is for any number of cities
[18]. An alternative TSP problem class could be cities dis-
tributed according to a Gaussian distribution over the unit
circle. Either a theoretical or empirical analysis would give
expectation values for any number of cities assuming a given
TSP problem class (i.e. probability distribution over TSP in-
stances).

Let us extend the artificial example of square and circular
TSP problem classes to a real-world situation. An example
of a real-world TSP problem class would be having delivery
points distributed according to a population density of cus-
tomers for a given company. A set of TSP problem instances
generated by different company (possibly is a different lo-
cation) will, more than likely, have a different probability
distribution associated with it. And it is this difference in
probability distributions which will give one algorithm lever-
age over another. To really emphasize the point that real
problem instances are grounded in a problem class, it is hard
to see how a TSP instance could arise without being in the
context of other TSP instances. There are rarely one-off
TSP instances we want to solve, but typically a whole se-
quence of TSP instances generated by a single source (e.g.
a logistics company).

4.3 The Comparison of Algorithms On Prob-
lem Classes.

One measure of the performance of an algorithm is to ex-
amine its behaviour on a single problem instance. However,
it does not make sense to compare single runs of an algo-
rithm, as they are stochastic so need to be executed multiple
times. Neither are we typically interested in a single problem
instance anyway [7], but typically a set of problem instances
[32]. We could compare two stochastic algorithms by repeat-
edly executing them on a single problem instance. However,
this is somewhat artificial as we only want to execute an al-
gorithm once on a given problem instance. It seems to make
more sense to compare our algorithms on multiple problem

instances drawn from a problem class (i.e. one algorithm is
only run once on one problem instance).

Also when developing metaheuristics, it is tempting to
test them on benchmark problem instances during the de-
velopment (training) stage. And if the performance is poor
we reengineer the metaheuristic. However, if a problem in-
stance is used in the development stage, it should not later
be used again to demonstrate the utility of the metaheuris-
tic. In other words we should adopt a strict machine learn-
ing regime, which separates training and testing problem
instances. A set of benchmark instances should therefore be
representative of the underlying problem class of interest,
which are used in the development stage to learn about the
problem class, and a separate set of test problem instances
are used to show something of use has been learned in the
training phase which can be used in the testing phase. In
short, training and testing instances should be separate and
not contaminate one another. Developing a metaheuristic
by using problem instances in the training phase, and then
using those instances in the testing phase to demonstrate the
performance of the algorithm for the purposes of publication
is equivalent in machine learning to over-fitting.

4.4 Sampling To Estimate Probability Distri-
butions.

We usually do not have explicit access to the probability
distribution over the set of problem instances, except in the
case of toy problems (where we can define our own proba-
bility distribution). We can only obtain samples of problem
instances from real-world problem classes. By the law of
large numbers, as we sample more and more problem in-
stances we will gain more information and tend towards the
expected probability distribution. Thus, while we do not
have explicit access to the probability distribution respon-
sible for the problem class, increasing the sample size will
give a better and better approximation.

5. SUMMARY AND CONCLUSION
We have argued for the utilization of realistic benchmarks

for GP based on a number of recent papers. Firstly [33] ob-
serves a proliferation of machine learning papers that evalu-
ate new algorithms on a handful of isolated benchmark data
sets and those improvements are not fed-back to the orig-
inators of the data. As machine learning researchers, we
should remind ourselves of the importance of feedback, as it
is a fundamental mechanism in the machine learning process
itself.

Secondly, GP is singled out as a particularly bad exam-
ple of machine learning practice where toy problems have
enjoyed attention they do not rightly warrant [20]. They
make a number of recommendations for establishing proper-
ties that a suite of benchmark instances should have, some of
which are inconsistent with the approach advocated in this
paper. The main objection being that there should not be
a standard benchmark suite, but a set of problem instances
dictated directly by the real-world problem instances one
is attempting to solve. In other words, isolated context-
free individual benchmark problem instances of are little
use. What is needed are problem instance generators (i.e.
a probability distribution from which problem instances are
drawn). This would reduce the chances of over-tuning a
metaheuristic to a given problem instance.

Thirdly, a theoretical result in [9, 26] links the perfor-
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mance of an algorithm with instances drawn from a proba-
bility distribution. One of the consequences of this is that
the bias of an algorithm needs to align with the bias of
a probability distribution over problem instances [11, 35].
The outcome of this is that an algorithm should be tuned to
a problem class to obtain better than average performance.
When the bias of an algorithm precisely aligns with the prob-
lem class, then that is the best algorithm for that problem
class.

Finally, a solution is provided to the problem of designing
algorithms tailored to a specific problem class; meta-learning
[11] and hyper-heuristics [4]. While base-level learning is
concerned with solving a specific problem instance, meta-
level learning is concerned with solving many problem in-
stances from a problem class (i.e. learning about the prob-
lem class). In other words, a meta-level provides a channel
through which learning from problem instance in a train-
ing set can be retained to improve performance on problem
instances in the application stage.

In short, it does not make sense to nominate an algorithm
without simultaneously nominating the set of problem in-
stances to which it is to be applied (i.e. an algorithm is
appropriate for a problem class). By analogy with the in-
spiring metaphor of GP, just as organisms evolve in response
to environmental changes (i.e. survival of the fittest), and
objects are engineered in response to needs (i.e. fit for pur-
pose), so too should we automatically design algorithms in
response to grounded benchmark instances (i.e. drawn from
a probability distribution).

There are at least two reasons why we would want to
employ meta-learning. Firstly, we could manually generate
new algorithms (i.e. ‘hand-coding’), and test them on said
benchmarks (which seems to be the most widely adopted
approach). However, this itself is just a generate-and-test
approach (no different to GP itself) that can be automated.
Secondly, with real-world problems, the probability distri-
bution of problem instances is likely to change over time, so
rather than having to hand-code new algorithms in response
to this change, they can be generated on demand for a new
set of benchmark instances.

We hope that this paper goes some way of addressing the
issues raised in [33, 20]. We provided support for engaging
with real-world problems via the adoption of meta-learning
as a problem domain for GP.
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