
Tagging in Metaheuristics

Ben Kovitz
Fluid Analogies Research Group

Indiana University
512 North Fess Avenue

Bloomington, Indiana 47408 USA
bkovitz@indiana.edu

Jerry Swan
Computing Science and Mathematics

University of Stirling
FK9 4LA Scotland UK

jerry.swan@cs.stir.ac.uk

ABSTRACT
Could decisions made during some search iterations use in-
formation discovered by other search iterations? Then store
that information in tags: data that persist between search
iterations.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
[Heuristic methods]; G.1.6 [Optimization]: [Stochastic pro-
gramming]

General Terms
Algorithms, Design

Keywords
metaheuristics; tags; design patterns

1. TAGGING

1.1 Problem
When early decisions in a sequence affect what is

possible in later decisions, the early decisions can
usually be made better if informed by the results of
later decisions.

Benefit of hindsight occurs in two ways in metaheuristics:
when constructing candidate solutions that are themselves
sequences of decisions, such as paths or graphs (constructive
search), and when choosing which of a set of variations of
candidate solutions are most likely to be fruitful (perturba-
tive search).

An example in a constructive search: When attempting
to construct a short path through a graph, each decision is
the choice made, at one vertex, of which edge to follow to
reach the next vertex. A poor decision at an early vertex
can limit all decisions made at later vertices to constructing
unacceptably long paths. But there’s no way to know this
before exploring them.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2881-4/14/07 ...$15.00.
http://dx.doi.org/10.1145/2598394.2609844.

An example in a perturbative search: A genetic algorithm
searching a high-dimensional space for an ~x that produces a
minimal f(~x) can produce many more variations (mutations
and crossovers) in each generation than it can feasibly ex-
plore in that generation. Some lead to fruitful regions of the
fitness landscape and others don’t. There’s no informed way
to choose which variations are most worth exploring without
actually exploring them.

In iterative searches, previous explorations of se-
quences of decisions have often passed through the
same decision points and already discovered results
of some of the available choices.

A real-life illustration: While searching for a path out of
a cave, you might come to the same branching point many
times without realizing you’d been there before. To keep
yourself from re-exploring a branch that leads only to a dead
end, you could write “dead end” on the wall the first time
you backed out of it. The wall at the start of that branch is
the most convenient place for this information, since that’s
the exact place where you need it.

1.2 Solution
During or immediately after exploring each de-

cision sequence, record just-discovered facts which
can benefit later searches. Store them in a way that
makes them easy to look up when they are most
likely to be relevant, such as when a later search
reaches a decision point that was crossed during the
current search.

Such records are called “tags”, “pheromones”, “annota-
tions”, or “descriptors”. Tags form a secondary level of de-
scription beyond that of the candidate solutions themselves,
suggesting which directions of search are most promising.

The simplest kinds of tags are markers that a solution
has already been explored, as in tabu search (section 2.1),
or a single number such as the average fitness of previous
paths that passed through a given edge, as in ant-colony
optimization (section 2.2).

There is, however, no upper limit to the complexity of the
information that can be stored in a tag. Tags can hold any
kind of information about results discovered so far, relevant
facts from the problem domain, or any kind of estimate of
the promisingness of a line of exploration. For example, a
classification algorithm might tag several items as a single
group, reflecting the hypothesis that the differences between
them are unimportant and should be left out of the classifi-
cation. Upcoming searches can build upon that hypothesis,
perhaps adding further tags linking it to other hypotheses.

1411

Eventually that hypothesis may be rejected and then the
tag will be removed or itself tagged as a “dead end”.

1.3 Consequences
1. The fitness landscape becomes progressively more

hill-shaped (less “rugged”) as more searches occur.
Each tag functions as a sign pointing the way toward

more-fruitful searches or away from less-fruitful searches.
Future searches skip over alternatives that appear good on
the basis of information local to a decision point but that
information from elsewhere suggests will lead to poor re-
sults. Thus the tags provide a communication channel from
decisions that come later on a path to decisions that come
earlier. Each tag expands the “local” knowledge available at
each decision point to include some “global” knowledge of
the region of the fitness landscape that each choice leads to.

2. An explicit representation of promisingness of
different lines of exploration grows and improves,
separately from evaluation of solutions.

In effect, the tags co-evolve with the candidate solutions.
Tags direct and prioritize future searches, and future searches
find information that helps make and refine the tags.

3. A certain proportion of computational capac-
ity will be devoted to the overhead of maintaining,
accessing, and interpreting the tags.

Since tag-related computation occurs on each iteration of
a search, it slows down the algorithm’s main inner loop. As
long as recording and interpreting tags is cheaper than re-
discovering the information in them, tags are likely a worth-
while addition to most metaheuristics.

4. Tags can encode domain knowledge.
One of the defining properties of metaheuristics is their

problem-domain independence. However, it is well-known
that domain knowledge is the key to ensuring the tractability
of precisely the kinds of problems we wish to address with
metaheuristics.

A set of tags provides a way for a search to capitalize
on domain knowledge when it’s determined to be relevant.
For example, a metaheuristic for laying out components on
a printed-circuit board can exploit a tag that certain pins
are ground pins, and favor exploring layouts that orient the
components so their ground pins are all on the same side.

2. EXAMPLES

2.1 Tabu search
Tabu search [4] maintains a memory of candidate solutions

that have been recently evaluated, declaring a“tabu”against
evaluating them again until sufficient new candidates have
been explored. This keeps the exploration of variations in a
perturbative search from repeatedly rediscovering the same
local minima.

Some forms of tabu search tag specific elements of can-
didate solutions that have recently been varied, declaring a
tabu against varying them again too soon (“recency-based
memory”). This temporarily holds the search within or out-
side a neighborhood of solutions.

Other forms of tabu search (“frequency-based memory”)
track how many times a certain solution element has been
present in explored solutions or how many times an element
has been changed, swapped, deleted, etc. These tags last
many search iterations, and can identify features of the fit-
ness landscape such as that a certain element has a large

or a small effect on fitness. This information suggests im-
portant aspects of the structure of the fitness landscape,
such as where are the paths between regions with very dif-
ferent properties. This helps the algorithm choose between
intensification and diversification strategies and tune them
appropriately.

An illustration of the injection of explicit domain knowl-
edge to a tabu-search algorithm for finding maximal sub-
graph isomorphisms between two finite-state automata is
given in [9]. Since a node representing an accepting state
can’t map to a node representing a non-accepting state, any
such mapping is declared permanently tabu.

2.2 Ant-colony optimization
Ant-colony optimization (ACO) [2] searches for the best

paths through a graph by tagging each edge with a “pher-
omone”: a number that correlates with the overall quality
of recently searched paths that contained that edge. While
constructing a new path, the algorithm favors edges with
high pheromone numbers. Thus when choosing which parts
of a path to vary, the algorithm tends to vary edges from bad
paths more and edges from good paths less. The pheromones
decay in order to prevent the search from converging too
quickly on a suboptimal path.

ACO has a particular advantage in problems where the
properties of the graph change while the algorithm is run-
ning. The pheromones change right along with the introduc-
tion, removal, or re-weighting of edges, directing the search
toward the paths that are most favorable right now. This
illustrates the advantage of maintaining a description sepa-
rate from that of the candidate solutions and their fitness.
The pheromones redirect the gradient of the search by am-
plifying information about which search directions are most
fruitful. The fitnesses of candidate solutions alone don’t
contain this information.

A simple way to add domain knowledge to an ACO al-
gorithm is to reduce the pheromone level for known bad
elements of a solution. For example, in the Euclidean Trav-
eling Salesman Problem, a path with a pair of crossed edges
is known to be longer than the same path with those edges
uncrossed [1, p. 1-12]. Simply reducing the pheromone level
on edges that recently crossed speeds up the basic algorithm
by several hundred times on standard large problems [10].

2.3 Model-driven searches
Another kind of tag consists of an explicit model of the

problem domain or the fitness landscape, updated as can-
didate solutions are inspected and evaluated. For exam-
ple, estimation-of-distribution algorithms [7] maintain an
approximate map of the fitness landscape. This map takes
the form of a probability distribution over the set of all
possible solutions, where higher probability densities indi-
cate regions where fitnesses tend to run high. Each time a
candidate solution is evaluated, the algorithm adjusts the
probability distribution to more closely match the fitnesses
actually found. Instead of choosing new candidate solutions
by varying old ones, these algorithms simply choose by sam-
pling the current probability distribution.

3. OTHER KINDS OF TAGS
This pattern does not explain all kinds of tags.
A kind of tag that occurs in genetic programming serves

as a label for a code fragment [8]. This enables another part

1412

of the program to refer to it—say, to call it as a subroutine.
This, in turn, facilitates the evolution of a modular architec-
ture, which in turn facilitates evolvability. Without tagged
code fragments, reference from one part of a program to an-
other has to rely on mechanisms that are much more easily
broken by mutation and crossover. For example, referring a
certain number of instructions ahead or backward, or to an
absolute location in a program, will likely produce a com-
pletely useless program whenever an instruction is inserted
or deleted.

Reference tags are made even more robust by being inex-
act. When a program branches to an inexact tag, the in-
terpreter simply finds the best match. This enables tagged
modules and code that refers to them to evolve fairly inde-
pendently without breaking each other. Almost-duplicate
modules can coexist in the same program and eventually
specialize for different purposes. Eventually they can get
distinct tags that other parts of the program can evolve to
take advantage of, but a reference won’t break completely if
it doesn’t specify exactly the right tag.

A dizzying variety of tags are found in complex adaptive
systems [5]. Cell-adhesion molecules dictate when a cell ad-
heres to other cells and what other kinds of cells it adheres
to; they play a fundamental role in growth and in the im-
mune system [3]. Every colony of the African weaver ant
has a distinct scent, which enables ants to tell if they’re in
their own colony or a foreign one [6]. Company logos enable
customers to easily recognize businesses, and uniforms help
them tell who are the employees and who are the customers.

Like the tags described in the first two sections of this
paper, reference tags, group tags, timing tags, etc. are “ad-
ministrative overhead”that guides the activity of the system.
These tags are different in that they primarily serve the pur-
pose of coordination between different parts of a candidate
solution or between different agents. They don’t primarily
record knowledge gained in previous search iterations to save
the system from having to rediscover it.

4. REFERENCES
[1] Applegate, D., Bixby, R., Chvátal, V., and

Cook, W. The Traveling Salesman Problem: A
Computational Study. Princeton Series in Applied
Mathematics. Princeton University Press, 2011.

[2] Dorigo, M., and Stützle, T. Ant Colony
Optimization. Bradford, 2004.

[3] Edelman, G. Topobiology: An Introduction to
Molecular Embryology. Basic Books, 1993.

[4] Glover, F., and Laguna, M. Tabu Search. Springer
US, 1997.

[5] Holland, J. H. Hidden order: How adaptation builds
complexity. Basic Books, 1995.

[6] Hölldobler, B., and Wilson, E. O. Colony-specific
territorial pheromone in the african weaver ant
Oecophylla longinoda (Latreille). Proceedings of the
National Academy of Sciences 74, 5 (1977), 2072–2075.

[7] Larrañaga, P. A review on estimation of
distribution algorithms. In Estimation of distribution
algorithms. Springer, 2002, pp. 57–100.

[8] Spector, L., Martin, B., Harrington, K., and
Helmuth, T. Tag-based modules in genetic
programming. In Proceedings of the 13th annual
conference on Genetic and evolutionary computation
(2011), ACM, pp. 1419–1426.

[9] Swan, J., Harman, M., Ochoa, G., and Burke, E.
Generic software subgraph isomorphism. In
Proceedings of the 4th International Symposium on
Search Based Software Engineering (SSBSE ’12) -
Fast Abstracts (2012).

[10] Wang, C.-X., Cui, Y.-A., Li, X., Chen, H., and
Cui, D.-W. A novel ant colony system based on
traditional chinese medicine theory. International
Journal of Computer Science and Network Security 6,
5 (May 2006), 153.

1413

