
Metaheuristic Design Pattern: Candidate Solution Repair

Krzysztof Krawiec∗
Institute of Computing Science

Poznan University of Technology
60965 Poznan, Poland

krawiec@cs.put.poznan.pl

ABSTRACT
In metaheuristic algorithms applied to certain problems, it
may be difficult to design search operators that guarantee
producing feasible search points. In such cases, it may be
more efficient to allow a search operator to yield an infe-
asible solution, and then turn it into a feasible one using a
repair process. This paper is an attempt to provide a broad
perspective on the candidate solution repair and frame it as
a metaheuristic design pattern.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

Keywords
metaheuristic algorithms; solution repair; search operators;
feasibility

1. PROBLEM STATEMENT
Many problems solved with metaheuristic algorithms are

constrained, i.e., problem formulation includes conditions
(usually logical predicates) that have to be fulfilled by a can-
didate solution to be feasible. As a result, the entire search
space S of candidate solutions is partitioned into feasible
solutions F ⊂ S and infeasible solutions I ⊂ S, F ∩ I = ∅.

As the goal is to find the optimal and feasible solution (or,
more often in practice, a well-performing suboptimal and
feasible solution), it is desirable to traverse S using search
operators that are guaranteed to produce feasible solutions
(i.e., s : S → F ). However, designing operators with this
guarantee can be challenging, for instance when feasible so-
lutions are few and far in between (i.e., the ratio |F |/|S| is
small), or when the structure of S is such that the feasible
solutions are frequently neighbored by the infeasible ones.

∗Research conducted during K. Krawiec’s stay at the ALFA
Group, Computer Science and Artificial Intelligence Labo-
ratory (CSAIL), MIT.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2881-4/14/07 ...$15.00.
http://dx.doi.org/10.1145/2598394.2609847 .

Moreover, even if such an operator can be designed, then
it may be biased in an undesirable way (in the sense of the
probability distribution of produced candidate solutions).

This makes it necessary to equip an algorithm with some
means of handling the infeasible solutions. Discarding them
is rarely a good idea for at least two reasons. Firstly, with
the discarded candidate solutions some knowledge gathered
in hitherto search is also lost. Secondly, this may prevent the
algorithm from visiting the yet unexplored and potentially
promising parts of the search space. As an alternative, one
may extend the definition of the objective function so that it
works ‘reasonably’ beyond the feasible region; for instance,
an infeasible candidate solution to a knapsack problem may
be evaluated according to how much it violates the knap-
sack capacity ([4], p. 149). For many problems however
coming up with such an extended and uncontroversial ob-
jective function may be difficult.

Another way of handling infeasible solutions is penaliza-
tion by introducing appropriate terms into objective func-
tion f , or by defining additional objectives that implement
constraint violation measures. This proceeding assumes how-
ever that f can be applied to unfeasible solutions, i.e., that
the constraints are in some sense soft. Though this is of-
ten technically true (e.g., in many continuous optimization
benchmarks f is defined in almost entire Rn space), f ap-
plied to an unfeasible solution may return a nonsensical
value and potentially deceive the search process. This can be
solved by not applying f to infeasible solutions altogether,
i.e., by relying on penalties alone for such candidate solu-
tions, but this typically implies that an infeasible solution
will be always considered as worse than any feasible solu-
tion, which can again prevent exploration of certain parts of
the search space.

2. THE SOLUTION
In the face of above controversies, it has been often recom-

mended to repair the unfeasible solutions. A repair operator
is any operator O guaranteed to fulfill

O(x) ∈ F

for any given infeasible solution x ∈ I.
There are at least two major ways in which such an oper-

ator can be employed:

1. In the most obvious scenario, the resulting repaired
solution x′ = O(x) replaces the infeasible one, and
the latter one is discarded. This proceeding is use-
ful in problems where the objective function is capa-
ble of evaluating infeasible solutions. For instance, in

1415



the Traveling Salesperson Problem (TSP), one can still
calculate route length even if it visits some cities more
than once [10].

2. One can alternatively use the repaired solution x′ =
O(x) only as a means for obtaining the value of f(x),
which otherwise could not be calculated [5]. More
specifically, x remains a working solution, but receives
the objective value of its repaired version, i.e.:

f(x) = f(O(x)) (1)

3. CONSEQUENCES
The availability of a repair operator for a given problem

has several implications. Firstly, it gives the experimenter
more freedom in designing search operators, which do not
have to always produce feasible solutions anymore. In some
cases, it may pay off to design search operators that notori-
ously yield infeasible solutions, in which case repair becomes
a norm rather than an exception, and the repair operator
gets to be a more important ‘search driver’ than the pri-
mary search operator(s).

Using repair only to obtain an ‘evaluable proxy’ (case 2
in Section 2) has particularly interesting consequences. In
principle it allows conducting search as if there were no con-
straints, i.e., in the space S of all candidate solution rather
than in the subspace F of feasible solutions only. As a con-
sequence, the search trajectory can traverse the subspace of
infeasible solutions I and remain there for several iterations
(provided the search operators can work there). This poten-
tially allows the algorithm to find ‘shortcuts’ to parts of F
that would be hard (or even impossible) to reach via a path
of feasible solutions only. On the other hand, such a policy
involves the risk of diverging from F so far that the eval-
uation proxies obtained by repair (O(x) in Eq. (1)) cease
to provide useful information about the search gradient. In
general, whether this policy pays off depends on the struc-
ture of the search space, characteristics of repair operator,
and informativness of fitness function.

Though usually a necessity, solution repair can be seen in
a broader context as a way to make a search process more
responsive to the feedback resulting from the evaluation of
candidate solutions. On the other hand, the information
about constraint violation can be considered as a manner of
making the search process more informed.

Note that repair in the above sense can be seen as yet
another search operator, capable of operating in I (as op-
posed to conventional search operators which normally are
required to work only in F ). Therefore, the characteristics
of a repair operator becomes a (potentially important) part
of algorithm’s search bias.

In the context of evolutionary computation, the two modes
of operation listed in the previous section can be respectively
deemed Lamarckian repair and Baldwinian repair, as the
former one employs the feedback received from the environ-
ment (i.e., the information about violating a constraint) to
explicitly modify (replace) the solution, while in the latter
scenario the only effect is in the objective (fitness) value.

Sometimes it may be difficult to delineate repair from
other components of a metaheuristic algorithm. In some
cases, repair is an indispensable element of genotype-phenotype
mapping. For instance in grammatical evolution [8], so-
lutions (genotypes) are vectors of numbers, each of them
determining the choice of a grammar production to be used

when deriving the phenotype (program). When such a num-
ber is greater than the number of productions available at
a given stage of program derivation, it is to be treated by a
modulo n operator. That operator can be seen as a repair
operator in this context.

A general concept related to repair is embedding. The
space of feasible solutions can be seen as embedded in a
greater space of all candidate solutions reachable by means
of the search operator(s). For instance an n-argument Boolean
function can be uniquely represented by a look-up table of
2n values 0 and 1. One can embed this space in the [0, 1]2

n

hypercube, in which only the corners of the hypercube cor-
respond to the feasible solutions. In this setting, repair is
the collapse from the latter space to nearest lower space rep-
resentative (where the notion ‘nearest’ would be explicitly
or implicitly implemented by the repair algorithm). In gen-
eral, the embedding space can feature a different number
of dimensions (typically higher) than the embedded space.
However, such embeddings can be considered also for di-
mensionless (i.e., non-vector) spaces, for instance spaces of
programs.

4. EXAMPLES

• Numerical optimization abounds in various methods
for solution repair (see, e.g., [5] for a review).

• A simple form of solution repair is clamping (trim-
ming) the value of a modified variable to a predefined
range (domain). Though in most cases the ranges are
part of problem statement, sometimes the reasons are
more subtle. For instance in [9], we clamp the vari-
ables representing the parameters of Othello strategies.
However, we do so not because the fitness function is
inherently unable to handle the values outside the in-
terval, but to avoid an uncontrolled growth of variables
that may not bring qualitative changes in players’ be-
havior (because candidate solutions are functionally
equivalent up to linear scaling). Thus, infeasibility is
not the only motivation for repair.

• Crossover can be a significant source of infeasible off-
spring, in particular in metaheuristic search algorithms
with discrete representation encodings. For example,
in Grouping Genetic Algorithms [1], crossover of two
parents with permutation encodings is highly likely to
produce an infeasible offspring. In such cases, solu-
tion repair becomes an integral part of the crossover
operation.

• Intron removal in genetic programming (GP, e.g., [2])
can be considered as a form of repair (notwithstanding
that it has been shown that some amount of introns
may be beneficial for GP search).

• Simplification algorithms used in certain variants of
genetic programming to reduce solution size (e.g., [6,
7]) can be seen as as a form of repair: they do not affect
the semantics of a program, but change its syntax and
thus make it possible for it to meet, e.g., an upper limit
imposed on program size.

• Methods have been proposed that avoid solution re-
pair by using the information on constraint violation
to guide the search process [3].

1416



• Repair is applicable also in presence of weak constraints.
For instance in GP, the program size limit is intended
to avoid expensive evaluation and excessive memory
occupancy rather than to principally exclude certain
programs as infeasible. A program that slightly vi-
olates this constraint but commits low error can be
still considered attractive. In this context, repair in-
terestingly becomes an operator that transforms the
‘less desirable’ candidate solutions into the more de-
sired ones.

Acknowledgment
The author would like to thank the reviewers for construc-
tive remarks and acknowledges financial support from the
Polish-U.S. Fulbright Commission and from National Sci-
ence Centre grant no. DEC-2011/01-/B/ST6/07318.

5. REFERENCES
[1] Emanuel Falkenauer. Genetic Algorithms and

Grouping Problems. John Wiley & Sons, Inc., New
York, NY, USA, 1998.

[2] Thomas Haynes. Duplication of coding segments in
genetic programming. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence,
volume 1, pages 344–349, Portland, USA, 4-6 August
1996. AAAI Press / MIT Press.

[3] Nanlin Jin, Edward Tsang, and Jin Li. A
constraint-guided method with evolutionary
algorithms for economic problems. Applied Soft
Computing, 9(3):924–935, 2009.

[4] Sean Luke. Essentials of Metaheuristics. lulu.com, first
edition, 2009. Available at
http://cs.gmu.edu/∼sean/books/metaheuristics/.

[5] Z. Michalewicz. A survey of constraint handling
techniques in evolutionary computation methods.

In John R. McDonnell, Robert G. Reynolds, and
David B. Fogel, editors, Proc. of the 4th Annual Conf.
on Evolutionary Programming, pages 135–155,
Cambridge, MA, 1995. MIT Press.

[6] Alberto Moraglio, Krzysztof Krawiec, and Colin
Johnson. Geometric semantic genetic programming. In
Christian Igel, Per Kristian Lehre, and Carsten Witt,
editors, The 5th workshop on Theory of Randomized
Search Heuristics, ThRaSH’2011, Copenhagen,
Denmark, July 8-9 2011.

[7] Alberto Moraglio, Krzysztof Krawiec, and Colin G.
Johnson. Geometric semantic genetic programming. In
Carlos A. Coello Coello, Vincenzo Cutello, Kalyanmoy
Deb, Stephanie Forrest, Giuseppe Nicosia, and Mario
Pavone, editors, Parallel Problem Solving from Nature
- PPSN XII, volume 7491 of Lecture Notes in
Computer Science, pages 21–31. Springer, 2012.

[8] Conor Ryan, J. J. Collins, and Michael O’Neill.
Grammatical evolution: Evolving programs for an
arbitrary language. In W. Banzhaf, R. Poli,
M. Schoenauer, and T. C. Fogarty, editors, First
European Workshop on Genetic Programming 1998,
pages 83–95, Berlin, 1998. Springer.

[9] M. Szubert, W. Jaśkowski, and K. Krawiec. On
scalability, generalization, and hybridization of
coevolutionary learning: A case study for othello.
Computational Intelligence and AI in Games, IEEE
Transactions on, 5(3):214–226, 2013.

[10] Tim Walters. Repair and brood selection in the
traveling salesman problem. In Agoston E. Eiben,
Thomas Bäck, Marc Schoenauer, and Hans-Paul
Schwefel, editors, Parallel Problem Solving from
Nature – PPSN V, pages 813–822, Berlin, 1998.
Springer. Lecture Notes in Computer Science 1498.

1417




