
Structural stigmergy: A speculative pattern language for
metaheuristics

Ben Kovitz
Fluid Analogies Research Group

Indiana University
512 North Fess Avenue

Bloomington, Indiana 47408 USA
bkovitz@indiana.edu

Jerry Swan
Computing Science and Mathematics

University of Stirling
FK9 4LA Scotland UK

jerry.swan@cs.stir.ac.uk

ABSTRACT
To construct graphs whose quality results from complicated
relationships that pervade the entire graph, especially rela-
tionships at multiple scales, follow a strategy of repeatedly
making local patches to a single graph. Look for small, eas-
ily recognized flaws in local areas of the graph and fix them.
Add tags to the graph to represent non-local relationships
and higher-level structures as individual nodes. The tags
then have easily recognized flaws that relate to non-local
and higher-level concerns, enabling local patching to set off
cascades of local fixes that address those concerns.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
[Heuristic methods]; G.1.6 [Optimization]: [Stochastic pro-
gramming]

General Terms
Algorithms, Design

Keywords
metaheuristics; stigmergy; design patterns

1. FIVE PATTERNS

1.1 Local patching
In search problems where each candidate solution is a

graph in which the goodness of a solution results from com-
plicated relationships that pervade the entire graph, often
it’s easy for a person to identify local flaws and ways
to fix them but hard to design a fitness function
that provides a workable gradient to go from poor
to good solutions.

For example, an analog circuit is a complicated graph in
which the nodes are electronic components and the edges

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2881-4/14/07 ...$15.00.
http://dx.doi.org/10.1145/2598394.2609845.

are electrical connections between those components. Some
simple flaws in a circuit design: an integrated circuit’s VCC

pin isn’t connected to the supply voltage; an electrolytic ca-
pacitor is connected in reverse polarity; a component isn’t
connected to anything at all. These flaws all have simple and
obvious fixes. But the relationships between components to
make a correct or acceptable circuit are subtle and complex:
waveforms and timings result from feedback loops between
components and must be chosen correctly to orchestrate the
activity of other components, etc. Almost any random vari-
ation made to a circuit renders it completely inoperable.
Consequently, it’s hard to design a fitness function without
large plateaus and bad local minima.

Therefore:
Instead of maintaining a population of graphs, maintain

a single graph. Make a “library of patches”: a col-
lection of types of small, local flaws together with
simple ways to fix them. On each iteration of the
search, choose one flaw randomly and fix it.

Each flaw should be computationally cheap to recognize:
ideally, by examining a single node and its immediate con-
nections. No flaw can pertain to a single node alone. Every
flaw should pertain to a node’s relationship to its neighbors.

There should be more than one way to fix many of the
flaws. For example, a completely unconnected component
simply needs to connect to something. Make the system
choose randomly among the fixes available in the circuit as
it stands now.

Ideally, each fix consists of an operation on a single node
or edge: creating, modifying, or deleting a node, or creating,
modifying, or deleting an edge connecting two nodes.

Consequences:
1. Most changes improve the graph.
As the search runs, consecutive changes appear scattered

about the graph, each bringing the graph closer to a good
graph. But they don’t necessarily result directly in a graph
that, considered as a whole, is any better. For example,
even after making a number of connections, a circuit design
might still not work at all.

2. Fixing one flaw often creates a new flaw.
For example, hooking up an LED to a positive voltage

and ground without also adding a pull-up resistor is likely
to send too much current through the LED.

3. The detected flaws become progressively more
specific to their context.

For example, if an electrolytic capacitor wasn’t connected
to anything at all, detecting that flaw might trigger the

1407

patch “hook it up to any component that can connect with
a capacitor.” Once connected to one component, its flaw is
that it needs another connection, having something to do
with the other component. Once connected to two com-
ponents, the capacitor might be connected with the wrong
polarity, triggering a patch to reverse its connections.

4. There’s no tendency to converge on a particu-
larly good graph, only a “reasonable” graph.

This may be OK for some searches, such as a search for a
valid solution which can be defined entirely in terms of local
relationships between nodes. For many searches, though, we
want to find better and better graphs as defined by some set
of criteria, such as operating characteristics of a circuit. See
“Goal tags” (sec. 1.4) for how to address this.

1.2 Change creates salience
Often a sequence of several small changes in one

place is needed to do much good. But the first
change doesn’t get followed up because the attention
of the system is distributed equally everywhere.

For example, a voltage regulator needs a capacitor and
resistor, a power source, and an output which matches the
voltage needed by the integrated circuit(s) whose voltage it
regulates. The regulator’s output is itself a function of the
capacitor and resistor that it’s connected to. If only one of
these fixes is done and then ignored, the other components
will have flaws of their own, which might trigger incompat-
ible fixes.

Therefore:
Associate a level of salience with every node. Give

it a boost whenever that node or its edges are modi-
fied. And let it decay on every search step when it’s
not modified. When randomly choosing nodes to fix,
give higher probability to the more-salient nodes.

When a node has no flaws, it won’t get modified, providing
opportunity for decay. A node also won’t be modified while
attention is on far-off nodes in the graph, even if that node
has a flaw.

Consequences:
1. Flaw-fixing tends to happen in local cascades.
Fixing one flaw tends to create a new flaw in the same

node or an adjacent node. That flaw triggers another fix,
and so on.

2. Sometimes the system flounders, undoing a fix
it just made for one node because of the flaw that it
created for a neighboring node.

Floundering is not necessarily bad. The resulting insta-
bility creates a variety of opportunities for other nodes to
make a connection with one of the floundering nodes. This
fixes more of the node’s potential flaws, resulting in greater
stability. To counter floundering of a more pernicious sort,
see “When you’re stuck, break something” (sec. 1.5).

3. Distant parts of the graph can build up in-
ternally coherent but mutually incompatible sub-
graphs.

This is partly addressed in the next pattern, and partly
in “When you’re stuck, break something” (sec. 1.5).

1.3 Tags
Most relationships of interest are not local. Mak-

ing a good decision regarding one node requires knowl-
edge of how that node fits into a larger structure,

and even how that larger structure fits into yet larger
structures.

Therefore:
Attach tags to nodes, groups of nodes, and nodes

with an important relationship between them.
Tags are“administrative”nodes, which represent non-local

knowledge where it’s needed. You must define a “library of
tags” and situations they apply to. And you must extend
the “library of patches” to include flaws involving tags and
what’s needed to fix them.

For example, a group of several electronic components
might produce a certain waveform. This group should be
tagged as “generating a waveform”. It’s a flaw for this tag
to lack an appropriate power source, to lack a receiving com-
ponent or module into which to feed the waveform, or for its
frequency to be unsuitable for that required by the receiving
component.

If certain kinds of nodes must be arranged in a certain se-
quence, tags can indicate where in the sequence they occur.
For example, it’s a flaw for an English sentence to end with
“the”, so, in a program that constructs sentences, the last
word in a sentence might get a special tag.

In some problems, tags can themselves be part of the
solution in addition to performing an administrative role
(e.g. Copycat, sec. 3.1).

Consequences:
Relationships between aspects of the graph that

exist on a larger scale than a single node drive the
search.

A tag that binds several nodes into a group can have
neighbors that are also tags, which bind other groups to-
gether. Now, from the standpoint of local patching, the
high-level structures and their relationships are local, too.
Tags that designate relationships of interest can have tags
as neighbors, and consequently flaws in relation to those
neighbors, and consequently set off new cascades of local
patching.

1.4 Goal tags
Internal coherence alone is not enough to make

a practical metaheuristic. There must be a way to
drive the graph toward predefined objectives.

Therefore:
Represent objectives with “goal tags”: tags that

are flawed when they don’t connect with nodes that
implement the objective.

For example, a goal tag for a circuit to generate a sine
wave would be flawed when it lacks connection to a tag that
describes an output waveform. Upon connection with such a
tag, there might still be a flaw because the waveform doesn’t
match the shape or frequency specified in the goal tag. This
flaw sets off a cascade of changes to the waveform tag’s other
neighbors.

Consequences:
The goal tags provide “top-down” pressure to di-

rect the search, balancing the opportunistic“bottom-
up” pressures that come from looking for ways to
connect the lowest-level nodes.

At the start of a search, the goal tags’ flaws can’t be satis-
fied, because the tags representing the high-level structures
and relationships they need to connect to don’t exist. To
fix this flaw, the program makes a tag for the relevant kind
of structure or relationship, just without the structure or

1408

relationship existing. This is a flaw for the new tag, which
creates pressures to build up the needed kinds of structures.

1.5 When you’re stuck, break something
Sometimes, two large parts of the graph are each

internally coherent but they conflict with each other,
and there’s no way to tell which one is “wrong”.

In this situation, most of the nodes have few flaws left
to fix, except the goal tags are not satisfied or only poorly
satisfied. Each local patch seems to do as much damage as
good. Small changes to either part of the graph make that
part locally worse. Neither part of the graph offers a path of
locally beneficial changes to produce a global improvement.

Therefore:
Monitor the rate of local improvement through-

out the graph. When it stops, arbitrarily unlink or
destroy a large, connected part of the graph.

Since there’s no way to tell which part should be de-
stroyed, the best you can do is arbitrarily destroy one of
them, so something new can grow in its place, hopefully in-
fluenced by and more harmonious with the remaining part.

On the other hand, if you have enough domain knowledge
to program an educated guess about which part should be
destroyed, you can implement “competition”. When a node
tries to fix its own flaw by linking to a node that’s already
linked, it must dislodge the competitor. The system can
give varying weights to the first node’s fix, the creation of
a flaw for the competing node, and the effect on the node
connected to. The winner is determined by these weights;
the loser is disconnected and will have to find some other way
of getting the connection it needs. Or if the loser is a group,
the group tag can be removed, releasing the contained nodes
to build a fresh structure. The weights can reflect how long
a connection has been in existence, how long each node has
been flawed, and how serious the flaws are.

Consequences:
The search cycles between slow construction and

fast destruction.
With competition, subgraphs tend to prevail if they can

contribute to the global goals, and tend to be destroyed if
they can’t.

There is, however, no way to tell in advance if breaking
up a large part of the graph will lead to something better or
not. It’s possible for the program to find the best graph it
will ever find, break it up because it can’t improve it, and
never find it again.

2. CONSEQUENCES FOR THE DESIGNER
1. The problem becomes more tractable for the

metaheuristic designer.
Local flaws are very easy to understand and think of how

to fix. As you watch the search in progress, you see simple
flaws that are not being addressed, and you think of new
additions to the library of patches and the library of tags.
In effect, you patch up flaws in the metaheuristic as you find
them, not so different from what the metaheuristic does.
Criticizing, nit-picking, and patching is much easier than
coming up with an elegant theory.

You never have to invent a fitness function. You just de-
fine various kinds of connections that you want to see in a
solution graph.

2. You can add all the domain knowledge you like.

For example, a circuit-design metaheuristic can exploit as
much electronics knowledge and circuit-design know-how as
you can find. You keep adding it a little bit at a time, by
translating it into the language of tags and flaws.

3. Because of that, the metaheuristic tends to ac-
quire both human-like common sense and human-
like blind spots.

Genetic algorithms sometimes discover bizarre circuits that
no human engineer ever would—like circuits where one part
is not connected but that don’t work if the unconnected part
is removed [11]. This is both good and bad, but in practice
it’s usually bad. The good is that such searches don’t have
the blind spots that sometimes prevent humans from seeing
excellent solutions. The bad is that bizarre solutions often
exploit dependencies that make them impractical. For ex-
ample, the above-cited circuit worked by exploiting thermal
properties resulting from the manufacturing quirks of a sin-
gle FPGA chip. When tried in another FPGA of the exact
same model, the circuit design didn’t work.

4. You must manually adjust global parameters.
Boosting salience, decaying salience, weighting the im-

portance of flaws, determining when local improvement has
petered out—all these involve choosing constants with far-
reaching effects on the performance of the program. If these
global parameters aren’t just right in relation to each other,
the system can spend all of its time stuck on a bad solution,
abandon excellent solutions, break up nascent solutions be-
fore they’ve had a chance, etc. This sounds like the kind
of problem that a metaheuristic could help solve. To date,
though, programs that do structural stigmergy with local
patching (sec. 3) have gotten their global parameters set by
somewhat laborious manual tuning.

3. EXAMPLES
Because these are speculative patterns, there are few ex-

amples of metaheuristics that use them. These patterns
are found mostly in biology (sec. 4) and in blackboard sys-
tems [2]. Blackboard systems model collaboration of differ-
ent experts on the solution to a problem. All can see and
edit the current version of the solution. We briefly describe
Copycat, a blackboard-like system that demonstrates local
patching and tagging especially well.

3.1 Copycat
The Copycat program [8] makes analogies between strings

of letters. Given an example of changing one letterstring to
another, such as abc → abd, Copycat will attempt to“do the
same thing”to another given string. Attempting to make the
analogous transformation to iijjkk, it might come up with
iijjll, iijjkl, iijjdd, ijl, or other choices, depending
on how it mapped the example to the given string and what
rule it came up with to explain the example.

Flexible analogy-making faces problems fundamental to
all metaheuristics: the number of possible choices is vast,
only a fairly small number of them are reasonable, it’s hard
to tell whether a bad candidate solution is near or far from a
good one, and one must often settle for a solution that is less
than ideal. In addition, there is no way to define a simple
fitness function for all possible letterstring analogies. The
set of possible relationships is just too vast and irregular.

Copycat makes extensive use of tags, in particular tags
that define groups and tags that define sequences in terms
of successor or predecessor relationships. Given the example

1409

pqqp → qppq and the start string gghijj, Copycat could tag
gg and jj as groups. This would influence the choice of map-
ping from pqqp, perhaps favoring mapping the first p to the
gg and the second p to the jj, perhaps leading to a result of
hggjji. Or Copycat might tag the successor relationships
gg�h�i�jj, leading it to tag the initial string with suc-
cessor/predecessor relationships: p�q�q�p. It might then
convert the input string to an analogously symmetric “hill”:
gghijjjjihgg.

All the parts of the solution grow together, each tag set-
ting off searches for ways to make an analogous tag elsewhere
or ways to define a mapping rule to make use of the tags.
Tentatively considered mapping rules set off searches for ap-
propriate ways to tag the letters. Nodes become “unhappy”
due to inappropriate positioning in the solution graph, trig-
gering searches for ways to repair the problem. Competi-
tions (as in sec. 1.5) determine when one node can dislodge
another. A global “temperature” tracks overall satisfaction
with the current solution, and affects the probability of a
“breaker” randomly destroying part of the solution.

A spreading-activation network called the“slipnet”directs
the search top-down, complementing the bottom-up search
of nodes looking for appropriate links. When a node in the
slipnet becomes active, the corresponding type of node in the
“workspace” (the tentative solution now being worked on) is
deemed most relevant to the search right now, giving actions
(“codelets”) related to nodes of that type higher urgency.
The slipnet also models something not covered above: the
ability of concepts to “slip”, or adjust their meaning to fit
what’s currently feasible to achieve in the workspace.

4. BIOLOGICAL INSPIRATION

4.1 Stigmergy
The biological phenomenon of stigmergy has been a fer-

tile source of inspiration for metaheuristics [3]. Stigmergy
is the stimulation to act resulting from effects in the envi-
ronment of actions already completed. For example, when
termites are building a nest, the parts of the nest already
built stimulate the termites to perform the next steps to-
ward completing the nest. Each insect decides what to do
next only by sensing stimuli that are present and nearby.
Pheromones left by ants while searching for food are a nat-
ural tag: a sign left in the environment rather than simply
a side-effect of action.

Ant-colony optimization [4] was, of course, inspired by
ants—as was Copycat [5]. Stigmergy in ant-colony optimiza-
tion is limited to attaching tags (“pheromones”) to edges of
a graph in order to steer the search toward favorable varia-
tions. We define the term structural stigmergy here to mean
specifically the building of hierarchical structures by local
patching. This requires both building upon or correcting
partial structures and tagging partial structures to make
non-local information local.

John Holland has discovered a wide variety of tags in com-
plex adaptive systems, especially tags that define or distin-
guish groups (“aggregates”). A particularly relevant exam-
ple is the use of a flag to rally an army or political group [6,
p. 13]. The group members’ attachment to a symbol enables
them to be led as if they were a single entity. Yet each mem-
ber makes locally appropriate decisions, helping the group
goal according to his or her own skills and opportunities.

4.2 Stigmergy in human life
Stigmergy occurs in human life at least as much as it oc-

curs in social insects [10]. In addition to natural side-effects
of action, such as trails of worn vegetation left by walking
and the spread of information in a marketplace through indi-
vidual negotiations, humans deliberately leave signs in their
environment that represent information in terms of conven-
tional symbols. For example, road signs direct traffic, ad-
vertisements connect buyers with sellers, and of course all
writing is signs deposited in the environment to carry infor-
mation. We should not be surprised that when people notice
something wrong in other people’s writing, they often feel
an immediate urge to correct it [9].

Wikipedia is made entirely by stigmergy. Each editor ed-
its without consulting others, stimulating other editors to
make corrections or improvements [7]. Wikipedia articles
have “tags” explicitly noting the presence of problems: non-
neutral point of view, lack of cited sources, etc. These tags
stimulate other editors to correct the problems noted.

Christopher Alexander’s concept of a“pattern language”is
itself a form of structural stigmergy. Each pattern is a way of
solving a recurring problem: a conflict between forces (drives
to action) that arises in a situation [1, ch. 14]. Building is
a process of repair [1, ch. 24], making local changes to fix
local problems.

The enormous success of structural stigmergy in nature
suggests that it’s both workable and effective for many hard
problems. It demands little at each decision-point, and it
produces structures that cohere at all levels and fit external
pressures such as an environment or a set of objectives.

5. REFERENCES
[1] Alexander, C. The Timeless Way of Building.

Oxford University Press, 1979.

[2] Craig, I. Blackboard systems. Intellect Books, 1995.

[3] Crina, G., and Ajith, A. Stigmergic optimization:
Inspiration, technologies and perspectives. In
Stigmergic optimization. Springer, 2006, pp. 1–24.

[4] Dorigo, M., and Stützle, T. Ant Colony
Optimization. Bradford, 2004.

[5] Hofstadter, D. R., Mitchell, M., et al. The
Copycat project: A model of mental fluidity and
analogy-making. Advances in connectionist and neural
computation theory 2, 31-112 (1994), 29–30.

[6] Holland, J. H. Hidden order: How adaptation builds
complexity. Basic Books, 1995.

[7] Lih, A. Long live Wikipedia? In A Companion to
New Media Dynamics, J. Hartley, J. Burgess, and
A. Bruns, Eds. Wiley, 2013, pp. 185–190.

[8] Mitchell, M. Analogy-Making As Perception: A
Computer Model. MIT Press, 2002.

[9] Munroe, R. Duty calls. https://xkcd.com/386/.
Accessed: 4-Apr-2014.

[10] Parunak, H. V. D. A survey of environments and
mechanisms for human-human stigmergy. In
Environments for Multi-Agent Systems II. Springer,
2006, pp. 163–186.

[11] Thompson, A., Layzell, P., and Zebulum, R.
Explorations in design space: Unconventional
electronics design through artificial evolution.
Evolutionary Computation, IEEE Transactions on 3, 3
(1999), 167–196.

1410

	Five patterns
	Local patching
	Change creates salience
	Tags
	Goal tags
	When you're stuck, break something

	Consequences for the designer
	Examples
	Copycat

	Biological inspiration
	Stigmergy
	Stigmergy in human life

	References

